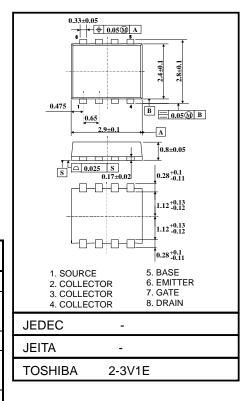
#### **TOSHIBA Multi-Chip Transistor**

Silicon NPN Epitaxial Type, Field Effect Transistor Silicon N Channel MOS Type

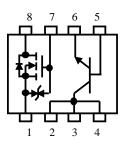
# TPCP8H02

# STROBE FLASH APPLICATIONS HIGH-SPEED SWITCHING APPLICATIONS DC-DC CONVERTER APPLICATIONS

- Multi-chip discrete device; built-in NPN transistor for main switch and N-ch MOS FET for drive
- High DC current gain:  $h_{FE} = 250 \text{ to } 400 \text{ (IC} = 0.3 \text{ A)}$  (NPN transistor)
- Low collector-emitter saturation voltage:  $V_{CE (sat)} = 0.14 \text{ V (max)}$ (NPN transistor)
- High-speed switching:  $t_f = 25 \text{ ns (typ.)}$  (NPN transistor)


# Maximum Ratings (Ta = 25°C)

#### Transistor


| Characteristics                   |                      | Symbol                  | Rating | Unit |  |
|-----------------------------------|----------------------|-------------------------|--------|------|--|
| Collector-base voltage            |                      | V <sub>CBO</sub>        | 50     | V    |  |
| Collector-emitter voltage         |                      | V <sub>CEX</sub>        | 50     | V    |  |
|                                   |                      | V <sub>CEO</sub>        | 30     | v    |  |
| Emitter-base volta                | Emitter-base voltage |                         | 6      | V    |  |
| Collector current                 | DC (Note 1)          | Ic                      | 3.0    | Α    |  |
|                                   | Pulse (Note 1)       | I <sub>CP</sub>         | 5.0    | A .  |  |
| Base current                      |                      | Ι <sub>Β</sub>          | 0.3    | Α    |  |
| Collector power dissipation (NPN) |                      | P <sub>C</sub> (Note 2) | 1.0    | W    |  |
| Junction temperature              |                      | Tj                      | 150    | °C   |  |

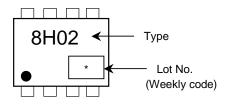
# **MOS FET**

| Characteristics      |       | Symbol          | Rating | Unit |  |
|----------------------|-------|-----------------|--------|------|--|
| Drain-Source Voltage |       | $V_{DSS}$       | 20     | ٧    |  |
| Gate-Source Voltage  |       | $V_{GSS}$       | ±10    | V    |  |
| Drain Current        | DC    | I <sub>D</sub>  | 100    | mA   |  |
|                      | Pulse | I <sub>DP</sub> | 200    | IIIA |  |
| Channel Temperature  |       | T <sub>ch</sub> | 150    | °C   |  |



# **Circuit Configuration**




- Note 1: Ensure that the junction (channel) temperature does not exceed 150°C.
- Note 2: Device mounted on a glass-epoxy board (FR-4,25.4 × 25.4 × 1.6 mm, Cu area: 645 mm<sup>2</sup>)

This transistor is an electrostatic-sensitive device. Please handle with caution.

# Common Maximum Rating (Ta = 25°C)

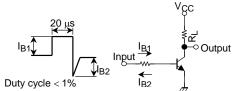
| Characteristics           | Symbol           | Rating     | Unit |
|---------------------------|------------------|------------|------|
| Storage temperature range | T <sub>stg</sub> | -55 to 150 | °C   |

# Marking (Note 3)



Note 3: The mark "●" on the lower left of the marking indicates Pin 1.

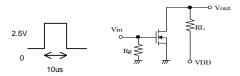
\* Weekly code (three digits)




# **Electrical Characteristics (Ta = 25°C)**

# Transistor

| and otto                             |              |                       |                                                |     |      |     |      |
|--------------------------------------|--------------|-----------------------|------------------------------------------------|-----|------|-----|------|
| Characteristics                      |              | Symbol                | Test Condition                                 | Min | Тур. | Max | Unit |
| Collector cut-off current            |              | I <sub>CBO</sub>      | $V_{CB} = 50 \text{ V}, I_{E} = 0$             | _   | _    | 100 | nA   |
| Emitter cut-off current              |              | I <sub>EBO</sub>      | $V_{EB} = 6 \text{ V}, I_{C} = 0$              | _   | _    | 100 | nA   |
| Collector-emitter breakdown voltage  |              | V (BR) CEO            | $I_C = 10 \text{ mA}, I_B = 0$                 | 30  | _    | _   | V    |
| DC current gain                      |              | h <sub>FE</sub> (1)   | $V_{CE} = 2 \text{ V}, I_{C} = 0.3 \text{ A}$  | 250 | _    | 400 |      |
|                                      |              | h <sub>FE</sub> (2)   | V <sub>CE</sub> = 2 V, I <sub>C</sub> = 1.0 A  | 120 | _    | _   |      |
| Collector-emitter saturation voltage |              | V <sub>CE (sat)</sub> | I <sub>C</sub> = 1.0 A, I <sub>B</sub> = 33 mA | _   | _    | 140 | mV   |
| Base-emitter saturation voltage      |              | V <sub>BE (sat)</sub> | $I_C = 1.0 \text{ A}, I_B = 33 \text{ mA}$     | _   | _    | 1.1 | V    |
| Collector output capacitance         |              | C <sub>ob</sub>       | $V_{CB} = 10V$ , $I_E = 0$ , $f=1MHz$          | _   | 18   | _   | pF   |
| Switching time                       | Rise time    | t <sub>r</sub>        | See Figure 1 circuit diagram.                  | _   | 40   | _   |      |
|                                      | Storage time | t <sub>stg</sub>      | $V_{CC} = 12 \text{ V}, R_L = 12 \Omega$       | _   | 320  | _   | ns   |
|                                      | Fall time    | t <sub>f</sub>        | $I_{B1} = -I_{B2} = 33 \text{ mA}$             | _   | 25   |     |      |


Figure 1 Switching Time Test Circuit & Timing Chart



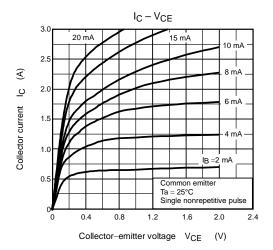
#### **MOS FET**

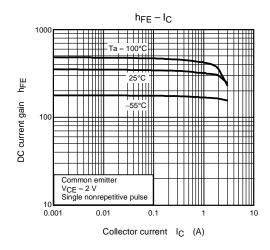
| Characteristics                |               | Symbol               | Test Condition                                                        | Min | Тур. | Max | Unit |
|--------------------------------|---------------|----------------------|-----------------------------------------------------------------------|-----|------|-----|------|
| Gate leakage current           |               | I <sub>GSS</sub>     | $V_{GS} = \pm 10 \text{ V}, V_{DS} = 0$                               | _   | _    | ±1  | μΑ   |
| Drain-source breakdown voltage |               | V <sub>(BR)DSS</sub> | $I_D = 0.1 \text{ mA}, V_{GS} = 0$                                    | 20  | _    | _   | V    |
| Drain cut-off current          |               | I <sub>DSS</sub>     | V <sub>DS</sub> = 20 V, V <sub>GS</sub> = 0                           | _   | _    | 1   | μΑ   |
| Gate threshold voltage         |               | V th                 | $V_{DS} = 3V$ , $I_D = 0.1 \text{mA}$                                 | 0.6 | _    | 1.1 | V    |
| Forward transfer admittance    |               | Yfs                  | $V_{DS} = 3V$ , $I_D = 10mA$                                          | 40  | _    | _   | mS   |
| Drain-source ON-resistance     |               | R <sub>DS(ON)</sub>  | $I_D = 10 \text{mA}$ , $V_{GS} = 4 \text{V}$                          | _   | 1.5  | 3   | Ω    |
|                                |               |                      | $I_D = 10 \text{mA} , V_{GS} = 2.5 \text{V}$                          | _   | 2.2  | 4   |      |
|                                |               |                      | $I_D = 1$ mA , $V_{GS} = 1.5$ V                                       | _   | 5.2  | 15  |      |
| Input capacitance              |               | C <sub>iss</sub>     | V <sub>DS</sub> = 3V, V <sub>GS</sub> = 0, f=1MHz                     | _   | 9.3  | _   | pF   |
| Reverse transfer capacitance   |               | C <sub>rss</sub>     |                                                                       | _   | 4.5  | _   |      |
| Output capacitance             |               | Coss                 |                                                                       | _   | 9.8  | _   |      |
| Switching time                 | Turn-on time  | t <sub>on</sub>      | See Figure 2 circuit diagram.                                         | _   | 70   | _   |      |
|                                | Turn-off time | t <sub>off</sub>     | $V_{DD} \doteq 3V, R_L = 300 \Omega$<br>$V_{GS} = 0 \text{ to } 2.5V$ | _   | 125  | _   | ns   |

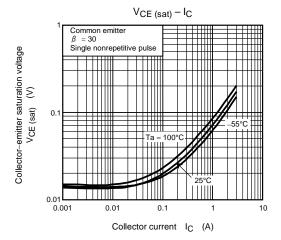
Figure 2 Switching Time Test Circuit & Timing Chart

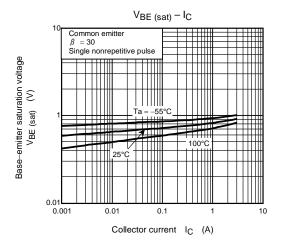


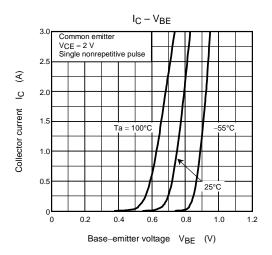
Gate Pulse Width 10  $\mu$  s, tr, tf<5ns (Zout=50  $\Omega$  ), Common Source, Ta=25°C Duty Cycle<1%

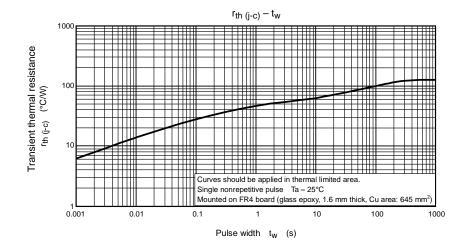

# **Precautions**

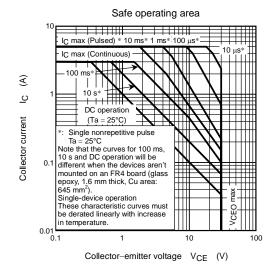

 $V_{th}$  can be expressed as the voltage between gate and source when the low operating current value is ID=100  $\mu A$  for this product. For normal switching operation,  $V_{GS}$  (on) requires a higher voltage than  $V_{th}$  and  $V_{GS}$  (off) requires a lower voltage than  $V_{th}$ .


(The relationship can be established as follows: VGS (off) <  $V_{th}$  < VGS (on))


Please take this into consideration when using the device. The VGS recommended voltage for turning on this product is 2.5~V or higher.

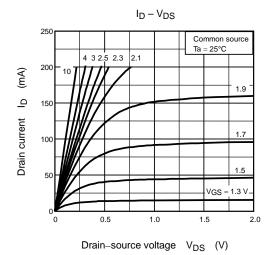

# **NPN**

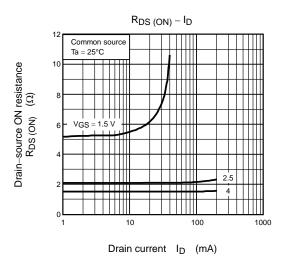


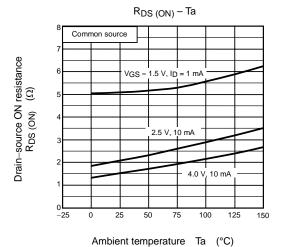



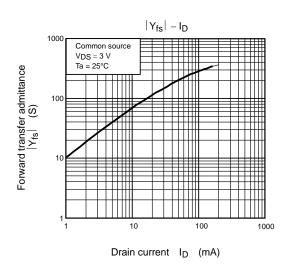


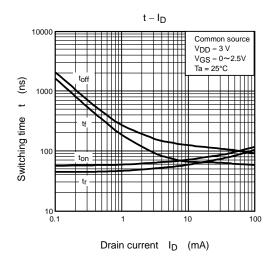


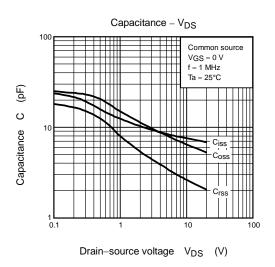



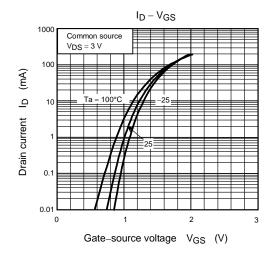



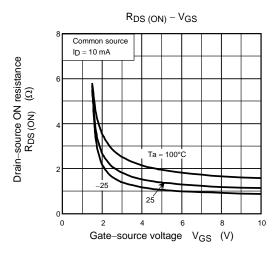


5 2004-07-12

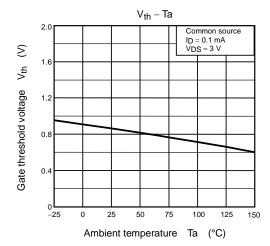

# **Nch-MOS**

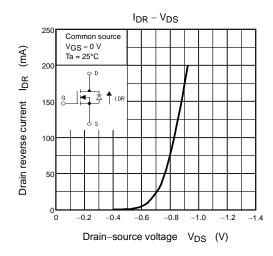





6 2004-07-12









# **RESTRICTIONS ON PRODUCT USE**

Handbook" etc..

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
  may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
  TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.