SLVS042D - JANUARY 1991 - REVISED JULY 1999

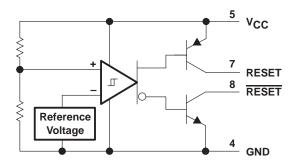
- Power-On Reset Generator
- Automatic Reset Generation After Voltage Drop
- Precision Input Threshold Voltage . . . 4.55 V ±120 mV
- Low Standby Current . . . 20 μA
- Reset Outputs Defined When V_{CC} Exceeds 1 V
- True and Complementary Reset Outputs
- Wide Supply-Voltage Range . . . 1 V to 7 V

D, P, OR PW PACKAGE (TOP VIEW) NC [1 8] RESET NC [2 7] RESET NC [3 6] NC GND [4 5] VCC

NC - No internal connection

description

The TL7759 is a supply-voltage supervisor designed for use as a reset controller in microcomputer and microprocessor systems. The supervisor monitors the supply voltage for undervoltage conditions. During power up, when the supply voltage, V_{CC} , attains a value approaching 1 V, the RESET and \overline{RESET} outputs become active (high and low, respectively) to prevent undefined operation. If the supply voltage drops below the input threshold voltage level (V_{IT-}), the reset outputs go to the reset active state until the supply voltage has returned to its nominal value (see timing diagram).


The TL7759C is characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

	PAC			
TA	SMALL OUTLINE (D)	PLASTIC DIP (P)	SHRINK SMALL OUTLINE (PW)	CHIP FORM (Y)
0°C to 70°C	TL7759CD	TL7759CP	TL7759CPW	TL7759Y

The D and PW packages are available taped and reeled. Add the suffix R to the device type (e.g., TL7759CDR). Chip forms are tested at 25°C.

functional block diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS042D - JANUARY 1991 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	20 V
Off-state output voltage range: RESET voltage	0.3 V to 20 V
RESET voltage	0.3 V to 20 V
Low-level output current, IOL (RESET)	30 mA
High-level output current, IOH (RESET)	–10 mA
Package thermal impedance, θ _{JA} (see Notes 2 and 3): D packa	ge 97°C/W
P packa	ge 127°C/W
PW pack	kage 149°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{CC}	1	7	V	
Output voltage Ve (eee Note 4)	Transistor off RESET voltage		15	V
Output voltage, VO (see Note 4)	Transistor off RESET voltage	0		V
Low-level output current, IOL	RESET		24	mA
High-level output current, IOH	RESET		-8	mA
Operating free-air temperature, T _A	TL7759C	0	70	°C

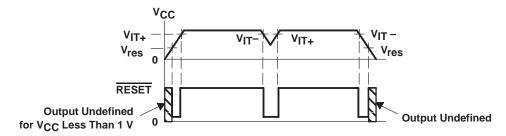
NOTE 4: RESET output must not be pulled down below GND potential.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TL7759C				
				MIN	TYP [‡]	MAX	UNIT	
VOL	Low-level output voltage	RESET	V43V	I _{OL} = 24 mA		0.4	0.8	V
Vон	High-level output voltage	RESET	V _{CC} = 4.3 V	I _{OH} = -8 mA	V _{CC} -1			V
\/:-	Input threshold voltage		T _A = 25°C		4.43	4.55	4.67	V
VIT- (negative-going V _{CC})			$T_A = 0$ °C to 70 °C		4.4		4.7	V
S D			$R_1 = 2.2 \text{ k}\Omega$	T _A = 25°C		0.8	1	V
Vres	V _{res} § Power-up reset voltage		KL = 2.2 KS2	$T_A = 0$ °C to 70 °C			1.2	
, g	Ulustareaia at Valainaut		T _A = 25°C		40	50	60	mV
V _{hys} ¶	Hysteresis at V _{CC} input		$T_A = 0$ °C to 70 °C		30		70	IIIV
ЮН	High-level output current	RESET	V 7 // Coo Figure 4	V _{OH} = 15 V			1	μΑ
loL	Low-level output current	RESET	V _{CC} = 7 V, See Figure 1	V _{OL} = 0 V			-1	μΑ
la a	Cumply augrent		No load	V _{CC} = 4.3 V		1400	2000	
Icc	Supply current			V _{CC} = 5.5 V			40	μΑ

[‡] Typical values are at T_A = 25°C.

 $[\]P$ This is the difference between positive-going input threshold voltage, V $_{
m IT+}$, and negative-going input threshold voltage, V $_{
m IT-}$.


[§] This is the lowest voltage at which RESET becomes active, V_{CC} slew rate ≤ 5 V/μs.

SLVS042D - JANUARY 1991 - REVISED JULY 1999

electrical characteristics, $T_A = 25^{\circ}C$ (unless otherwise noted)

DADAMETED		TEST CONDITIONS		TL7759Y				
	PARAMETER			TEST CONDITIONS		TYP	MAX	UNIT
VOL	Low-level output voltage	RESET	$V_{CC} = 4.3 \text{ V},$	I _{OL} = 24 mA		0.4		V
V _{IT} –	V _{IT} Input threshold voltage (negative-going V _{CC})					4.55		V
V _{res} † Power-up reset voltage		R _L = 2.2 kΩ			0.8		V	
V _{hys} ‡	Hysteresis at V _{CC} input					50		mV
ICC	Supply current		$V_{CC} = 4.3 \text{ V},$	No load		1400		μΑ

timing diagram

switching characteristics at $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		FROM TO		TEST CONDITIONS	TL7759C		UNIT
		(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low-to high-level output	VCC	RESET	See Figures 2 and 3§		5	μs
tPHL	Propagation delay time, high-to low-level output	Vcc	RESET	See Figures 2 and 4		5	μs
t _r	Rise time		RESET	See Figures 2 and 4§		1	μs
t _f	Fall time		RESET	See Figures 2 and 4		1	μs
tw(min)	Minimum pulse duration	Vcc	RESET	See Figures 2 and 4	5		μs

[§] V_{CC} slew rate ≤ 5 V/μs

[†] This is the lowest voltage at which RESET becomes active, V_{CC} slew rate ≤ 5 V/μs. ‡ This is the difference between positive-going input threshold voltage, V_{IT+}, and negative-going input threshold voltage, V_{IT−}.

PARAMETER MEASUREMENT INFORMATION

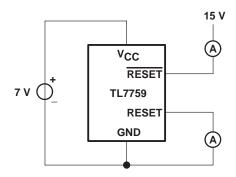
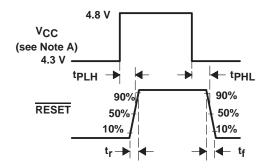
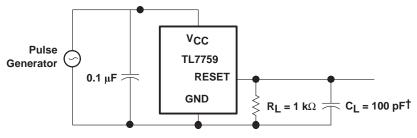




Figure 1. Test Circuit for Output Leakage Current

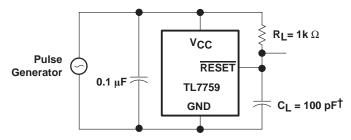

NOTE A: V_{CC} slew rate $\leq 5 V/\mu s$.

Figure 2. Switching Diagram

[†]C_L Includes jig and probe capacitance.

Figure 3. Test Circuit for RESET Output Switching Characteristics

 $^\dagger C_L$ Includes jig and probe capacitance.

Figure 4. Test Circuit for RESET Output Switching Characteristics

APPLICATION INFORMATION

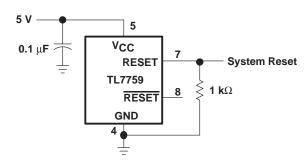


Figure 5. Power-Supply System Reset Generation

i.com 24-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins I	Package Eco Plan ⁽²⁾ Qty	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL7759CD	ACTIVE	SOIC	D	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CDE4	ACTIVE	SOIC	D	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CDR	ACTIVE	SOIC	D	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CDRE4	ACTIVE	SOIC	D	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CP	ACTIVE	PDIP	Р	8	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7759CPE4	ACTIVE	PDIP	Р	8	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TL7759CPSR	ACTIVE	SO	PS	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CPSRE4	ACTIVE	SO	PS	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CPW	ACTIVE	TSSOP	PW	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CPWE4	ACTIVE	TSSOP	PW	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CPWLE	OBSOLETE	TSSOP	PW	8	TBD	Call TI	Call TI
TL7759CPWR	ACTIVE	TSSOP	PW	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TL7759CPWRE4	ACTIVE	TSSOP	PW	8	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

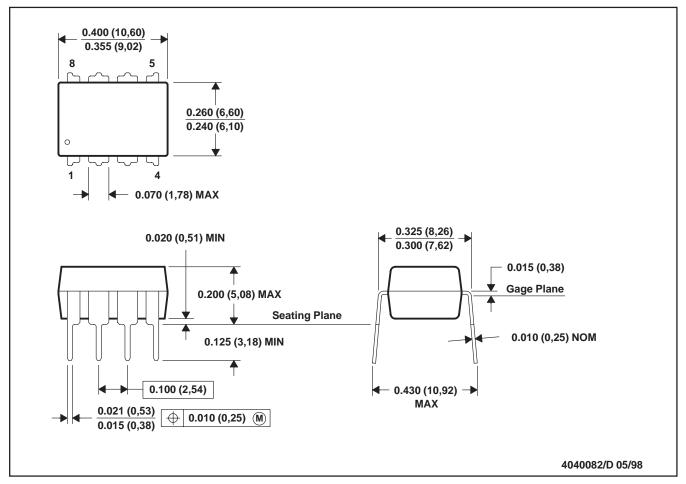
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited

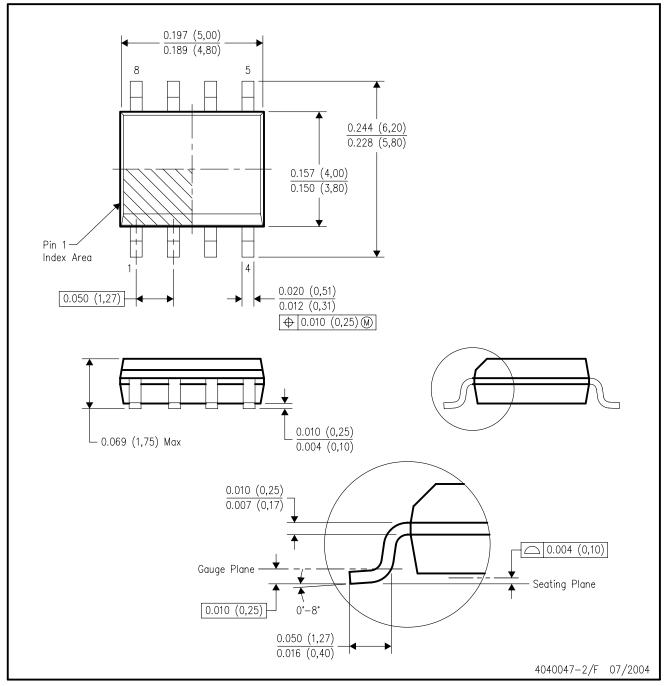

PACKAGE OPTION ADDENDUM

24-Feb-2006

information may not be available for release.
In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by Tl to Customer on an annual basis.

P (R-PDIP-T8)

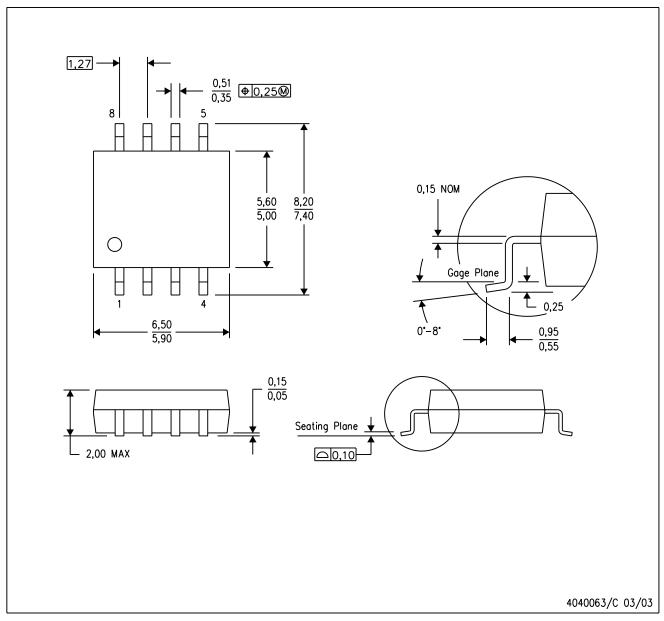
PLASTIC DUAL-IN-LINE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001

For the latest package information, go to $http://www.ti.com/sc/docs/package/pkg_info.htm$

D (R-PDSO-G8)

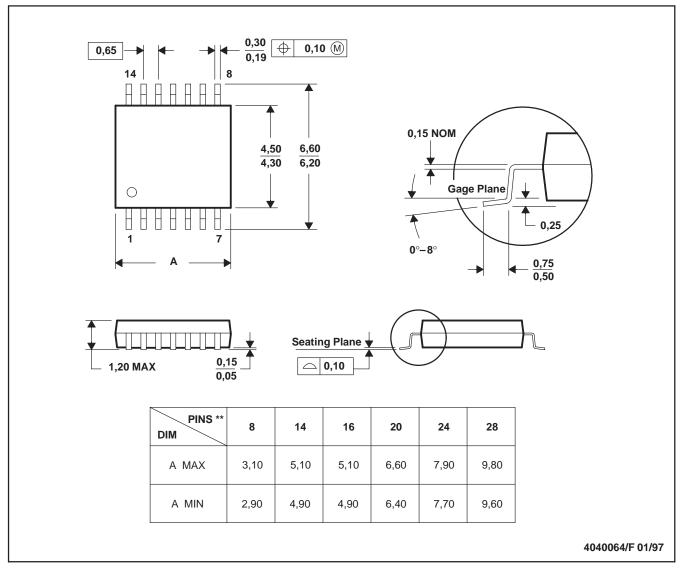

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated