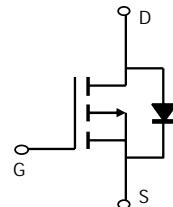
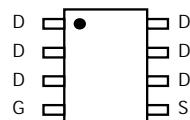
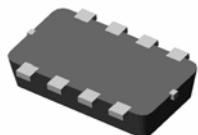


ALPHA & OMEGA
SEMICONDUCTOR, LTD

AON4413

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AON4413 uses advanced trench technology to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use as a load switch or in PWM applications. Standard product AON4413 is Pb-free (meets ROHS & Sony 259 specifications).

Features

V_{DS} (V) = -30V
 I_D = -6.5A (V_{GS} = -10V)
 $R_{DS(ON)} < 46m\Omega$ (V_{GS} = -10V)
 $R_{DS(ON)} < 60m\Omega$ (V_{GS} = -6V)

Absolute Maximum Ratings $T_A=25^\circ\text{C}$ unless otherwise noted

Parameter	Symbol	10 Sec	Steady State	Units
Drain-Source Voltage	V_{DS}		-30	V
Gate-Source Voltage	V_{GS}		± 20	V
Continuous Drain Current ^A	I_D	-6.5	-4.7	A
$T_A=70^\circ\text{C}$		-5.3	-3.7	
Pulsed Drain Current ^B	I_{DM}		-25	
Power Dissipation ^A	P_D	3.1	1.6	W
$T_A=70^\circ\text{C}$		2.0	1.0	
Junction and Storage Temperature Range	T_J, T_{STG}		-55 to 150	°C

Thermal Characteristics

Parameter	Symbol	Typ	Max	Units
Maximum Junction-to-Ambient ^A	R_{0JA}	34	40	°C/W
Maximum Junction-to-Ambient ^A		66	80	°C/W
Maximum Junction-to-Lead ^C	R_{0JL}	20	25	°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

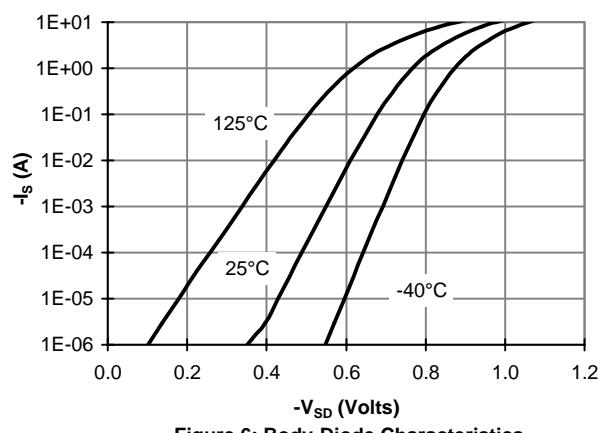
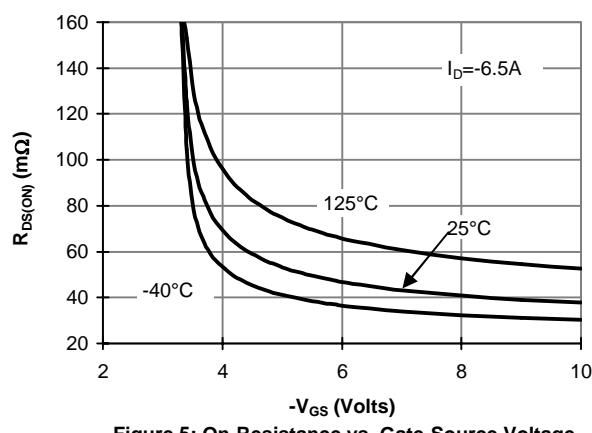
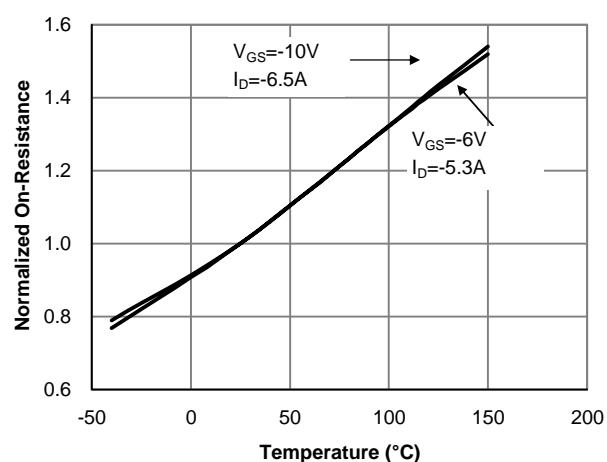
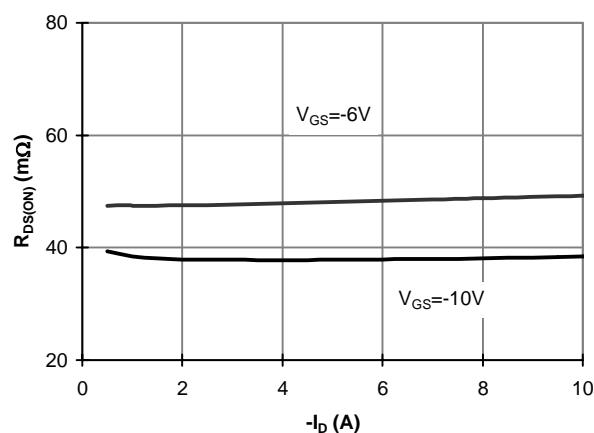
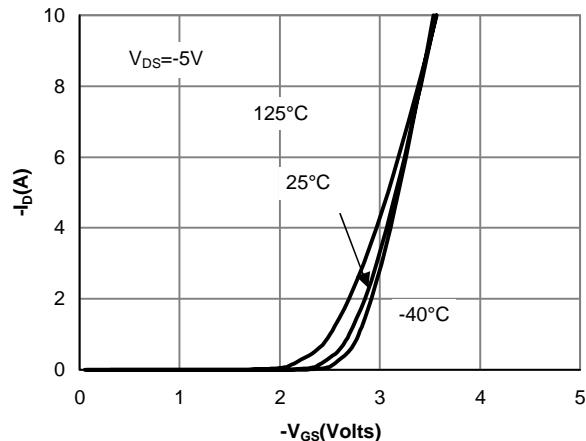
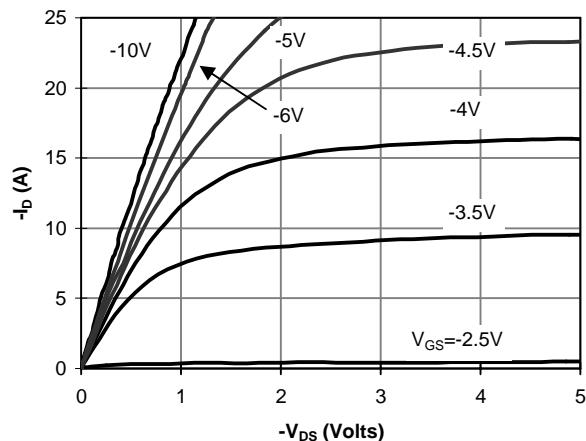
Symbol	Parameter	Conditions	Min	Typ	Max	Units
STATIC PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D = -250µA, V _{GS} = 0V	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -30V, V _{GS} = 0V T _J = 55°C			-1 -5	µA
I _{GSS}	Gate-Body leakage current	V _{DS} = 0V, V _{GS} = ±20V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} I _D = -250µA	-1.5	-2	-2.5	V
I _{D(ON)}	On state drain current	V _{GS} = -10V, V _{DS} = -5V	-25			A
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = -10V, I _D = -6.5A T _J = 125°C	38	46		mΩ
		V _{GS} = -6V, I _D = -5.3A	54	65		mΩ
g _{FS}	Forward Transconductance	V _{DS} = -5V, I _D = -6.5A	11			S
V _{SD}	Diode Forward Voltage	I _S = -1A, V _{GS} = 0V	0.77	-1		V
I _S	Maximum Body-Diode Continuous Current				-3	A
DYNAMIC PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} = 0V, V _{DS} = -15V, f = 1MHz		668	830	pF
C _{oss}	Output Capacitance			126		pF
C _{rss}	Reverse Transfer Capacitance			92		pF
R _g	Gate resistance	V _{GS} = 0V, V _{DS} = 0V, f = 1MHz		6	9	Ω
SWITCHING PARAMETERS						
Q _g (10V)	Total Gate Charge (10V)	V _{GS} = -10V, V _{DS} = -15V, I _D = -6.5A		12.7	17	nC
Q _g (4.5V)	Total Gate Charge (4.5V)			6.4	8.5	nC
Q _{gs}	Gate Source Charge			2		nC
Q _{gd}	Gate Drain Charge			4		nC
t _{D(on)}	Turn-On Delay Time	V _{GS} = -10V, V _{DS} = -15V, R _L = 2.3Ω, R _{GEN} = 3Ω		7.7		ns
t _r	Turn-On Rise Time			6.8		ns
t _{D(off)}	Turn-Off Delay Time			20		ns
t _f	Turn-Off Fall Time			10		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F = -6.5A, dI/dt = 100A/µs		22	30	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F = -6.5A, dI/dt = 100A/µs		15		nC

A: The value of R_{0JA} is measured with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C.

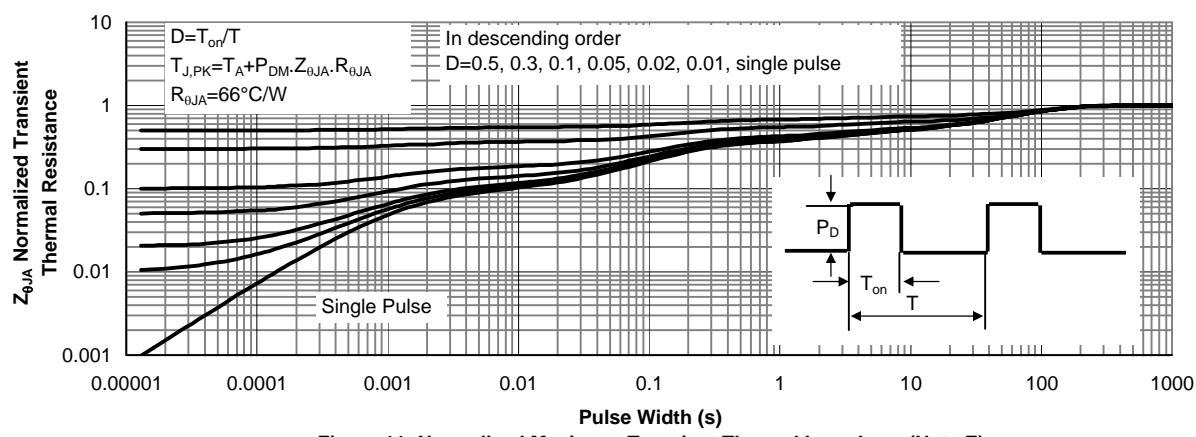
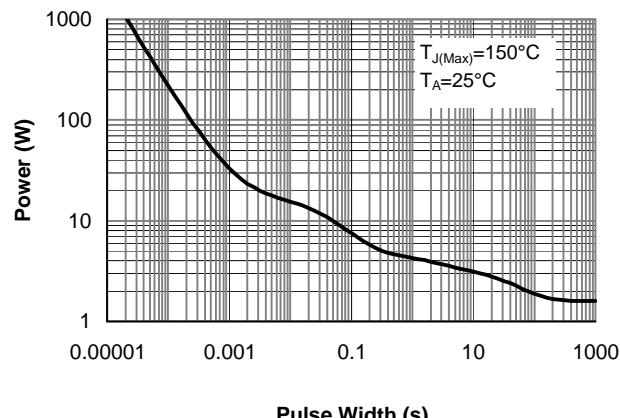
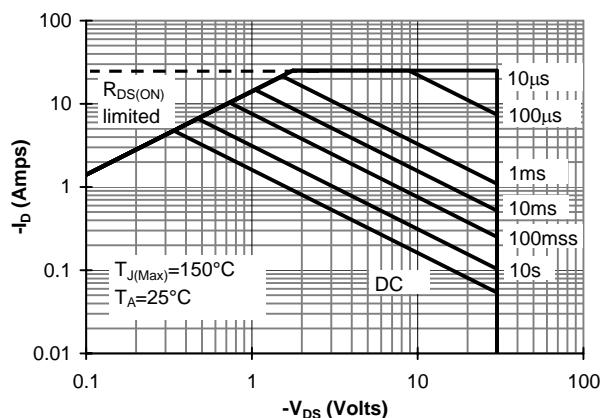
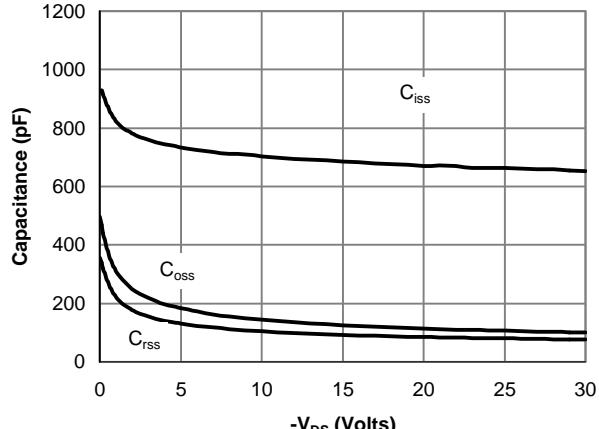
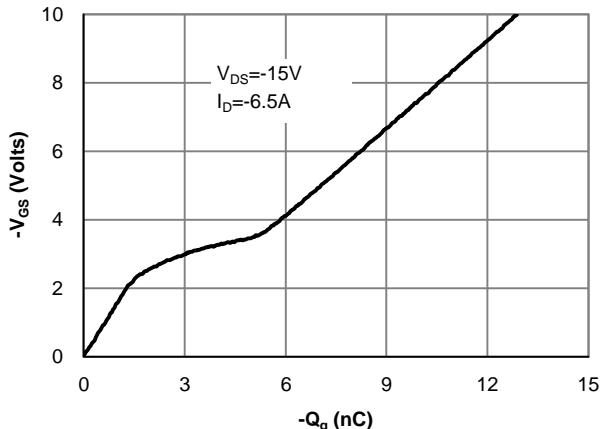
The value in any given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C: The R_{0JA} is the sum of the thermal impedance from junction to lead R_{0JL} and lead to ambient.







D: The static characteristics in Figures 1 to 6 are obtained using < 300 µs pulses, duty cycle 0.5% max.

E: These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The SOA curve provides a single pulse rating.






Rev1: June 2007

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

