

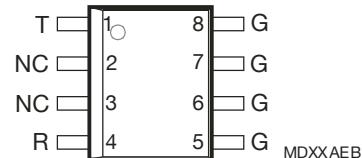
BOURNS®

TISP1120F3D

DUAL FORWARD-CONDUCTING UNIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTOR

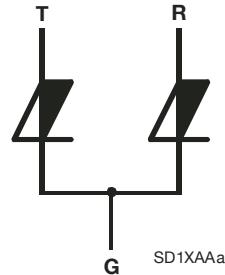
The Model TISP1120F3D is currently available, but not recommended for new designs.

TISP1120F3D Overvoltage Protector


Ion-Implanted Breakdown Region
- Precise and Stable Voltage

Planar Passivated Junctions
- Low Off-State Current <10 μ A

Low Voltage Overshoot Under Surge


Device Name	V_{DRM} V	$V_{(BO)}$ V
TISP1120F3D	-97	-120

8-SOIC Package (Top View)

NC - No internal connection

Device Symbol

Rated for International Surge Wave Shapes

Wave Shape	Standard	I_{PPSM} A
2/10	GR-1089-CORE	120
8/20	IEC 61000-4-5	70
10/160	TIA-968-A	60
10/700	ITU-T K.20/21/45	50
10/560	TIA-968-A	45
10/1000	GR-1089-CORE	35

Description

This dual forward-conducting unidirectional overvoltage protector is designed for the overvoltage protection of ICs used for the SLIC (Subscriber Line Interface Circuit) function. The IC line driver section is typically powered with 0 V and a negative supply. The TISP1120F3D limits voltages that exceed these supply rails.

High voltages can occur on the line as a result of exposure to lightning strikes and a.c. power surges. Negative transients are initially limited by breakdown clamping until the voltage rises to the breakdown level, which causes the device to crowbar. The high crowbar holding current helps prevent d.c. latchup as the current subsides. Positive transients are limited by diode forward conduction. These protectors are designed to suppress and withstand the listed international lightning surges on any terminal pair.

This monolithic protection device is fabricated in an ion-implanted planar structure to ensure precise and matched breakdown control, and is virtually transparent to the system in normal operation.

How to Order

Device	Package	Carrier	Order As	Marking Code	Standard Quantity
TISP1120F3D	8-SOIC	Embossed Tape Reeled	TISP1120F3DR-S	1120F3	2500

*RoHS Directive 2002/95/EC Jan 27 2003 including Annex
JULY 2005 – REVISED KLSB J ?BO / - .4

Specifications are subject to change without notice.
Customers should verify actual device performance in their specific applications.

TISP1120F3D Overvoltage Protector

BOURNS®

Absolute Maximum Ratings, $T_A = 25^\circ\text{C}$ (Unless Otherwise Noted)

Rating	Symbol	Value	Unit
Repetitive peak off-state voltage	V_{DRM}	-97	V
Non-repetitive peak impulse current (see Note 1)			
2/10 μs (GR-1089-CORE, 2/10 μs voltage wave shape)		2 x ± 120	
8/20 μs (IEC 61000-4-5, combination wave generator, 1.2/50 μs voltage waveshape)		2 x ± 70	
10/160 μs (TIA-968-A, 10/160 μs voltage wave shape)		2 x ± 60	
5/310 μs (ITU-T K.44, 10/700 μs voltage wave shape used in K.20/21/45)		2 x ± 50	
5/320 μs (TIA-968-A, 9/720 μs voltage waveshape)		2 x ± 50	
10/560 μs (TIA-968-A, 10/560 μs voltage wave shape)		2 x ± 45	
10/1000 μs (GR-1089-CORE, 10/1000 μs voltage wave shape)		2 x ± 35	
Non-repetitive peak on-state current, $0^\circ\text{C} < T_A < 70^\circ\text{C}$	I_{TSM}	2 x 4.3	A
1 s, 50 Hz			
Initial rate of rise of on-state current, linear current ramp, maximum ramp value < 38 A	di_T/dt	250	A/ μs
Junction temperature	T_J	-65 to +150	$^\circ\text{C}$
Storage temperature range	T_{stg}	-65 to +150	$^\circ\text{C}$

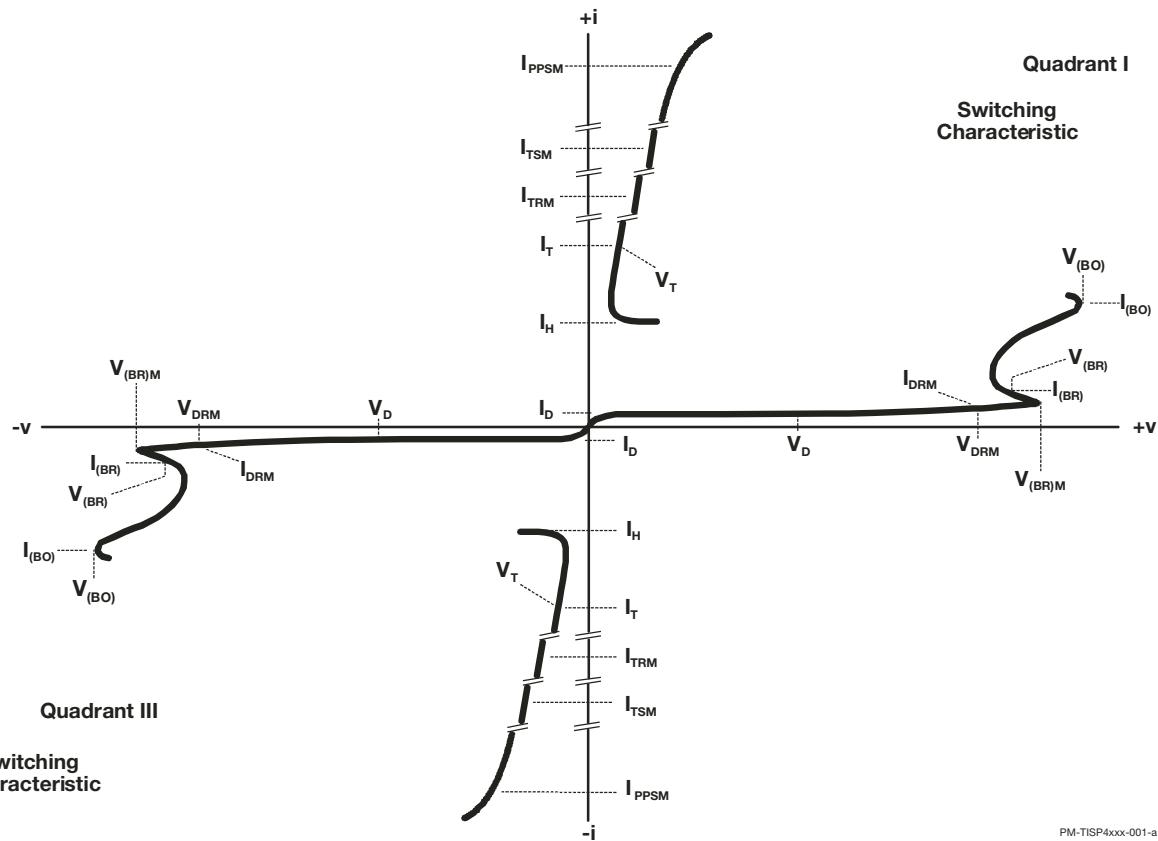
NOTE: 1. Initially the device must be in thermal equilibrium with $0^\circ\text{C} < T_J < 70^\circ\text{C}$. The surge may be repeated after the device returns to its initial conditions.

Electrical Characteristics for Terminals T and R, $T_A = 25^\circ\text{C}$ (Unless Otherwise Noted)

Parameter	Test Conditions		Min	Typ	Max	Unit
I_{DRM} Repetitive peak off-state current	$V_D = \pm V_{\text{DRM}}$	$T_A = 25^\circ\text{C}$			± 5	μA
		$T_A = 70^\circ\text{C}$			± 10	
$V_{(\text{BO})}$ Breakover voltage	$dv/dt = -250 \text{ V/ms}$, $R_{\text{SOURCE}} = 300 \Omega$				± 123	V
I_H Holding current	$I_T = \pm 5 \text{ A}$, $di/dt = \pm 30 \text{ mA/ms}$		± 150			mA

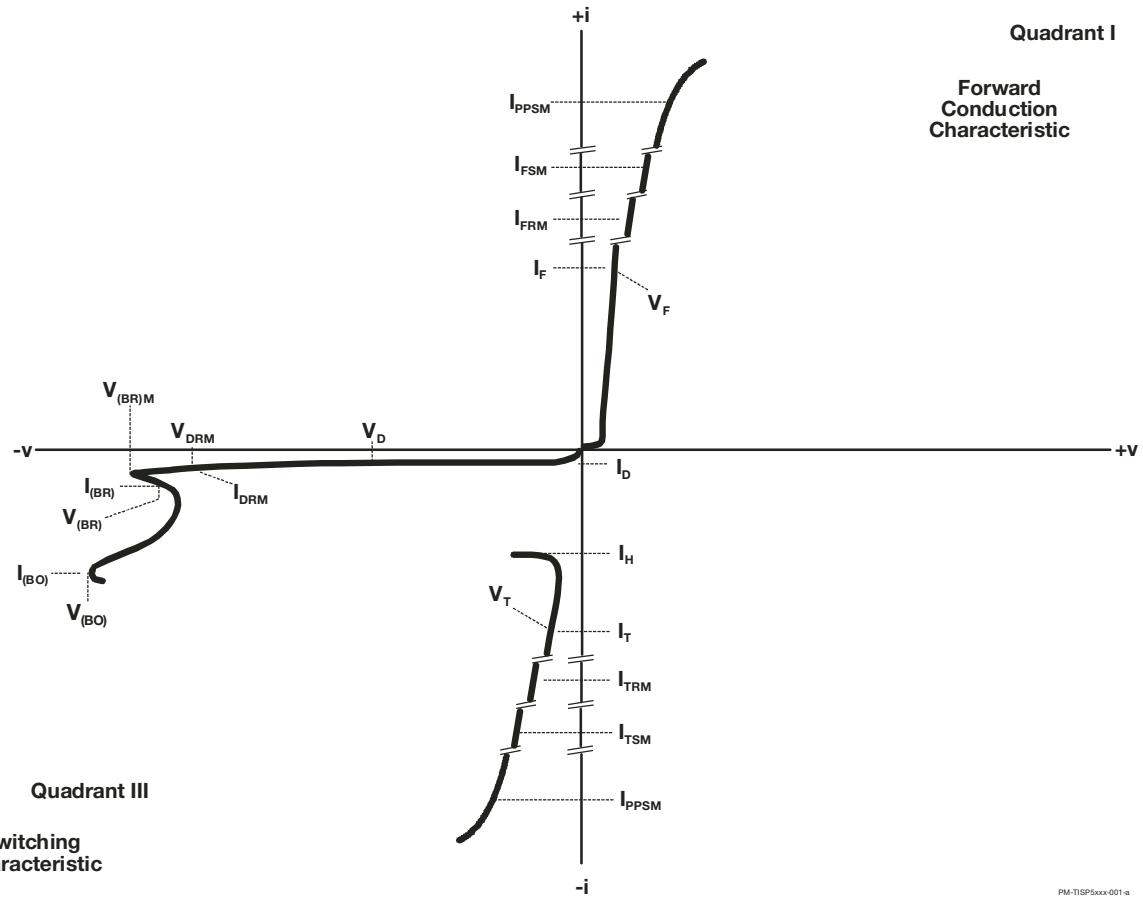
Electrical Characteristics for Terminals T and G or R and G, $T_A = 25^\circ\text{C}$ (Unless Otherwise Noted)

Parameter	Test Conditions		Min	Typ	Max	Unit
I_{DRM} Repetitive peak off-state current	$V_D = V_{\text{DRM}}$	$T_A = 25^\circ\text{C}$			-5	μA
		$T_A = 70^\circ\text{C}$			-10	
$V_{(\text{BO})}$ Breakover voltage	$dv/dt = -250 \text{ V/ms}$, $R_{\text{SOURCE}} = 300 \Omega$				-120	V
$V_{(\text{BO})}$ Impulse breakover voltage	$dv/dt \leq -1000 \text{ V}/\mu\text{s}$, Linear voltage ramp, Maximum ramp value = -500 V				-130	V
	$di/dt \leq -20 \text{ A}/\mu\text{s}$, Linear current ramp, Maximum ramp value = -10 A					
$I_{(\text{BO})}$ Breakover current	$dv/dt = -250 \text{ V/ms}$, $R_{\text{SOURCE}} = 300 \Omega$		-100		-600	mA
I_H Holding current	$I_T = -5 \text{ A}$, $di/dt = +30 \text{ mA/ms}$		-150			mA
V_T On-state voltage	$I_T = -5 \text{ A}$, $t_w = 100 \mu\text{s}$				-3	V
V_F Forward voltage	$I_F = +5 \text{ A}$, $t_w = 100 \mu\text{s}$				$+3$	V
V_{FRM} Peak forward recovery voltage	$dv/dt \leq +1000 \text{ V}/\mu\text{s}$, Linear voltage ramp, Maximum ramp value = +500 V				$+3.3$	V
	$di/dt \leq +20 \text{ A}/\mu\text{s}$, Linear current ramp, Maximum ramp value = +10 A					
dv/dt Critical rate of rise of off-state voltage	Linear voltage ramp, maximum ramp value < $0.85V_{\text{DRM}}$		-5			$\text{kV}/\mu\text{s}$
C_O Off-state capacitance	$f = 1 \text{ MHz}$, $V_d = 1 \text{ V rms}$	$V_D = -2 \text{ V}$	60	65		pF
		$V_D = -50 \text{ V}$	20	25		


TISP1120F3D Overvoltage Protector

BOURNS®

Thermal Characteristics, $T_A = 25^\circ\text{C}$ (Unless Otherwise Noted)


Parameter	Test Conditions	Min	Typ	Max	Unit
$R_{\theta JA}$	Junction to ambient thermal resistance $P_{\text{tot}} = 0.8 \text{ W}$ 5 cm^2 FR4 PCB			160	$^\circ\text{C/W}$

Parameter Measurement Information

Figure 1. Voltage-Current Characteristic for the Terminals T and R
All Measurements are Referenced to Terminal R

Parameter Measurement Information (Continued)

Figure 2. Voltage-Current Characteristic for Terminals T and G or R and G
All Measurements are Referenced to Terminal G

PM-TISP5xxx-001-a

Bourns Sales Offices

Region	Phone	Fax
The Americas:	+1-951-781-5500	+1-951-781-5700
Europe:	+41-41-7685555	+41-41-7685510
Asia-Pacific:	+886-2-25624117	+886-2-25624116

Technical Assistance

Region	Phone	Fax
The Americas:	+1-951-781-5500	+1-951-781-5700
Europe:	+41-41-7685555	+41-41-7685510
Asia-Pacific:	+886-2-25624117	+886-2-25624116

www.bourns.com

Bourns® products are available through an extensive network of manufacturer's representatives, agents and distributors. To obtain technical applications assistance, a quotation, or to place an order, contact a Bourns representative in your area.

Reliable Electronic Solutions