

DATA SHEET

RC13G
0.5%
High-precision chip resistors
size 0805

Product specification
Supersedes data of 10th February 1999

2001 Apr 27 Rev.2

High-precision chip resistors

size 0805

RC13G

0.5%

FEATURES

- Reduced size of final equipment
- Low assembly costs
- Higher component and equipment reliability
- Excellent performance at high frequency.

APPLICATIONS

- Power supply in small sized equipment
- Telecommunication
- Medical and Military
- Automotive industry.
- Computers

DESCRIPTION

The resistors are constructed on a high grade ceramic body (aluminium oxide). Internal metal electrodes are added at each end and connected by a resistive paste which is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance, by laser cutting of this resistive layer.

The resistive layer is covered with a protective coating and printed with the resistance value. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a lead/tin alloy.

QUICK REFERENCE DATA

DESCRIPTION	VALUE
Resistance range	90 Ω to 2.74 M Ω
Resistance tolerance and E-series	$\pm 0.5\%$; E24/E96 series
Temperature coefficient:	$\leq \pm 50 \times 10^{-6}/K$
Absolute maximum dissipation at $T_{amb} = 70^\circ C$	0.125 W
Maximum permissible voltage	150 V (DC or RMS)
Climatic category (IEC 60068)	55/125/56
Basic specification	IEC 60115-8

ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packing

TYPE	RESISTANCE VALUE	TOL. (%)	ORDERING CODE 2322 738
			PAPER TAPE ON REEL
			5000 units
RC13G	90 Ω to 2.74 M Ω	± 0.5	2....

Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 738.
- The subsequent first digit indicates the resistor type and packing; see Table 1.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12 NC

RESISTANCE	LAST DIGIT
90 to 97.6 Ω	9
100 to 976 Ω	1
1 to 9.76 k Ω	2
10 to 97.6 k Ω	3
100 to 976 Ω	4
1 to 2.74 M Ω	5

ORDERING EXAMPLE

The ordering code of a RC13G resistor, value 10 Ω , supplied on paper tape of 5000 units per reel is: 2338 738 21003.

High-precision chip resistors size 0805

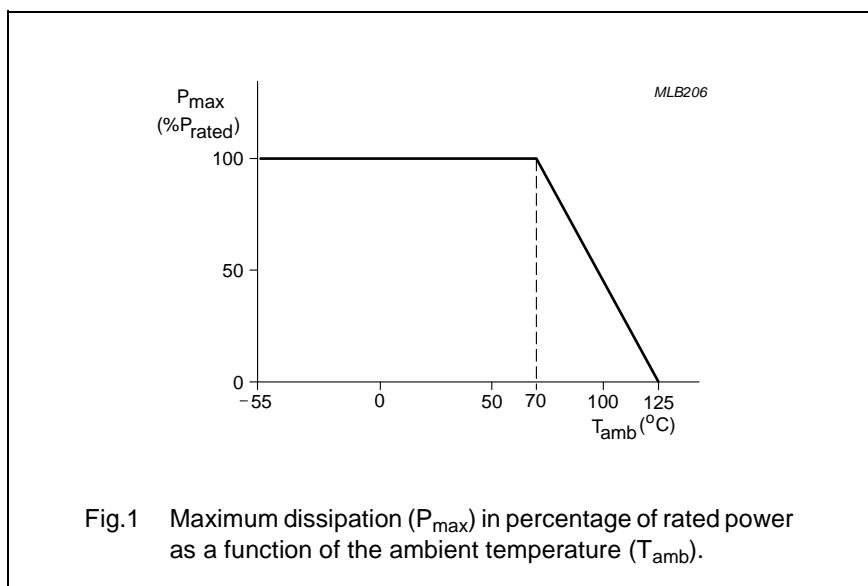
RC13G
0.5%

FUNCTIONAL DESCRIPTION

Product characterization

The resistors are available in the E24/E96 series for resistors with a tolerance of $\pm 5\%$. The values of the E24 series are in accordance with "IEC publication 60063".

Limiting values


TYPE	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)
RC13G	150	0.125

Note

1. This is the maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-8".

DERATING

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

High-precision chip resistors size 0805

RC13G

0.5%

MECHANICAL DATA

Mass per 100 units

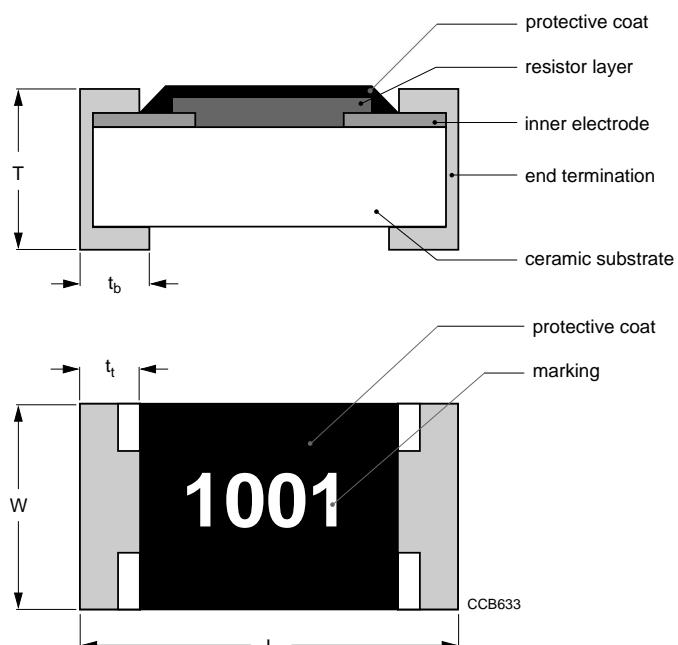
TYPE	MASS (g)
RC13G	0.55

Marking

Each resistor is marked with a 4 digit code on the protective coating to designate the nominal resistance value.

4-DIGIT MARKING

The R is used as a decimal point.


Example

MARKING	RESISTANCE
100R	100 Ω
1001	1 k Ω
1004	1 M Ω

PACKAGE MARKING

The packing is also marked and includes resistance value, tolerance, catalogue number, quantity, production period, batch number and source code.

Outlines

For dimensions see Table 3.

Fig.2 Outlines.

Table 3 Chip resistor type and relevant physical dimensions; see Fig.2

TYPE	L (mm)	W (mm)	T (mm)	t _t (mm)	t _b (mm)
RC13G	2.0 \pm 0.15	1.25 \pm 0.15	0.55 \pm 0.10	0.40 \pm 0.20	0.40 \pm 0.20

High-precision chip resistors

size 0805

RC13G

0.5%

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-8", category 55/125/56 (rated temperature range -55 to +125 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C

Relative humidity: 45% to 75%

Air pressure: 86 kPa to 106 kPa
(860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-8 and 60068"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

IEC 60115-8 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.17	20 (Ta)	solderability	unmounted chips completely immersed for 2 ± 0.5 s in a solder bath at 235 ± 2 °C	good tinning ($\geq 95\%$ covered); no damage
4.17	20 (Ta)	solderability (after ageing)	8 hours steam or 16 hours at 155 °C; unmounted chips completely immersed for 2 ± 0.5 s in a solder bath at 235 ± 2 °C	good tinning ($\geq 95\%$ covered); no damage
4.18	20 (Tb)	resistance to soldering heat	unmounted chips; 10 ± 1 s; 260 ± 5 °C	$\Delta R/R$ max.: $\pm(0.25\% + 0.05 \Omega)$
		leaching	unmounted chips 60 ± 1 s; 260 ± 5 °C	good tinning; no leaching
4.19	14 (Na)	rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; 5 cycles	$\Delta R/R$ max.: $\pm(0.25\% + 0.05 \Omega)$
4.24.2	3 (Ca)	damp heat (steady state)	56 days; 40 ± 2 °C; $93 +2/-3\%$ RH; loaded with $0.01P_n$; dissipation ≤ 1 mW	R_{ins} min.: $1000 \text{ M}\Omega$ $\Delta R/R$ max.: $\pm(1\% + 0.05 \Omega)$
4.25.1		endurance	$1000 +48/-0$ hours; 70 ± 2 °C; nominal dissipation; 1.5 hours on and 0.5 hours off	$\Delta R/R$ max.: $\pm(0.5\% + 0.05 \Omega)$
4.6.1.1		insulation resistance	100 V (DC) after 1 minute	R_{ins} min.: $1000 \text{ M}\Omega$
4.13		short time overload	room temperature; dissipation $6.25 \times P_n$; 5 s (voltage not more than $2 \times V_{max}$)	$\Delta R/R$ max.: $\pm(0.25\% + 0.05 \Omega)$
4.23.2	27 (Ba)	endurance at upper category temperature	$1000 +48/-0$ hours; 125 °C; no load	no visible damage $\Delta R/R$ max.: $\pm(0.5\% + 0.05 \Omega)$
4.7		voltage proof on insulation	150 V (RMS) during 1 minute	no breakdown or flashover

**High-precision chip resistors
size 0805****RC13G****0.5%****REVISION HISTORY**

Revision	Date	Change Notification	Description
Rev.2	2001 Apr 27	–	- Converted to Phycomp brand