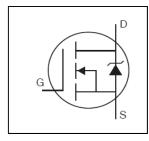


AUTOMOTIVE GRADE

AUIRFSA8409-7P

Features

- Advanced Process Technology
- New Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- · Lead-Free, RoHS Compliant
- Automotive Qualified *


Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and wide variety of other applications.

Applications

- Electric Power Steering (EPS)
- Battery Switch
- · Start/Stop Micro Hybrid
- · Heavy Loads
- DC-DC Applications

V _{DSS}	40V
R _{DS(on)} typ.	$0.50 \mathrm{m}\Omega$
max.	0.69mΩ
D (Silicon Limited)	523A①
D (Package Limited)	360A

G	D	S
Gate	Drain	Source

Page Dort Number	Dookogo Typo	Standar	d Pack	Complete Bort Number
Base Part Number	Package Type	Form	Quantity	Complete Part Number
ALUDEO A 0.400 ZD	D ² DAK 7 TD	Tube	50	AUIRFSA8409-7P
AUIRFSA8409-7P	D ² PAK-7TP	Tape and Reel Left	800	AUIRFSA8409-7TRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	523 ①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	370①	1
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	360	A
I _{DM}	Pulsed Drain Current ②	1440*	
P _D @T _C = 25°C	Maximum Power Dissipation	375	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Avalanche Characteristics

E _{AS} (Thermally Limited)	Single Pulse Avalanche Energy ③		m l
E _{AS (Thermally Limited)} Single Pulse Avalanche Energy ®		1450	mJ
Avalanche Current ②		Soo Fig. 14, 15, 24a, 24b	Α
Repetitive Avalanche Energy ②		See Fig. 14, 15, 24a, 24b	mJ

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		0.4	°C // //
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) ®		40	°C/W

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.038		V/°C	Reference to 25°C, I _D = 2.0mA ^②
$R_{DS(on)}$	Static Drain-to-Source On-Resistance		0.50	0.69	mΩ	V _{GS} = 10V, I _D = 100A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
	Drain to Course Leekage Current			1.0	^	$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current		— 150 μA		μΑ	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	n 1	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R_G	Internal Gate Resistance		2.3		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Dynamic Electrical Characteristics @ 1, = 25°C (unless otherwise specified)						
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	180			S	$V_{DS} = 10V, I_{D} = 100A$
Q_g	Total Gate Charge		305	460		I _D = 100A
Q_{gs}	Gate-to-Source Charge		84			$V_{DS} = 20V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		96		nC	V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		209			
$t_{d(on)}$	Turn-On Delay Time		21			$V_{DD} = 20V$
t _r	Rise Time		94		20	I _D = 100A
$t_{d(off)}$	Turn-Off Delay Time		150		ns	$R_G = 2.7\Omega$
t _f	Fall Time		90			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		13975			$V_{GS} = 0V$
Coss	Output Capacitance		2140			V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance		1438		pF	f = 1.0 MHz
Coss eff. (ER)	Effective Output Capacitance (Energy Related) ⑦		2620			V _{GS} = 0V, V _{DS} = 0V to 32V ⑦
Coss eff. (TR)	Effective Output Capacitance (Time Related)®		3306			V _{GS} = 0V, V _{DS} = 0V to 32V ⑥

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
	Continuous Source Current			523 ①	۸	MOSFET symbol
IS	(Body Diode)				Α	showing the
	Pulsed Source Current			1440*	۸	integral reverse
I _{SM}	(Body Diode) ②				Α	p-n junction diode.
V_{SD}	Diode Forward Voltage		8.0	1.3	V	$T_J = 25^{\circ}C$, $I_S = 100A$, $V_{GS} = 0V$ (§
dv/dt	Peak Diode Recovery ④		3.1		V/ns	$T_J = 175$ °C, $I_S = 100$ A, $V_{GS} = 40$ V
4	Boyorga Bagayary Tima		59		20	$T_J = 25^{\circ}C$
τ _{rr}	Reverse Recovery Time		60		ns	$T_J = 125^{\circ}C$ $V_R = 34V$,
	Dayoraa Dagayary Chargo		96		2	$T_J = 25^{\circ}C$ $I_F = 100A$
Q_{rr}	Reverse Recovery Charge		98		nC	$T_J = 125^{\circ}C$ di/dt = 100A/ μ s
I _{RRM}	Reverse Recovery Current		2.7		Α	T _J = 25°C

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 360A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- Propertitive rating; pulse width limited by max. junction temperature.
- $\label{eq:Jmax} \begin{tabular}{ll} \hline \mathbb{G} & Limited by T_{Jmax}, starting $T_{J}=25^{\circ}C$, $L=0.15mH$ \\ \hline $R_{G}=50\Omega$, $I_{AS}=100A$, $V_{GS}=10V$. \\ \hline \end{tabular}$
- $\text{ (4)} \quad \text{ISD} \leq 100 \text{A}, \ di/dt \leq 1070 \text{A}/\mu\text{s}, \ \text{VDD} \leq V(\text{BR}) \text{DSS}, \ T_J \leq 175^{\circ}\text{C}.$

- $\ \,$ $\$ $\ \,$ $\$ $\ \,$ $\ \,$ $\ \,$ $\$ $\ \,$ $\$ $\ \,$ $\ \,$ $\ \,$ $\$ $\ \,$ $\$ $\$ $\ \,$ $\$ $\$ $\$ $\ \,$ $\$ $\$ $\$ $\$ $\$
- O Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDs is rising from 0 to 80% VDss.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- R_θ is measured at T_J approximately 90°C.
- @ Limited by $T_{Jmax},$ starting T_{J} = 25 $^{\circ}C,$ L = 1mH, R_{G} = 50 $\!\Omega,$ I_{AS} = 53A, V_{GS} =10V.
- * Pulse drain current is limited to 1440A by source bonding technology

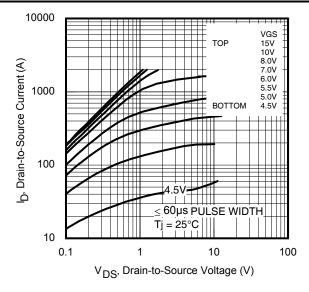


Fig. 1 Typical Output Characteristics

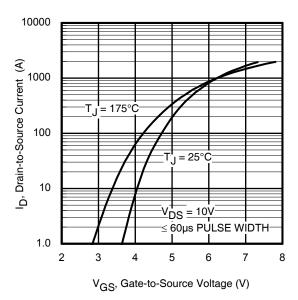


Fig. 3 Typical Transfer Characteristics

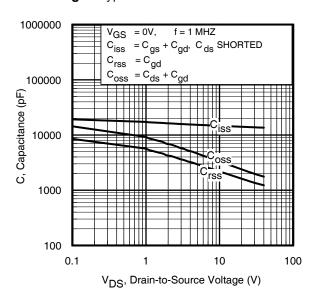


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

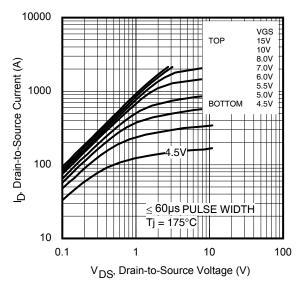


Fig. 2 Typical Output Characteristics

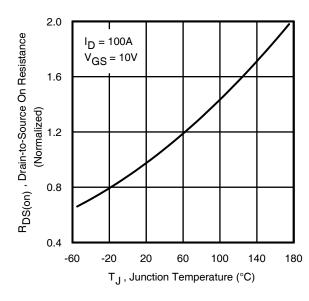


Fig. 4 Normalized On-Resistance vs. Temperature

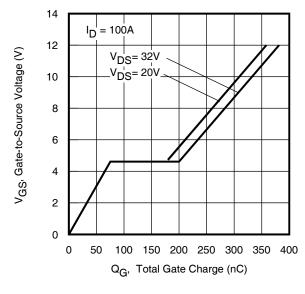


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

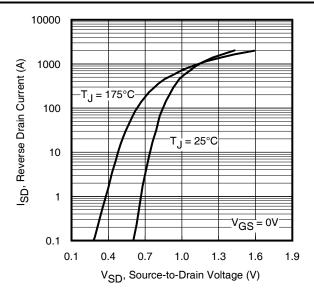


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

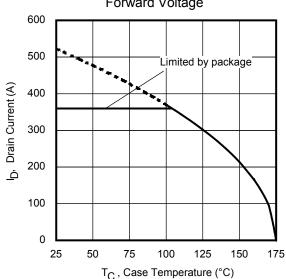


Fig 9. Maximum Drain Current vs. Case Temperature

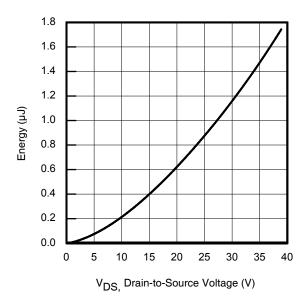


Fig 11. Typical Coss Stored Energy

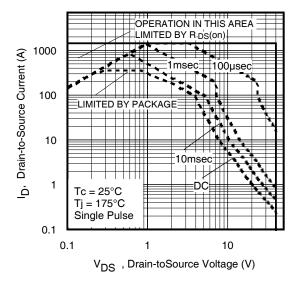


Fig 8. Maximum Safe Operating Area

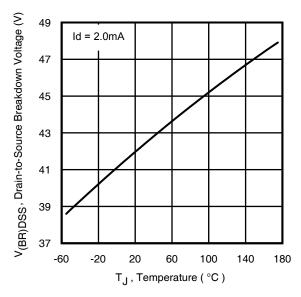


Fig 10. Drain-to-Source Breakdown Voltage

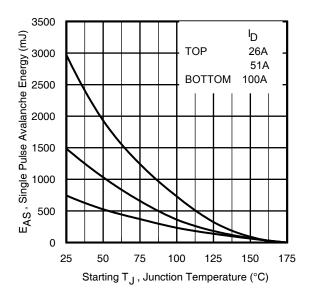


Fig 12. Maximum Avalanche Energy vs. Drain Current

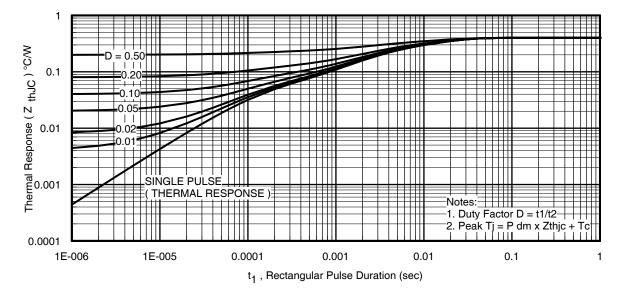


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

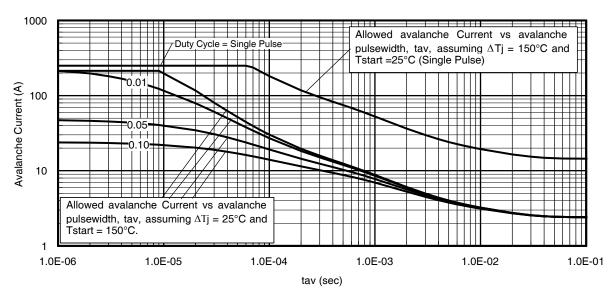


Fig 14. Avalanche Current vs. Pulse width

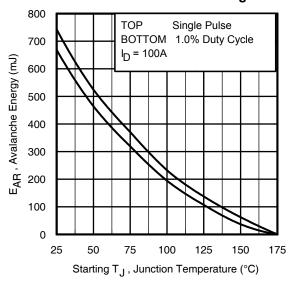


Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in

excess of T_{jmax}. This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 24a, 24b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

ZthJC(D, tav) = Transient thermal resistance, see Figures 13.

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{ Z}_{thJC} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

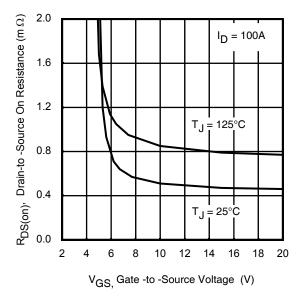


Fig 16. Typical On-Resistance vs. Gate Voltage

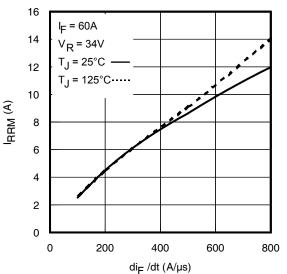


Fig. 18 - Typical Recovery Current vs. dif/dt

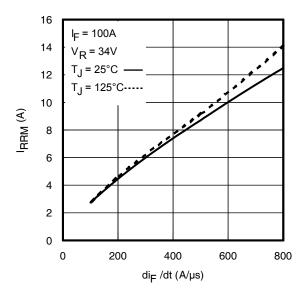


Fig. 20 - Typical Recovery Current vs. dif/dt

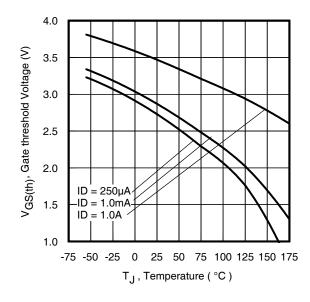


Fig 17. Threshold Voltage vs. Temperature

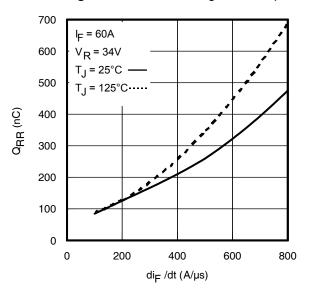


Fig. 19 - Typical Stored Charge vs. dif/dt

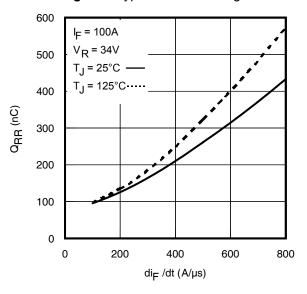


Fig. 21 - Typical Stored Charge vs. dif/dt

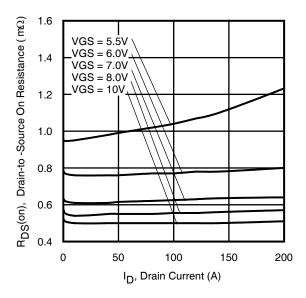


Fig 22. Typical On-Resistance vs. Drain Current

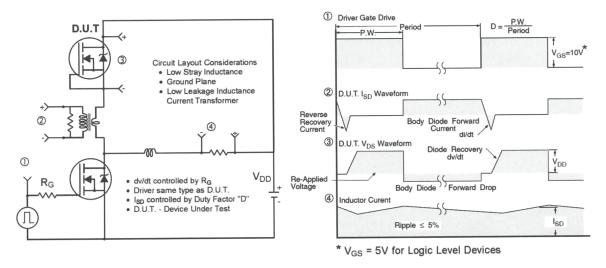


Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

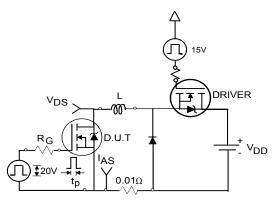


Fig 24a. Unclamped Inductive Test Circuit

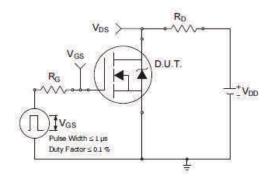


Fig 25a. Switching Time Test Circuit

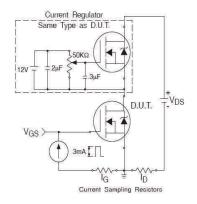


Fig 26a. Gate Charge Test Circuit

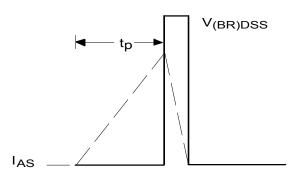


Fig 24b. Unclamped Inductive Waveforms

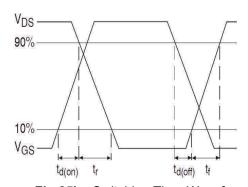


Fig 25b. Switching Time Waveforms

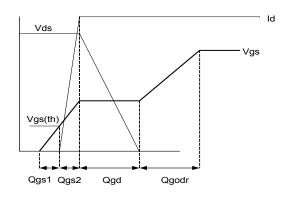



Fig 26b. Gate Charge Waveform

D²PAK-7TP Package Outline (Dimensions are shown in millimeters (inches))

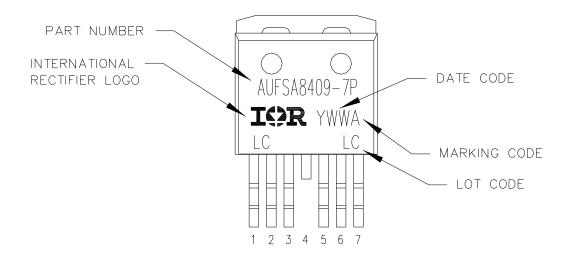
S Y M		N			
B	MILLIM	MILLIMETERS INCHES			O T E S
B 0 L	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	_	0.254	_	.010	
b	0.51	0.91	.020	.036	
b1	0.51	0.81	.020	.032	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	7.42	.270	.292	4
Е	9.65	10.54	.380	.415	3,4
E1	8.00	9.00	.315	.354	4
е	1.27	BSC	.050	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

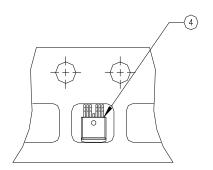
JIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

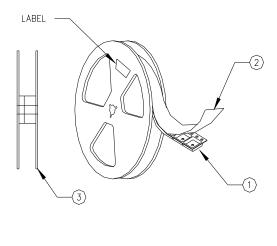
4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.


5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


D²PAK-7TP Part Marking Information


D²PAK-7TP Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

	taumouton mornadon							
			Automotive					
			(per AEC-Q101)					
Qualification	on Level	Comments: This part number(s) passed Automotive qualification. IR's Indus trial and Consumer qualification level is granted by extension of the highe Automotive level.						
		D ² PAK-7TP	MSL1					
	Human Body Model		Class H3A (± 8000V) [†]					
ECD		AEC-Q101-001						
Charged Device Mo		Class C5 (± 2000V) [†]						
		AEC-Q101-005						
RoHS Compliant			Yes					

† Highest passing voltage.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.