DDR and DDR2 SDRAM Controller Compiler User
Guide

CAUTION: The IP described in this document is scheduled for product obsolescence
and discontinued support as described in PDN1403. Therefore, Altera does not
recommend use of this IP in new designs. For more information about Altera's
current IP offering, refer to Altera's Intellectual Property website.

ALTERAW

101 Innovation Drive Software Version: 9.0

San Jose, CA 95134 Document Date: March 2009
www.altera.com

http://www.altera.com
http://www.altera.com/literature/pcn/pdn1403.pdf
http://www.altera.com/products/ip/ipm-index.html

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

nsal

UG-DDRSDRAM-10.0

LS. EN ISO 9001

iAN |:| -Ig D)/A] Contents

Chapter 1. About This Compiler

Release Information 1-1
Device Family Support 1-1
Features 1-2
General Description 1-2
Performance and Resource Utilization i 1-4
Installation and Licensing 1-5

OpenCore Plus Evaluation 1-6

Chapter 2. Getting Started

Design Flow 2-1
SOPC Builder Design Flow 2-1
DDR & DDR2 SDRAM Controller Walkthrough o oo oL 2-2
Create Your Top-Level Design 2-6
Simulate the SOPC Builder Design 2-6
Compile the SOPC Builder Design i i 2-6
Programa Deviceo i 2-8
MegaWizard Plug-In Manager Design Flow, 2-8
DDR & DDR2 SDRAM Controller Walkthrough o o ... 2-9
Simulate the Example Design 2-17
Compile the Example Design 2-22
ProgramaDevice 2-24
Implement Your Design 2-24
Set Up Licensing e 2-25
Chapter 3. Functional Description
Block Description o i 3-1
Control Logico i 3-1
Datapath 3-2
OpenCore Plus Time-Out Behavior i i i i 3-3
Device-Level Description 3-4
Datapath 3-4
PLL Configurations 3-13
DLL Configurationst 3-16
Example Design 3-16
CONSEIAINES .« . o ottt e e 3-18
Interfaces & Signals 3-19
Interface Description o 3-19
Signals 3-28
Parameters 3-31
MEmMOTY e 3-32
Controller . . 3-33
Controller TImings 3-37
Memory Timings 3-38
Board Timings 3-39
Project Settings 340
Manual Timings 3-41

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Gompiler User Guide

MegaCore Verification 3-41
Simulation Testing 3-41
Hardware Testing 3-41

Appendix A. Manual Timing Settings

Parameters A-1

Resynchronization A4
Resynchronization Registers A-5
Intermediate Resynchronization Registers A-10

DQS Postamble e A-10
Postamble Logic A-11
Intermediate Postamble Registers i A-12

Examples A-13

Appendix B. DDR SDRAM on the Nios Development Board, Cyclone Il Edition
Appendix C. HardCopy Il Design Walkthrough

Appendix D. Maximizing Performance

Device & Board Settings D-1
Adjustthe PLL Phases D-2
AssignPIns D-2
Place the Fedback PLL D-2
Update the PLL Phases D-3

Additional Information

Revision History Info-i
How to Contact AITeraooo it e e Info-i
Typographic Conventions i Info-i

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

fAtllj"gD A\

1. About This Gompiler

Release Information

Table 1-1 provides information about this release of the DDR and DDR2 SDRAM

Controller Compiler.

Table 1-1. DDR & DDR2 SDRAM Controller Release Information

Description
Version 9.0
Release Date March 2009

Ordering Codes

IP-SDRAM/DDR (DDR SDRAM)
IP-SDRAM/DDR2 (DDR2 SDRAM)

Product IDs 0055 (DDR SDRAM)
00A7 (DDR2 SDRAM)
00A8 (common library)
Vendor ID 6AF7

Device Family Support

MegaCore® functions provide either full or preliminary support for target Altera®

device families, as described below:

m Full support means the MegaCore function meets all functional and timing
requirements for the device family and may be used in production designs

m Preliminary support means the MegaCore function meets all functional
requirements, but may still be undergoing timing analysis for the device family; it
may be used in production designs with caution

Table 1-2 shows the level of support offered by the DDR and DDR2 SDRAM
Controller Compiler to each of the Altera device families.

Table 1-2. Device Family Support (Part 1 of 2)

Support
Device Family DDR SDRAM DDR2 SDRAM
Cyclonee Full No support
Cyclone Il Full Full
HardCopye Il Preliminary Preliminary
Stratixe Full No support
Stratix GX Full No support
Stratix Il (7) Full Full
Stratix Il GX Full Full

March 2009 Altera Corporation

DDR and DDR2 SDRAM CGontroller Compiler User Guide

Chapter 1: About This Compiler

Features

Features
Table 1-2. Device Family Support (Part 2 of 2)
Support
Device Family DDR SDRAM DDR2 SDRAM
Other device families (2), (3) No support No support

Notes to Table 1-2:

(1) For new Stratix Il designs, use the DDR and DDR2 SDRAM High-Performance Controller.

(2) For more information on support for Stratix |1l devices with existing designs, contact Altera.

(3) For new Stratix IIl or Cyclone 11l designs, use the DDR and DDR2 SDRAM High-Performance Controller.

m Support for industry-standard DDR and DDR2 SDRAM devices and modules
m 1,2, 4, or 8 chip-select signals

m Data mask signals for partial write operations

m Bank management architecture, which minimizes latency

m Configurable data width

m DQS read postamble control logic

m Free clear-text datapath for use with custom controller

® Automatic or user-controlled refresh

m Support for registered DIMMs

m Optional non-DQS read mode for Stratix and Stratix II side banks
m [P Toolbench-generated constraint script

B Quick and easy implementation with example design

m System timing analysis

m Support for OpenCore Plus evaluation

m SOPC Builder ready

m [P functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

General Description

The Altera DDR and DDR2 SDRAM Controller Compiler comprises the DDR SDRAM
Controller MegaCore function and the DDR2 SDRAM Controller MegaCore function.
The MegaCore functions provide simplified interfaces to industry-standard DDR
SDRAM and DDR2 SDRAM devices.

The DDR and DDR2 SDRAM Controllers handle the complex aspects of using DDR or
DDR2 SDRAM—initializing the memory devices, managing SDRAM banks, and
keeping the devices refreshed at appropriate intervals. The DDR and DDR2 SDRAM
Controllers translate read and write requests from the local interface into all the
necessary SDRAM command signals.

DDR and DDR2 SDRAM Controller Compiler User Guide March 2009 Altera Corporation

Chapter 1: About This Compiler 1-3

General Description

The DDR SDRAM Controller is optimized for Altera Stratix and Cyclone series; the
DDR2 SDRAM Controller is optimized for Altera Stratix IT and Cyclone II devices
only. The advanced features available in these devices allow you to interface directly
to DDR or DDR2 SDRAM devices and to use the DQS signal in the read and write
direction.

Figure 1-1 shows a system-level diagram including the example design that the DDR
or DDR2 SDRAM Controller MegaCore functions create for you.

Figure 1-1. DDR & DDR2 SDRAM Controller System-Level Diagram

Pass or Fail «¢

Example Design

Control
Logic
(Encrypted)

Local A DDR SDRAM [———

Note to Figure 1-1:

Interface
Example Driver < > Interface | hpr SDRAM

A

\ 4

PLL
Data Path

(Clear Text)

DDR SDRAM Controller

(1) Optional, for Stratix series and HardCopy Il devices only.

Whether you use IP Toolbench in SOPC Builder or in the Quartus II software, it
generates example design, instantiates a phase-locked loop (PLL), an example driver,
your DDR or DDR2 SDRAM controller custom variation, and an optional DLL (for
Stratix series only). The example design is a fully-functional design that can be
simulated, synthesized, and used in hardware. The example driver is a self-test
module that issues read and write commands to the controller and checks the read
data to produce the pass/fail and test complete signals.

You can replace the DDR or DDR2 SDRAM controller encrypted control logic in the
example design with your own custom logic, which allows you to use the Altera
clear-text datapath with your own control logic.

The DDR and DDR2 SDRAM Controllers are very similar. The following differences
exist:

m Initialization timing (refer to “DDR SDRAM Initialization Timing” on page 3-25
and “DDR2 SDRAM Initialization Timing” on page 3-26)

m CAS latency options:
m 20,25, or 3.0, for DDR SDRAM
m 3,4, or5, for DDR2 SDRAM

March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

1-4

Chapter 1: About This Compiler
Performance and Resource Utilization

m Burst lengths:

m 2,4,o0r8, for DDR SDRAM

m 4, for DDR2 SDRAM
m Banks:

m 4 for DDR SDRAM

m 4 or 8 for DDR2 SDRAM

m Support for ODT in DDR2 SDRAM

Performance and Resource Utilization
Table 1-3 shows typical performance results for the DDR SDRAM controller using the

Quartus II software version 9.0.

Table 1-3. Typical Performance

System fMAX (MHz)
Device DDR SDRAM DDR2 SDRAM
Cyclone (EP1C20F400C6) 133 -
Cyclone Il (EP2C35F672C6) 167 167
Stratix (EP1S25F780C5) 200 -
Stratix 1| (EP2S60F1020C3) 200 267 (1)
Stratix 11 GX (EP2SGX30CF780C3) 200 (2) 267 (1) (2)

Note to Table 1-3:

(1) For information on a solution that achieves speeds greater than 267 MHz (533 Mbps) up to 333 MHz (667 Mbps),
contact your local Altera sales representative. To achieve speeds greater than 267 MHz, a new dynamic

autocalibration circuit is required.
(2) Pending device characterization.

<o For more information on device performance, refer to the relevant device handbook.

Table 1-4 shows typical sizes in logic elements (LEs) or adaptive look-up tables
(ALUTS) for the DDR SDRAM controller.

Table 1-4. Typical Size (Part1 of 2) (Note 1)

Combinational
Device Memory Width (Bits) LEs ALUTs Logic Registers | M4K RAM Blocks (2)
Cyclone 16 860 — — 1
32 1,050 — — 2
Cyclone Il 16 940 — — 1
32 1,120 — — 2
64 1,500 — — 4
72 1,600 — — 5

DDR and DDR2 SDRAM Controller Compiler User Guide

March 2009 Altera Corporation

Chapter 1: About This Compiler 1-5
Installation and Licensing

Table 1-4. Typical Size (Part2 of 2) (Note 1)

Combhinational
Device Memory Width (Bits) LEs ALUTs Logic Registers | M4K RAM Blocks (2)
Stratix 16 — 750 — 1
32 — 830 — 2
64 — 1,000 — 4
72 — 1,040 — 5
Stratix 11 16 — 800 — 1
32 — 960 — 2
64 — 1,250 — 4
72 — 1,320 — 5
Stratix Il GX 16 — 800 — 1
32 — 960 — 2
64 — 1,250 — 4
72 — 1,320 — 5

Notes to Table 1-4:

(1) These sizes are a guide only and vary with different choices of parameters. These numbers are created with the default settings for each device
family, varying only the width of the interface. Generally, the controller uses about 700 LEs while the size of the datapath varies with width and
the amount of pipelining and clocking scheme required.

(2) The controller uses M4K RAM blocks to buffer write data from the user logic. If you select a burst length of 1 (2 on the DDR SDRAM side), this
buffer is not necessary and no memory blocks are used in your variation, regardless of data width.

The performance of the entire system and in general the DDR or DDR2 SDRAM
controller depends upon the number of masters and slaves connected to the Avalon®
Memory-Mapped (Avalon-MM) interface, which degrades as the number of masters
and slaves connected to it increases. If the number of masters connected to the slave
increases, the size of the arbiter (which is part of the Avalon-MM interface) increases,
which reduces the performance of the system. The DDR or DDR2 SDRAM controller
performance is limited by the frequency of Avalon-MM interface.

There is no latency associated within the Avalon-MM interface, when it transfers the
read or write request to the controller local interface. If there are multiple masters
connected to the DDR or DDR2 SDRAM controller, there may be wait states before
the request from the master is accepted by the controller.

«o For more information, refer to the System Interconnect Fabric for Memory-Mapped
Interfaces chapter in the Quartus I Handbook.

Installation and Licensing

The DDR and DDR2 SDRAM Controller Compiler is part of the MegaCore IP Library,
which is distributed with the Quartus® II software and downloadable from the Altera
website, www.altera.com.

«o For system requirements and installation instructions, refer to Quartus II Installation &
Licensing for Windows and Linux Workstations.

March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 1: About This Compiler
Installation and Licensing

Figure 1-2 shows the directory structure after you install the DDR and DDR2 SDRAM
Controller Compiler, where <path> is the installation directory. The default
installation directory on Windows is c:\altera\<version>; on Linux it is
/opt/altera<version>.

Figure 1-2. Directory Structure

<path>

Installation directory.

ip

Contains the Altera MegaCore IP Library and third-party IP cores.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.

ddr_ddr2_sdram

Contains the DDR and DDR2 SDRAM Controller Compiler files and documentation.

constraints
Contains scripts that generate an instance-specific Tcl script for each instance of the DDR and DDR2
SDRAM Controller Compiler in various Altera devices.

dat
Contains a data file for each Altera device combination that is used by the Tcl script to generate the
instance-specific Tcl script.
—D doc
Contains the documentation for the DDR and DDR2 SDRAM Controller Compiler.
— T 1ib
Contains encrypted lower-level design files and other support files.
system_timing
Contains system timing analysis scripts and associated files.

OpenCore Plus Evaluation

With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

m Simulate the behavior of a megafunction (Altera MegaCore function or AMPPsM
megafunction) within your system

m Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily

B Generate time-limited device programming files for designs that include
MegaCore functions

m Program a device and verify your design in hardware

You only need to purchase a license for the megafunction when you are completely
satisfied with its functionality and performance, and want to take your design to
production.

For more information on OpenCore Plus hardware evaluation using the DDR and
DDR2 SDRAM Controller, refer to “OpenCore Plus Time-Out Behavior” on page 3-3
and AN 320: OpenCore Plus Evaluation of Megafunctions.

DDR and DDR2 SDRAM Controller Compiler User Guide March 2009 Altera Corporation

http://www.altera.com/literature/an/an320.pdf

2. Getting Started
/ANO S RYA |

Design Flow

The Altera DDR and DDR2 SDRAM Controller Compiler and the Quartus II software
provide many options for creating custom, high-performance DDR and DDR2
SDRAM designs.

You can parameterize the DDR and DDR2 SDRAM Controller Compiler using either
one of the following flows:

m SOPC Builder flow
m MegaWizard™ Plug-In Manager flow

The SOPC Builder flow creates a simpler, automatically-integrated system; the
MegaWizard Plug-In flow requires more user-customization.

Table 2-1 summarizes the advantages offered by the different parameterization flows.

Table 2-1. Advantages of the Parameterization Flows

SOPC Builder Flow MegaWizard Plug-In Manager Flow
m Requires minimal DDR or DDR2 SDRAM m More control of the system feature set
design expertise = Design directly from the DDR or DDR2

m Simple and flexible GUI to create complete SDRAM interface to peripheral device(s)

DDR or DDR2 SDRAM system within hours

m Automatically-generated simulation
environment

m Create custom components and integrate
them via the component wizard

m All components are automatically
interconnected via the Avalon-MM interface

m Achieves higher-frequency operation

SOPC Builder Design Flow

The SOPC Builder design flow involves the following steps:

1. In SOPC Builder, use IP Toolbench to create a custom variation of the DDR or
DDR2 SDRAM controller MegaCore function and implement and generate the rest
of your SOPC Builder system.

2. Create your design, based on the DDR or DDR2 SDRAM example design.
3. Perform functional simulation with IP functional simulation models.

4. Use the Quartus II software to edit the PLL(s), add constraints, compile, and
perform post-compilation timing analysis.

5. If you have a suitable development board, you can generate an OpenCore Plus
time-limited programming file, which you can use to verify the operation of the
design in hardware.

© March 2009 Altera Corporation DDR and DDR2 SDRAM CGontroller Compiler User Guide

2-2

Chapter 2: Getting Started
SOPC Builder Design Flow

The DDR and DDR2 SDRAM Controller Compiler with SOPC Builder flow option
allows you to build a complete DDR or DDR2 SDRAM system. The DDR and DDR2
SDRAM Controller Compiler with SOPC Builder flow connects the DDR or DDR2
SDRAM Controller to the Avalon-MM interface, which allows you to easily create any
system that includes one or more of the Avalon-MM peripherals.

You specify system components and choose system options from a rich set of features,
and the SOPC Builder automatically generates the interconnect logic and simulation
environment. Thus, you define and generate a complete system in dramatically less
time than manual-integration methods.

To perform burst transactions when the DDR or DDR2 SDRAM controller is
instantiated in SOPC builder, you need another master such as a DMA controller to
initiate the burst transactions.

The performance of the entire system and in general the DDR or DDR2 SDRAM
controller depends upon the number of masters and slaves connected to the
Avalon-MM interface, which degrades as the number of masters and slaves connected
to it increases. If the number of masters connected to the slave increases, the size of the
arbiter (which is part of the Avalon-MM interface) increases, which reduces the
performance of the system. The DDR or DDR2 SDRAM controller performance is
limited by the frequency of Avalon-MM interface.

There is no latency associated within the Avalon-MM interface, when it transfers the
read or write request to the controller local interface. If there are multiple masters
connected to the DDR or DDR2 SDRAM controller, there may be wait states before
the request from the master is accepted by the controller.

DDR & DDR2 SDRAM Controller Walkthrough

This walkthrough explains how to create a custom variation of the DDR or DDR2
SDRAM Controller MegaCore function in a SOPC Builder system using the Altera
DDR SDRAM controller IP Toolbench and the Quartus II software.

As you go through the wizard, each step is described in detail. The flow used in this
SOPC Builder walkthrough ensures that the PLL is properly connected to the DDR or
DDR2 SDRAM controller and that the wizard-generated constraints are correctly
applied.

For more information on SOPC Builder, refer to volume 4 of the Quartus II Handbook.

This walkthrough involves the following steps:

B “Create a New Quartus II Project” on page 2-3

m “Launch SOPC Builder & IP Toolbench” on page 2—4
m “Parameterize” on page 2—4

m “Constraints” on page 2-5

m “Add/Update Component” on page 2-5

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

Chapter 2: Getting Started 2-3
SOPC Builder Design Flow

Create a New Quartus Il Project

You need to create a new Quartus II project with the New Project Wizard, which
specifies the working directory for the project, assigns the project name, and
designates the name of the top-level design entity. To create a new project follow
these steps:

1. Choose Programs > Altera > Quartus II <version> (Windows Start menu) to run
the Quartus II software. Alternatively, you can use the Quartus I Web Edition
software.

2. Choose New Project Wizard (File menu).

3. Click Next in the New Project Wizard: Introduction page (the introduction page
does not display if you turned it off previously).

4. In the New Project Wizard: Directory, Name, Top-Level Entity page, enter the
following information:

a. Specify the working directory for your project. For example, this walkthrough
uses the c:\altera\projects\ddr_project directory.

b. Specify the name of the project. This walkthrough uses project for the project

name.

=~ The Quartus II software automatically specifies a top-level design entity
that has the same name as the project. Do not change it.

5. Click Next to close this page and display the New Project Wizard: Add Files page.

=~ When you specify a directory that does not already exist, a message asks if
the specified directory should be created. Click Yes to create the directory.

6. If you installed the MegaCore IP Library in a different directory from where you
installed the Quartus II software, you must add the user libraries:
a. Click User Libraries.

b. Type <path>\ip into the Library name field, where <path> is the directory in
which you installed the DDR and DDR2 SDRAM Controller.

c. Click Add to add the path to the Quartus II project.
d. Click OK to save the library path in the project.

7. Click Next to close this page and display the New Project Wizard: Family &
Device Settings page.

8. On the New Project Wizard: Family & Device Settings page, choose a supported
target device family in the Family list. Select Yes for Do you want to assign a
specific device?.

"=~ Ensure you select Yes for Do you want to assign a specific device? to
choose a specific device, as IP Toolbench will not work correctly if you

select No.

'~ The DDR2 SDRAM controller only supports Cyclone II, HardCopy II,
Stratix II GX, and Stratix II devices.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-4 Chapter 2: Getting Started
SOPC Builder Design Flow

=~ If you are targeting a specific Altera development board, ensure you choose
the correct target device and memory type.
9. Choose the target device in the Available devices list.
10. The remaining pages in the New Project Wizard are optional. Click Finish to

complete the Quartus II project.

Launch SOPC Builder & IP Toolbench
To launch SOPC Builder, follow these steps:

1. Choose SOPC Builder (Tools menu).
2. Enter a System Name.

=~ The system name must not be the same as the Quartus II project name (and
therefore the top-level design entity name).

3. Type a value for the clk_0 (MHz). For example, 80. 0.

4. Build your system from the System Contents list. Expand the Memories and
Memory Controllers folder, and click either DDR SDRAM MegaCore Function
or DDR2 SDRAM MegaCore Function in the SDRAM folder. Click Add. The
DDR SDRAM controller IP Toolbench opens.

Parameterize

To parameterize the DDR or DDR2 SDRAM Controller, follow these steps:

1. Click Step 1: Parameterize, to parameterize your custom variation.

2. In the Presets list, click a specific memory device, Altera development board, or

click Custom.

['=~ If you chose to target an Altera board, all the settings on the Basic Settings
tab and all Advanced Mode settings are correct for that board.

=" You cannot alter the clock speed in IP Toolbench. To alter the clock speed of
your system, close IP Toolbench and return to step 3 on page 2—4.

3. If you chose Custom, choose the appropriate Memory Interface values and enter

your Board Trace Delays.
=" You must accurately set the board trace delays for your system to work in
hardware.

4. Click Show Timing Estimates, at any time to see the results of the system timing
analysis.

5. You may turn on Advanced Mode at any time, to see all the settings you can
change on the DDR or DDR2 SDRAM Controller.

<o For more information on Advanced Mode settings, refer to “Parameterize” on
page 2-11.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2-5
SOPC Builder Design Flow

6. Turn on Advanced Mode, and click the Project Settings tab.

7. Ensure Update the example design file that instantiates the controller variation
is turned on, so that the IP Toolbench automatically updates the example design
and the testbench.

Constraints

To choose the constraints for your device, follow these steps:

L= If you chose to target an Altera board, all the constraint settings are correct for that
board.

1. Click Step 2: Constraints.

2. Select the positions on the device for each of the DDR SDRAM byte groups. To
place a byte group, select the byte group in the drop-down menu at your chosen
position.

=~ The floorplan matches the orientation of the Quartus II floorplanner. The
layout represents the die as viewed from above. A byte group consists of
four or eight DQ pins, a DM pin, and a DQS pin.

L=~ IP Toolbench chooses the correct positions, if you are using an Altera board
preset.

Add/Update Component

To add or update the component and generate the system, follow these steps:

1. Click Step 3: Add/Update Component, to add the custom variation to SOPC
Builder.

2. SOPC Builder uses the module name (default ddr_sdram_0) for the variation
name of your DDR or DDR2 SDRAM Controller. You can change this name if you
want to.

3. In SOPC Builder, create the rest of your SOPC Builder system.

4. Optional. Click the System Generation tab and turn on Simulation. Create
project simulator files. to create simulation files for your project.

Only use these simulation model output files for simulation purposes and expressly
not for synthesis or any other purposes. Using these models for synthesis creates a
nonfunctional design.

CAUTION

«@ For more information on the Nios II simulation flow, refer to volume 4 of the Quartus
II Handbook.

5. On the System Generation tab, click Generate.

"=~ Before you click Generate, you must add at least one Avalon-MM master to
your system.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

2-6

Chapter 2: Getting Started
SOPC Builder Design Flow

SOPC Builder generates the SOPC Builder system files. You must create a top-level
design that instantiates the SOPC Builder system, PLL(s) and a DLL, before you
compile the SOPC Builder project in the Quartus II software (refer to “Create Your
Top-Level Design” on page 2-6).

In addition to the SOPC Builder system files, SOPC Builder generates an example
design, <variation name>_debug_design.v or .vhd. The example design contains the
DDR or DDR2 SDRAM Controller, PLL, and the example driver; it has no SOPC
Builder components (refer to Figure 1-1 on page 1-3).

You can use the example design to test boards and simulate, to understand the DDR
or DDR2 SDRAM interface.

Create Your Top-Level Design

Iz

Use the example design, <variation name>_debug_design.v or .vhd, as a guide to
connect and instantiate the PLL, the optional fed-back PLL, and DLL, to your SOPC
Builder system. You must remove the example driver and the controller, and replace
them with the SOPC Builder-generated system (refer to Figure 2-1).

To ensure that the wizard-generated constraints are correctly applied, either allow the
constraints script to automatically detect your hierarchy, or ensure that the hierarchy
and pin names on the Hierarchy tab match those names in your HDL.

For more example designs, refer to the Cyclone II reference designs in the Nios® I
Development Kit.

Figure 2-1. SOPC Builder System with the DDR SDRAM Controller

PLL

DLL (1)

Editted Example Top-Level Design

SOPC Builder System P UART, etc.
Avalon
> Other Switch DDR SDRAM
Fabric Interf
SOPC Builder < = D%F;rﬁaﬁgM < nierlac® p.| DDR SDRAM
Components

Simulate the SOPC Builder Design

To simulate the SOPC Builder design, either use the Nios II simulation flow or create
your own testbench instantiating the top-level design and a memory model.

For more information on the Nios II simulation flow, refer to volume 4 of the Quartus
I Handbook.

Compile the SOPC Builder Design

You can now edit the PLL(s) and use the Quartus II software to compile the example
design and perform post-compilation timing analysis.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf

Chapter 2: Getting Started 2-7
SOPC Builder Design Flow

Edit the PLL

The IP Toolbench-generated example design includes a PLL, which has an input to
output clock ratio of 1:1 and a clock frequency that you entered in IP Toolbench. In
addition, IP Toolbench correctly sets all the phase offsets of all the relevant clock
outputs for your design. You can edit the PLL input clock to make it conform to your
system requirements. If you re-run IP Toolbench, it does not overwrite this PLL, if
you turn off Automatically generate the PLL, so your edits are not lost.

"=~ If you turn on Use fed-back clock for resynchronization, IP Toolbench generates a
second PLL—the fed-back PLL. You need not edit the fed-back PLL.

<o For more information on the PLL, refer to “PLL Configurations” on page 3-13.

To edit the example PLL, follow these steps:
1. Choose MegaWizard Plug-In Manager (Tools menu).
2. Select Edit an existing custom megafunction variation and click Next.

3. Inyour Quartus II project directory, for VHDL choose ddr_pll_<device name>.vhd;
for Verilog HDL choose ddr_pll_<device name>.v.

4. Click Next.
5. Edit the PLL parameters in the ALTPLL MegaWizard Plug-In Manager.

<o For more information on the ALTPLL megafunction, refer to the Quartus II Help or
click Documentation in the ALTPLL MegaWizard Plug-In Manager.

Compile & Perform Timing Analysis

Before the Quartus II software compiles the SOPC Builder design, it runs the IP
Toolbench-generated Tcl constraints script, auto_add_constraints.tcl.

The auto_add_constraints.tcl script calls the add_constraints_for_<variation
name>.tcl script for each variation in your design. The add_constraints_for_<uvariation
name>.tcl script checks for any previously added constraints specific to that variation,
removes them, and then adds constraints for that variation.

The constraints script analyzes and elaborates your design, to automatically extract
the hierarchy to your variation. To prevent the constraints script analyzing and
elaborating your design, turn on Enable hierarchy control in the wizard, and enter
the correct hierarchy path to your datapath (refer to step 24 on page 2-13).

When the constraints script runs, it creates another script,
remove_constraints_for_<uwvariation name>.tcl, which can be used to remove the
constraints from your design.

L=~ Click Start Compilation (Processing menu), to run the add constraints scripts,
compile the design, and perform timing analysis.

When the compilation is complete, the Quartus II processing message tab displays the

post-compilation timing analysis results. The results are also written to the <variation
name>_post_summary.txt file in your project directory.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

Turning off the Display entity name for node name setting prevents the
e timing analysis script from completing successfully. To enable this setting,
open the Assignments menu and click Settings. On the Settings page, click
Compilation Process Settings, and then click More Settings. In the Name
list, select Display entity name for node name and in the Setting list, select

On.

The results show how much slack you have for each of the various timing
requirements—negative slack means that you are not meeting timing. The Message
window shows various timing margins for your design.

If the verify timing script reports that your design meets timing, you have
successfully generated and implemented your DDR or DDR2 SDRAM Controller.

If the timing does not reach your requirements, adjust the resynchronization and
postamble clock phases on the IP Toolbench Manual Timings tab (refer to “Manual
Timing Settings” on page A-1).

<o For more information on how to achieve timing, refer to Appendix B, DDR SDRAM
on the Nios Development Board, Cyclone II Edition.

To view the constraints in the Quartus II Assignment Editor, choose Assignment
Editor (Assignments menu).

= 1If you have “?” characters in the Quartus II Assignment Editor, the Quartus II
software cannot find the entity to which it is applying the constraints, probably
because of a hierarchy mismatch. Either edit the constraints script, or enter the correct
hierarchy path in the Hierarchy tab (refer to step 24 on page 2-13).

«e For more information on constraints, refer to “Constraints” on page 3-18.

Program a Device

After you have compiled the SOPC Builder design, you can perform gate-level
simulation (refer to “Simulate the SOPC Builder Design” on page 2-6) or program
your targeted Altera device to verify the SOPC Builder design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the DDR or
DDR2 SDRAM controller MegaCore function before you purchase a license.
OpenCore Plus evaluation allows you to produce a time-limited programming file.

<o For more information on OpenCore Plus hardware evaluation using the DDR or
DDR2 SDRAM controller MegaCore function, refer to “OpenCore Plus Evaluation”
on page 1-6, “OpenCore Plus Time-Out Behavior” on page 3-3, and the AN 320:
OpenCore Plus Evaluation of Megafunctions.

MegaWizard Plug-In Manager Design Flow

MegaWizard Plug-In Manager design flow involves the following steps:

1. Create a custom variation of the DDR or DDR2 SDRAM controller MegaCore
function using IP Toolbench from the MegaWizard Plug-In Manager.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

www.altera.com/literature/an/an320.pdf
www.altera.com/literature/an/an320.pdf

Chapter 2: Getting Started

2-9

MegaWizard Plug-In Manager Design Flow

5.
6.

Use the IP Toolbench-generated IP functional simulation model to verify the
operation of the example design and the example driver.

Use the Quartus II software to edit the PLL(s), add constraints to the example
design, compile the example design, and perform post-compilation timing
analysis.

Perform gate-level timing simulation, or if you have a suitable development
board, you can generate an OpenCore Plus time-limited programming file, which
you can use to verify the operation of the example design in hardware.

Generate a programming file for the Altera device(s) on your board.

Program the Altera device(s) with the completed design.

The DDR and DDR2 SDRAM Controller Compiler with MegaWizard Plug-In flow
option allows you to fully specify a DDR or DDR2 SDRAM controller. With this flow,
you design to a low-level interface.

DDR & DDR2 SDRAM Controller Walkthrough

If you are not using SOPC Builder, this walkthrough explains how to create a custom
variation of the DDR or DDR2 SDRAM Controller MegaCore function using the
Altera DDR and DDR2 SDRAM Controller IP Toolbench and the Quartus II software.
As you go through the wizard, each step is described in detail.

For more information on using HardCopy II devices, refer to Appendix C, HardCopy
II Design Walkthrough.

This walkthrough requires the following steps:

“Create a New Quartus II Project” on page 2-9

“Launch IP Toolbench from the MegaWizard Plug-In Manager” on page 2-11
“Parameterize” on page 2-11

“Constraints” on page 2-15

“Set Up Simulation” on page 2-15

“Generate” on page 2-15

Create a New Quartus Il Project

You need to create a new Quartus II project with the New Project Wizard, which
specifies the working directory for the project, assigns the project name, and
designates the name of the top-level design entity. To create a new project follow
these steps:

1.

Choose Programs > Altera > Quartus II <version> (Windows Start menu) to run
the Quartus II software. Alternatively, you can use the Quartus II Web Edition
software.

Choose New Project Wizard (File menu).

Click Next in the New Project Wizard: Introduction page (the introduction page
does not display if you turned it off previously).

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-10

Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

10.

In the New Project Wizard: Directory, Name, Top-Level Entity page, enter the
following information:

a. Specify the working directory for your project. For example, this walkthrough
uses the c:\altera\projects\ddr_project directory.

b. Specify the name of the project. This walkthrough uses project for the project

name.

L=~ The Quartus II software automatically specifies a top-level design entity
that has the same name as the project. Do not change it.

Click Next to close this page and display the New Project Wizard: Add Files page.

"=~ When you specify a directory that does not already exist, a message asks if
the specified directory should be created. Click Yes to create the directory.

If you installed the MegaCore IP Library in a different directory from where you
installed the Quartus II software, you must add the user libraries:
a. Click User Libraries.

b. Type <path>\ip into the Library name box, where <path> is the directory in
which you installed the DDR and DDR2 SDRAM Controller.

c. Click Add to add the path to the Quartus II project.
d. Click OK to save the library path in the project.

Click Next to close this page and display the New Project Wizard: Family &
Device Settings page.

On the New Project Wizard: Family & Device Settings page, choose the target
device family in the Family list. Select Yes for Do you want to assign a specific
device?.

L=~ Ensure you select Yes for Do you want to assign a specific device? to
choose a specific device, as IP Toolbench will not work correctly if you
select No.

=~ The DDR2 SDRAM controller only supports Cyclone II, HardCopy 11,
Stratix II GX, and Stratix II devices.

"=~ If you are targeting a specific Altera development board, ensure you choose
the correct target device and memory type.
Select the target device in the Available Devices list.

The remaining pages in the New Project Wizard are optional. Click Finish to
complete the Quartus II project.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2-1
MegaWizard Plug-In Manager Design Flow

Launch IP Toolbench from the MegaWizard Plug-In Manager

To launch the wizard in the Quartus II software, follow these steps:

1. Start the MegaWizard Plug-In Manager by choosing the MegaWizard Plug-In
Manager command (Tools menu). The MegaWizard Plug-In Manager dialog box
displays.

L= Refer to Quartus II Help for more information on how to use the
MegaWizard Plug-In Manager.

2. Specify that you want to create a new custom megafunction variation and click
Next.

3. Expand the Interfaces > Memory Controllers directory, then click either DDR
SDRAM Controller v9.0 or DDR2 SDRAM Controller v9.0.

4. Select the output file type for your design; the wizard supports VHDL and Verilog
HDL.

5. The MegaWizard Plug-In Manager shows the project path that you specified in the
New Project Wizard. Append a variation name for the MegaCore function output
files <project path>\<variation name>.

= The <variation name> must be a different name from the project name and
the top-level design entity name.

6. Click Next to launch IP Toolbench.

Parameterize

To parameterize your MegaCore function, follow these steps:

- . .
“ . e For more information on the parameters, refer to “Parameters” on page 3-31.

1. Click Step 1: Parameterize in IP Toolbench.
2. In the Presets list, click a specific memory device, Altera development board, or

click Custom.

"=~ You can add your own memory devices to this list by editing the
memory_types.dat file in the \constraints directory.

3. Enter a Clock Speed in MHz. For example 200 . 0. The constraints script, timing
analysis, and the datapath use this clock speed. It must be set to the value that you
intend to use. The first time you use the DDR SDRAM controller IP Toolbench or if
you turn on Automatically generate the PLL, it uses this value for the IP
Toolbench-generated PLL’s input and output clocks (refer to “Edit the PLL” on
page 2-22).

4. Choose the memory parameters.
a. Choose your memory interface parameters.
b. Choose the memory properties.

c. Select either Registered DIMM or Unbuffered memory.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-12

Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

DDR and DDR2 SDRAM Controller Compiler User Guide

10.
11.

12.

13.

L= Select Unbuffered memory if you are using unbuffered modules or

devices.
“ ™. e For more information on memory parameters, refer to “Memory” on
page 3-32.

Click the Controller tab.

“®.e For more information on controller parameters, refer to “Controller ” on

page 3-33.

Select Native or Avalon Memory-Mapped local interface. The Avalon-MM
interface allows you to easily connect to other Avalon-MM peripherals.

“ . e For more information on the Avalon-MM interface, refer to the Avalon

Interface Specifications.
Turn on the relevant clocking options.
Select your memory initialization options.
Select your memory controller options.
Turn on the relevant DLL reference clock options.

Click the Controller Timings tab.
" . e For more information on controller timings, refer to “Controller Timings”
on page 3-37.

Enter your memory timing parameters in the Required column, so that the
controller timings meet the requirements specified on your memory’s datasheet.
The wizard picks the appropriate number of clock cycles between commands that
are needed and calculates the resulting delay in the Actual column.

=~ To manually enter the number of clock cycles, turn on Manually choose
clock cycles and enter values in the Cycles column.

Click Memory Timings tab.

For more information on memory timings, refer to “Memory Timings” on page 3-38.

14.

15.

If you chose Custom memory device, enter the device settings from your chosen
memory’s datasheet, otherwise your chosen memory type device settings are
entered automatically.

Click the Board Timings tab.

For more information on board timings, refer to “Board Timings” on page 3-39.

16.

Turn on Manual pin load control, if you want to enter the pin loading for the
FPGA pins.

© March 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2-13
MegaWizard Plug-In Manager Design Flow

=" Youmust enter suitable values for the pin loading, because the values affect
timing. Unsuitable values may lead to inaccurate timing analysis.

17. Enter the board trace delays. These delays are used by the timing analysis and to
configure the datapath.

=" You must accurately set the board trace delays for your system to work in
hardware.

18. Click Show Timing Estimates, at any time in the parameterize screen), to see the
results of the system timing analysis.

19. Click the Project Settings tab.
“ . For more information on project settings, refer to “Project Settings” on
page 3-40.

20. Enter the pin name of the clock driving the memory (+); enter the pin name of the
clock driving the memory (-). IP Toolbench suggests the name for the fed-back
clock input, but you can edit this name if you wish.

=~ The pin names must end in [0], even if you have more than one clock pair.

['=~ Only change the suggested clock pin names, if you have edited the clock
pin names in the top-level design file. Changing the clock pin names
changes the names of the clock outputs and fed-back clock in the example
top-level design.

21. Ensure Update the example design file that instantiates the controller variation
is turned on, for IP Toolbench to automatically update the example design and the
testbench.

22. Altera recommends that you turn on Automatically apply datapath-specific
contraints to the Quartus II project and Automatically verify datapath-specific
timing in the Quartus II project, so that the Quartus II software automatically
runs these scripts when you compile the example design.

23. Turn off Update the example design PLLs, if you have edited the PLL and you do
not want the wizard to regenerate the PLL when you regenerate the variation.

24. The constraints script analyzes and elaborates your design to automatically extract
the hierarchy to your variation. To prevent the constraints script analyzing and
elaborating your design, turn on Enable hierarchy control, and enter the correct
hierarchy path to your variation. The hierarchy path is the path to the datapath in
your DDR SDRAM controller, without the top-level name. Figure 2-1 on
page 2-14 shows a system example.

=~ The constraints apply to the datapath (rather than the controller) so that if
you replace the controller logic with your own controller, the add
constraints script is still valid. So, if you maintain the entity and instance
names, the Quartus II software will correctly add the constraints to your
design.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-14

Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

Figure 2-1. System Naming

example_top
Example Top-Level Design
) my_system
Other Logic < > Gyetom
my_ddr_sdram
DDR SDRAM Controller
DDR SDRAM
auk_ddr_sdram > |mel'face= DDR SDRAM
PLL
Data Path
25. IP Toolbench uses a prefix (for example, ddr_, or ddr2_) for the names of all

26.

27.

28.

29.

30.
31.

memory interface pins. Enter a prefix for all memory interface pins associated
with this custom variation.

If you want to access the manual timing settings, click the Manual Timing tab.

Otherwise, click Finish and proceed to “Constraints” on page 2-15.

“ . e For more information on the manual timing settings, refer to Appendix A,
Manual Timing Settings.

Choose Automatic, Always, or Never in the Reclock resynchronized data to the
positive edge list.

Turn on Manual resynchronization control, only if you want to override the
wizard-calculated values.

=" Under most circumstances, IP Toolbench calculates the correct
resynchronization settings for your custom variation.

-
. e For more information on resynchronization, refer to “Resynchronization”

on page A—4.

Turn on Manual postamble control, only if you want to override the
wizard-calculated values.

['= Under most circumstances, IP Toolbench calculates the correct postamble
settings for your custom variation.
“®.e For more information on postamble, refer to “DQS Postamble” on
page A-10.

Turn on your timing analysis options.

Click Finish.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2-15
MegaWizard Plug-In Manager Design Flow

Constraints

To choose the constraints for your device, follow these steps:
1. Click Step 2: Constraints in IP Toolbench.

2. Choose the positions on the device for each of the DDR SDRAM byte groups. To
place a byte group, select the byte group in the drop-down box at your chosen
position.

=~ The floorplan matches the orientation of the Quartus II floorplanner. The
layout represents the die as viewed from above. A byte group consists of
four or eight DQ pins, a DM pin, and a DQS pin.

L=~ IP Toolbench chooses the correct positions, if you are using an Altera board
preset.

Set Up Simulation

An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model
produced by the Quartus II software. The model allows for fast functional simulation
of IP using industry-standard VHDL and Verilog HDL simulators.

AA Youmay only use these simulation model output files for simulation
AUTION
purposes and expressly not for synthesis or any other purposes. Using these

models for synthesis will create a nonfunctional design.

To generate an IP functional simulation model for your MegaCore function, follow these steps:

—_

Click Step 3: Set Up Simulation in IP Toolbench.

2. Turn on Generate Simulation Model.

®

Choose the language in the Language list.

"=~ To use the IP Toolbench-generated testbench, choose the same language
that you chose for your variation.

4. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

5. Click OK.

Generate

To generate your MegaCore function, follow these steps:

1. Click Step 4: Generate in IP Toolbench.

Table 2-1 describes the generated files and other files that may be in your project
directory. The names and types of files specified in the IP Toolbench report vary
based on whether you created your design with VHDL or Verilog HDL.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-16 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

Table 2-1. Generated Files (Part10f2) (Note 1) (2)

Filename

Description

<variation name>.bsf

Quartus 1l symbol file for the MegaCore function variation. You
can use this file in the Quartus Il block diagram editor.

<variation name>.html

MegaCore function report file.

<variation name>.vo or .vho

VHDL or Verilog HDL IP functional simulation model.

<variation name> v or .vhd

A MegaGore function variation file, which defines a VHDL or
Verilog HDL top-level description of the custom MegaCore
function. Instantiate the entity defined by this file inside of your
design. Include this file when compiling your design in the
Quartus Il software.

<variation name>_hb.v

Verilog HDL black-box file for the MegaCore function variation.
Use this file when using a third-party EDA tool to synthesize
your design.

<variation name>_auk_ddr_clk_gen.v or .vhd

Design file that contains the clock output generators.

<variation name>_auk_ddr_datapath.v or .vhd

Design file that instantiates the byte groups and the clock output
generators.

<variation name>_auk_ddr_datapath_pack.v or .vhd

A VHDL package, which contains a component that the IP
functional simulation model uses.

<variation name>_auk_ddr_dll.v or .vhd

Optional design file that instantiates the Stratix or Stratix || DLL
(Stratix series only).

<variation name>_auk_ddr_dqs_group.v or .vhd

Design file that contains the datapath byte groups.

<variation name>_auk_ddr_sdram.v or .vhd

Design file that instantiates the controller logic and the datapath

<variation name>_ddr_sdram_vsim.tcl

The ModelSim simulation script.

<variation name>_example_driver.v or .vhd

The example driver.

<variation name>_example_settings.txt

The settings file for your variation, which the add constraints
and the verify timing scripts use.

<variation name>.qip

Contains Quartus Il project information for your MegaCore
function variations.

<variation name>.v or .vhd (7)

Example design file.

add_constraints_for_<variation name>.tel

The add constraints script for the variation.

altera_vhdl_support.vhd

A VHDL package that contains functions for the generated
entities. This file may be shared between MegaCore functions.

auto_add_ddr_constraints.tcl

The add constraints script, which calls the variation-specific add
constraints scripts.

auto_verify_ddr_timing_constraints.tcl

The auto verify timing script, which calls the variation-specific
verify timing scripts.

constraints_out.txt

Log file that IP Toolbench creates while generating the add
constraints script.

ddr_lib_path.tcl

The Tcl library path file.

ddr_pll_fb_stratixii.v or .vhd

Design file for the Stratix Il fedback PLL.

ddr_pll_<device name>.v or .vhd

Design file for the system PLL.

generic_ddr_dimm_model.vhd

VHDL simulation file.

generic_ddr_sdram.vhd

VHDL simulation file.

generic_ddr2_sdram.vhd

VHDL simulation file.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 2: Getting Started 2-17
MegaWizard Plug-In Manager Design Flow

Table 2-1. Generated Files (Part2 of2) (Note 1) (2)

Filename Description
remove_constraints_for_<variation name>.tel The remove constraints script for the variation.
top_ddr_settings.ixt Critical settings file that stores the custom variation’s

parameters. IP Toolbench uses this file to generate the add
constraints script. The verify timing script and the DDR Timing
Wizard also read this file.

top_pre_compile_ddr_timing_summary.txt Log file that stores the results of the precompilation system
timing analysis.
verify_timing_for_<variation name>.tcl The verify timing script.

Notes to Table 2-1:

(1) <project name> is the name of the Quartus Il project top-level entity.
(2) <variation name> is the name you give to the controller you create with the Megawizard.

2. After you review the generation report, click Exit to close IP Toolbench.

[l=~ The Quartus I1 IP File (.qip) is a file generated by the MegaWizard interface or SOPC
Builder that contains information about a generated IP core. You are prompted to add
this .qip file to the current Quartus II project at the time of file generation. In most
cases, the .qip file contains all of the necessary assignments and information required
to process the core or system in the Quartus II compiler. Generally, a single .qip file is
generated for each MegaCore function and for each SOPC Builder system. However,
some more complex SOPC Builder components generate a separate .qip file, so the
system .qip file references the component .qip file.

You have finished the walkthrough. Now, simulate the example design (see
“Simulate the Example Design” on page 2-17), edit the PLL(s), and compile (refer to
“Compile the Example Design” on page 2-22).

Simulate the Example Design

You can simulate the example design with the IP Toolbench-generated IP functional
simulation models. IP Toolbench generates a VHDL or Verilog HDL testbench for
your example design, which is in the testbench directory in your project directory.

<o For more information on the testbench, refer to “Example Design” on page 3-16.

You can use the IP functional simulation model with any Altera-supported VHDL or
Verilog HDL simulator. The instructions for the ModelSim simulator are different to
other simulators.

Simulating With the ModelSim Simulator

To simulate the example design with the ModelSim® simulator, follow these steps:

1. Obtain a memory model that matches your chosen parameters and save it to the
<directory name>\testbench directory. For example, you can download a Micron
memory model from the Micron web site at www.micron.com.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

www.micron.com

2-18 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

2. For VHDL, edit generic_ddr_sdram.vhd to instantiate your memory model (the
file already contains three example Micron memory model instantiations).

or

For Verilog HDL, edit the memory instantiations in the testbench to match your
memory model.

3. Start the ModelSim-Altera simulator.

4. Change your working directory to your IP Toolbench-generated file directory
<directory name>\testbench\modelsim.

5. Type the following command:

set memory model <model name>+*

where <model_name> is the filename of the downloaded memory model.

6. To simulate with an IP functional simulation model simulation, type the following
command:

source <variation name> ddr sdram vsim.tcl#

7. For a gate-level timing simulation (VHDL or Verilog HDL ModelSim output from
the Quartus II software), type the following commands:

set use _gate model 1+
source <variation name>_ddr_sdram_ vsim.tcl¢

Simulating With Other Simulators

The IP Toollbench-generated Tcl script is for the ModelSim simulator only. If you
prefer to use a different simulation tool, follow these instructions. You can also use
the generated script as a guide. You also need to download and compile an
appropriate memory model.

L=~ The following variables apply in this section:

m <QUARTUS ROOTDIR> is the Quartus II installation directory

m <simulator name> is the name of your simulation tool

m <device name> is the Altera device family name

m <project name> is the name of your Quartus II top-level entity or module.
m <testbench name> is the name of your testbench entity or module

m <MegaCore install directory> is the DDR and DDR2 SDRAM Controller
installation directory

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started

2-19

MegaWizard Plug-In Manager Design Flow

VHDL IP Functional Simulations

For VHDL simulations with IP functional simulation models, follow these steps:

1.
2.

Create a directory in the <project directory>\testbench directory.

Launch your simulation tool inside this directory and create the following
libraries:

m altera_mf

m Ilpm

m sgate

m <device name>

m altera

m auk_ddr_user_lib

Compile the files in Table 2-2 into the appropriate library. The files are in VHDL93
format.

Table 2-2. Files to Compile—VHDL IP Functional Simulation Models

Library

Filename

altera_mf

<QUARTUS ROOTDIR>/eda/sim_lib/altera_mf_components.vhd

<QUARTUS ROOTDIR>/eda/sim_lib/altera_mf.vhd

Ipm <QUARTUS ROOTDIR>/eda/sim_lib/220pack.vhd
<QUARTUS ROOTDIR>/eda/sim_lib/220model.vhd
sgate <QUARTUS ROOTDIR>/eda/sim_lib/sgate_pack.vhd

<QUARTUS ROOTDIR>/eda/sim_lib/sgate.vhd

<device name>

<QUARTUS ROOTDIR>/eda/sim_lib/<device name>_atoms.vhd

<QUARTUS ROOTDIR>/eda/sim_lib/<device name>_components.vhd

altera

<QUARTUS ROOTDIR>/libraries/vhdl/altera/altera_europa_support_lib.vhd

auk_ddr_user_lib

<MegaCore install directory>/lib/auk_ddr_tb_functions.vhd

<project directory>/<variation name>_auk_ddr_dqgs_group.vhd

<project directory>/<variation name>_auk_ddr_clk_gen.vhd

<project directory>/<variation name>_auk_ddr_datapath.vhd

<project directory>/<variation name>_auk_ddr_datapath_pack.vhd

<project directory>/<v>.vho

<MegaCore install directory>/lib/example_lfsr8.vhd

<project directory>/<variation name>_example_driver.vhd

<project directory>{ddr_pll_<device name>.vhd

<project directory>/ddr_pll_fb_<device name>.vhd (1)

<project directory>/<variation name>_auk_ddr_dll.vhd (2)

<project directory>/<project name>.vhd

<project directory>/testhench/<testbench name>.vhd

Notes to Table 2-2:

(1) Fed-back clock mode only.
(2) Stratix series only.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-20 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

4. Set the Tcl variable gRTL DELAYS to 1, which tells the testbench to model the
extra delays in the system necessary for RTL simulation

5. Load the testbench in your simulator with the timestep set to picoseconds.

VHDL Gate-Level Simulations

For VHDL simulations with gate-level models, follow these steps:
1. Create a directory in the <project directory>\testbench directory.

2. Launch your simulation tool inside this directory and create the following
libraries.

m <device name>
m altera
m auk_ddr_user_lib
3. Compile the files in Table 2-3 into the appropriate library. The files are in VHDL93

format.

Table 2-3. Files to Compile—VHDL Gate-Level Simulations

Library Filename
<device name> <QUARTUS ROOTDIR>/eda/sim_lib/<device name>_atoms.vhd
<QUARTUS ROOTDIR>/eda/sim_lib/<device name>_components.vhd
altera <QUARTUS ROOTDIR>/libraries/vhdl/altera/altera_europa_support_lib.vhd
auk_ddr_user_lib <MegaCore install directory>/lib/auk_ddr_th_functions.vhd
<project directory>/simulation/<simulator name>/<project name>.vho (7)
<project directory>/testhench/<testbench name>.vhd

Notes to Tahle 2-3:

(1) If you are simulating the slow or fast model, the .vho file has a suffix _min or _max added to it. Compile whichever file is appropriate. The
Quartus Il software creates models for the simulator you have defined in a directory simulation/<simulator name> in your <project name>
directory..

4. Set the Tcl variable gRTL DELAYS to 0, which tells the testbench not to use the
insert extra delays in the system, because these are applied inside the gate-level
model.

5. Load the testbench in your simulator with the timestep set to picoseconds.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2-21
MegaWizard Plug-In Manager Design Flow

Verilog HDL IP Functional Simulations

For Verilog HDL simulations with IP functional simulation models, follow these
steps:

1. Create a directory in the <project directory>\testbench directory.

2. Launch your simulation tool inside this directory and create the following
libraries.:

m altera_mf ver

m lpm_ver

m sgate_ver

m <device name>_ver
m auk_ddr_user_lib

3. Compile the files in Table 2—4 into the appropriate library.

Table 2-4. Files to Compile—Verilog HDL IP Functional Simulation Models

Library Filename
altera_mf_ver <QUARTUS ROOTDIR>feda/sim_lib/altera_mf.v
Ipm_ver <QUARTUS ROOTDIR>/eda/sim_lib/220model.v
sgate_ver <QUARTUS ROOTDIR>/eda/sim_lib/sgate.v
<device name>_ver <QUARTUS ROOTDIR>/eda/sim_lib/<device name>_atoms.v
auk_ddr_user_lib <project directory>/<variation name>_auk_ddr_dqs_group.v

<project directory>/<variation name>_auk_ddr_clk_gen.v

<project directory>/<variation name>_auk_ddr_datapath.v

<project directory>[<variation name>.vo
<MegaCore install directory>/lib/example_lfsr8.v

<project directory>/<variation name>_example_driver.v
<project directory>/ddr_pll_<device name>.v

<project directory>/ddr_pll_fb_<device name>.v (1)

<project directory>/<variation name>_auk_ddr_dll.v (2)

<project directory>/<project name>.v

<project directory>{testhench/<testbench name>.v

Notes to Table 2-4:
(1) Fed-back clock mode only.
(2) Stratix series only.

4. Set the Tcl variable gRTL DELAYS to 1, which tells the testbench to model the
extra delays in the system necessary for RTL simulation.

5. Configure your simulator to use transport delays, a timestep of picoseconds and to
include the sgate_ver, lpm_ver, altera_mf_ver, and <device name>_ver libraries.

Verilog HDL Gate-Level Simulations

For Verilog HDL simulations with gate-level models, follow these steps:

1. Create a directory in the <project directory>\testbench directory.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-22

Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

2. Launch your simulation tool inside this directory and create the following
libraries:

m <device name>_ver
m auk_ddr_user_lib

3. Compile the files in Table 2-5 into the appropriate library.

Tahle 2-5. Files to Compile—Verilog HDL Gate-Level Simulations

Library

Filename

<device name>_ver

<QUARTUS ROOTDIR>/eda/sim_lib/<device name>_atoms.v

auk_ddr_user_lib

<project directory>{testhench/simulation/<simulator name>/<toplevel_name>.vo (7)

<project directory>/testhench/<testbench name>.v

Notes to Table 2-5:

(1) If you are simulating the slow or fast model., the .vho file has a suffix _min or _max added to it. Compile whichever file is appropriate. The
Quartus Il software creates models for the simulator you have defined in a directory simulation/<simulator name> in your <project name>

directory..

4. Set the Tcl variable gRTL DELAYS to 0, which tells the testbench not to use the
insert extra delays in the system, because these are applied inside the gate level
model. Configure your simulator to use transport delays, a timestep of
picoseconds, and to include the <device name>_ver library.

Compile the Example Design

You can now edit the PLL(s) and use the Quartus II software to compile the example
design and perform post-compilation timing analysis.

Edit the PLL

The IP Toolbench-generated example design includes a PLL, which has an input to
output clock ratio of 1:1 and a clock frequency that you entered in IP Toolbench. In
addition, IP Toolbench correctly sets all the phase offsets of all the relevant clock
outputs for your design. You can edit the PLL input clock to make it conform to your
system requirements. If you re-run IP Toolbench, it does not overwrite this PLL, if
you turn off Automatically generate the PLL, so your edits are not lost.

If you turn on Use fed-back clock, IP Toolbench generates a second PLL—the fed-back
PLL. You need not edit the fed-back PLL.

If you change the clock input frequency on the PLL, you must change the
REF CLOCK TICK IN PS parameter in the <project name>_tb.v or .vhd file.

For more information on the PLL, refer to “PLL Configurations” on page 3-13.

To edit the example PLL, follow these steps:
1. Choose MegaWizard Plug-In Manager (Tools menu).
2. Select Edit an existing custom megafunction variation and click Next.

3. Inyour Quartus II project directory, for VHDL choose ddr_pll_<device name>.vhd;
for Verilog HDL choose ddr_pll_<device name>.v.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 2: Getting Started 2-23
MegaWizard Plug-In Manager Design Flow

4. Click Next.
5. Edit the PLL parameters in the ALTPLL MegaWizard Plug-In.

“ . e For more information on the ALTPLL megafunction, refer to the Quartus II Help or

click Documentation in the ALTPLL MegaWizard Plug-In.

Compile & Perform Timing Analysis

When you compile a project after generating or editing and re-generating your
variation, the auto_add_ddr_constraints.tcl script automatically calls the constraints
script specific to each instance of the controller in your design. Each constraints script
performs the following procedure:

m Checks if there is a remove_constraints.tcl script specific to this instance of the
controller, and if so, runs it to remove the previous set of constraints.

®m Analyses and elaborates the design to detect the exact hiearchy and then adds the
new set of constraints.

m Creates a new, matching remove_constraints.tcl script, which you can use to
remove the constraints from your design, if necessary.

L= 1If the script successfully adds the new constraints, it does not run when you next
compile.

To prevent the constraints script from running, turn off Automatically run add
constraints script in the wizard. To manually prevent the script from running, open a
Quartus II Tcl Console window and enter the following command:

set_global_assignment -name PRE FLOW_SCRIPT_FILE -remove

The constraints script analyzes and elaborates your design, to automatically extract
the hierarchy to your variation. To prevent the constraints script analyzing and
elaborating your design, turn on Enable Hierarchy Control in the wizard, and enter
the correct hierarchy path to your datapath (refer to step 24 on page 2-13).

['=~ To compile your design, choose Start Compilation (Processing menu), which runs the
add constraints scripts, compiles the example design, and performs timing analysis.
If the compilation does not reach the frequency requirements, follow these steps:

Choose Settings (Assignments menu,).

Click Analysis & Synthesis Settings in the Category list.

In Optimization Technique, select Speed.

Click Fitter Settings in the Category list.

In Fitter effort, select Standard Fit (highest effort).

Click OK.

N o » =

Recompile the example design by clicking Start Compilation (Processing menu).

"=~ Toachieve a higher frequency, turn on the Insert extra pipeline registers in
the datapath option (refer to step 5 on page 2-12).

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

2-24 Chapter 2: Getting Started
MegaWizard Plug-In Manager Design Flow

Once compilation is complete, the auto_verify_ddr_timing.tcl script automatically
calls the verify timing script for each instance of the controller in your design. The
post-compilation timing analysis results are displayed in the Quartus II processing
messages tab and are written to the <variation name>_post_summary.txt file in your
project directory.

To prevent the verify timing script from running, turn off Automatically run verify
timing script in the wizard. To manually prevent the script from running, open a
Quartus II Tcl Console window and enter the following command:

set global assignment -name POST FLOW_ SCRIPT FILE -remove

The results show how much slack you have for each of the various timing
requirements—negative slack means that you are not meeting timing. The Message
window shows various timing margins for your design.

If the verify timing script reports that your design meets timing, you have
successfully generated and implemented your DDR or DDR2 SDRAM Controller.

If the timing does not reach your requirements, adjust the resynchronization and
postamble clock phases on the IP Toolbench Manual Timings tab (refer to
Appendix A, Manual Timing Settings).

To view the constraints in the Quartus II Assignment Editor, click Assignment Editor
(Assignments menu).

=~ If you have “?” characters in the Quartus Il Assignment Editor, the
Quartus II software cannot find the entity to which it is applying the
constraints, probably because of a hierarchy mismatch. Either edit the
constraints script, or enter the correct hierarchy path in the Hierarchy tab
(refer to step 24 on page 2-13).

“®.e For more information on constraints, refer to “Constraints” on page 3-18.

Program a Device

After you have compiled the example design, you can perform gate-level simulation
(refer to “Simulate the Example Design” on page 2-17) or program your targeted
Altera device to verify the example design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the DDR or
DDR2 SDRAM controller MegaCore function before you purchase a license.
OpenCore Plus evaluation allows you to generate an IP functional simulation model,
and produce a time-limited programming file.

«® For more information on OpenCore Plus hardware evaluation using the DDR or
DDR2 SDRAM controller MegaCore function, refer to “OpenCore Plus Evaluation”
on page 1-6, “OpenCore Plus Time-Out Behavior” on page 3-3, and AN 320:
OpenCore Plus Evaluation of Megafunctions.

Implement Your Design

In the MegaWizard Plug-In flow, to implement your design based on the example
design, replace the example driver in the example design with your own logic.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

Chapter 2: Getting Started 2-25
Set Up Licensing

Set Up Licensing

You need to purchase a license for the MegaCore function only when you are
completely satisfied with its functionality and performance, and want to take your
design to production.

L=~ If you replace the DDR or DDR2 SDRAM controller MegaCore function control logic
with your own logic, you need not purchase a license and can continue to use the
clear-text datapath logic.

After you purchase a license for DDR or DDR2 SDRAM controller MegaCore
function, you can request a license file from the Altera web site at
www.altera.com/licensing and install it on your computer. When you request a
license file, Altera emails you a license.dat file. If you do not have Internet access,
contact your local Altera representative.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

www.altera.com/licensing
www.altera.com/licensing

2-26 Chapter 2: Getting Started
Set Up Licensing

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

3. Functional Description

The DDR and DDR2 SDRAM controllers instantiate an encrypted control logic and a
clear-text datapath. You can replace the control logic with your own custom logic.

Block Description

Figure 3-1 shows a block diagram of the DDR & DDR2 SDRAM controller.

Figure 3-1. DDR & DDR2 SDRAM Controller Block Diagram (Note 1)
local_addr
local_be DDR SDRAM Controller
local_burstbegin
local_read_req »
local_refresh_req o ddr_a
local_size ddr_ba
IocaIdeata Control ddr_cas_n
local_write_req Logic > ddr_cke
local_init_done (Encrypted) gg:*gfﬁ?z)
local_rdata ddr ras n
local_rdata_valid ddr we n
local_rdata_valid_in_n <& -
local_ready
local_refresh_ack A »> dgs_ref_clk
local_wdata_req | | - fedback_clock_out
............... P stratix_dll_control
addremd_clk ---eeeeeeees Lg \ 4
capture_clk ---s--eeeees > -
ok : clk_to_sdram
Data Path P> clk_to_sdram_n
dgs_delay_ctrl[5:0] ssssssssssssnns > Module | » ddr_dq
- Ll -
dgsupdate oo > (Clear Text) | 4 > ddr_dgs
fedback_clock_in - -
> ddrﬁdm
postamble_clk --- -
resynch_clk ---s---we-e- >
resynch_ ---s---s-see- L g
clk_edge_select
write_clk —————P»

Notes to Figure 3-1:

(1) You can edit the ddr prefix on the SDRAM interfaces signals.

(2) DDR2 SDRAM controller only.

Control Logic

Bus commands control SDRAM devices using combinations of the ddr_ras_n,
ddr_cas_n,and ddr_we_n signals. For example, on a clock cycle where all three
signals are high, the associated command is a no operation (NOP). A NOP command
is also indicated when the chip select signal is not asserted.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM CGontroller Compiler User Guide

3-2

Chapter 3: Functional Description
Block Description

Datapath

Table 3-1 shows the standard SDRAM bus commands.

Table 3-1. Bus Commands

Command Acronym ras_n cas_n we_n
No operation NOP High High High
Active ACT Low High High
Read RD High Low High
Write WR High Low Low
Burst terminate BT High High Low
Precharge PCH Low High Low
Auto refresh ARF Low Low High
Load mode register LMR Low Low Low

The DDR and DDR2 SDRAM controllers must open SDRAM banks before they access
addresses in that bank. The row and bank to be opened are registered at the same time
as the active (ACT) command. The DDR and DDR2 SDRAM controllers close the bank
and open it again if they need to access a different row. The precharge (PCH)
command closes a bank.

The primary commands used to access SDRAM are read (RD) and write (WR). When
the WR command is issued, the initial column address and data word is registered.
When a RD command is issued, the initial address is registered. The initial data
appears on the data bus 2 to 3 clock cycles later (3 to 5 for DDR2 SDRAM). This delay
is the column address strobe (CAS) latency and is due to the time required to read the
internal DRAM core and register the data on the bus. The CAS latency depends on the
speed of the SDRAM and the frequency of the memory clock. In general, the faster the
clock, the more cycles of CAS latency are required. After the initial RD or WR
command, sequential reads and writes continue until the burst length is reached or a
burst terminate (BT) command is issued. DDR and DDR2 SDRAM devices support
burst lengths of 2, 4, or 8 data cycles. The auto-refresh command (ARF) is issued
periodically to ensure data retention. This function is performed by the DDR or DDR2
SDRAM controller.

The load mode register command (LMR) configures the SDRAM mode register. This
register stores the CAS latency, burst length, and burst type.

For more information, refer to the specification of the SDRAM that you are using.

The datapath provides the interface between the read and write data busses of the
local interface and the double-clocked, bidirectional data bus of the memory. The
local data busses are twice the width of the memory data bus width, because the DDR
or DDR2 SDRAM data interface transfers data on both the rising and falling edges of
the clock.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-3
OpenCore Plus Time-Out Behavior

IP Toolbench generates a clear-text VHDL or Verilog HDL datapath, which matches
your custom variation. If you are designing your own controller, Altera recommends
that you use this module as your datapath. IP Toolbench generates placement
constraints in the form of reusable scripts for all the critical registers in Cyclone series
and for the resynchronization registers in Stratix series. Altera recommends that you
also use these scripts so that your own DDR and DDR2 SDRAM designs have
consistent placement and the timing analysis script results apply to your design.

The datapath instantiates one or more data strobe (DQS) groups. The DQS group
module's control wdataand control rdata are fixed at 16 bits and data (DQ) is
fixed at 8 bits. To build datapaths larger than 16 bits, the datapath instantiates
multiple DQS group modules to increase the data bus width in increments of 16 bits
(8 bits for the DDR and DDR2 SDRAM side).

Figure 3-2 shows the datapath.

Figure 3-2. Datapath

Data Path Module

oS 1

control_rdata <& DQS
16 — 8
control_wdata p| Groups | » dq
| .
olk Clock Output - c:EﬁIofsgram
Generator » Clk_lo_sdram_n

P fedback_clock_out

Table 3-2 shows the IP Toolbench-generated datapath files in your project directory.

Table 3-2. Datapath Files

Filename Description
<variation name>_auk_ddr_datapath.v or .vhd Datapath.
<variation name>_auk_ddr_clk_gen.v or .vhd Clock output generator.
<variation name>_auk_ddr_dqs_group.v or .vhd DQS groups.

. TFor more detail on the datapath, refer to “Datapath” on page 3-4.

OpenCore Plus Time-0ut Behavior

OpenCore Plus hardware evaluation can support the following two modes of
operation:

B Untethered—the design runs for a limited time

m Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

Chapter 3: Functional Description
Device-Level Description

All megafunctions in a device time out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior may be masked by the time-out behavior
of the other megafunctions.

For MegaCore functions, the untethered time-out is 1 hour; the tethered time-out
value is indefinite.

Your design stops working after the hardware evaluation time expires and the
local_ready output goes low.

For more information on OpenCore Plus hardware evaluation, refer to “OpenCore
Plus Evaluation” on page 1-6 and AN 320: OpenCore Plus Evaluation of Megafunctions.

Device-Level Description

Datapath

This section describes the following topics:
m “Datapath” on page 34

m “PLL Configurations” on page 3-13

m “DLL Configurations” on page 3-16

m “Example Design” on page 3-16

m “Constraints” on page 3-18

In Stratix series, the DDR and DDR2 SDRAM controllers use input-output element
(IOE) registers in the write and the read direction. In the read direction, the phase
shift reference circuit provides a process, voltage, temperature (PVT) compensated
delay on each DQS that is used to sample the DQ read data. In Cyclone series, the
DDR SDRAM controller uses carefully placed logic element (LE) registers to
guarantee consistent timing across DQS groups. An appropriate DQS delay is
produced by the Cyclone series programmable delay, the value of which is set by the
constraints script.

In the read direction, the double-rate data from the DQ pins are fed into positive and
a negative edge-triggered registers to sample data on both edges of DQS. These
signals are then passed through another set of configurable registers to return them to
the system clock domain. The IP Toolbench timing analysis configures the transition
from the DQS clock domain to the system clock domain (resynchronization). The
options range from using the positive edge of the system clock as your
resynchronization clock to more complex cases that require one or more extra sets of
registers to safely return your read data to the system clock domain.

For more information on resynchronization, refer to “Resynchronization” on
page A—4.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

www.altera.com/literature/an/an320.pdf

Chapter 3: Functional Description 3-5
Device-Level Description

In the write direction, the wdata_ valid signal acts as an enable on the
local_wdata registers. The output of these registers is clocked into registers in the
IOE where it is fed to the DQ pins. The registers in the IOE are clocked by the write
clock (which is 90° before the system clock) so that DQS, which is generated by the
datapath, appears in the center of the data on the DQ pins. The write DQS is
generated from registers clocked by the system clock so that the tposs parameter is met
at the DDR or DDR2 SDRAM device.

Table 3-3 shows the interface to the datapath.

Table 3-3. Datapath Interface

Signal name Direction Description
control doing wr Input The control doing wr signal is asserted when the controller is
writing to the DDR or DDR2 SDRAM and controls the output enables on
the DQ pins.
control wdata valid Input The control wdata valid signal is a registered version of the

write data request to the local interface. It enables the write data and
byte enable registers so that they are only updated when valid data and
enables are available.

control dgs burst Input The control dgs_burst signal controls the output enables of the
DQS pins. The DQS output enable must be asserted for longer than the
DQ output enable, particularly when the local burst size is shorter than
the memory burst length.

control wdatal] Input The control wdata signal is the write data bus and should have
valid data in the same clock cycle that control wdata validis
asserted.

control be[] Input The control be signal is the byte enable bus and should have valid

data in the same clock cycle that control wdata validis
asserted. The byte enables are converted into DDR or DDR2 SDRAM
data mask signals.

control doing rd Input The control doing rd signal is asserted when the controller is
reading from the DDR or DDR2 SDRAM and enables the DQ capture
registers. It also controls the postamble control registers to prevent the
DQ capture registers from being inadvertently clocked after the DQS
read postamble.

control rdatall Output The control rdata busis the read data bus and has valid data
some clock cycles after the read command is issued. The exact
relationship depends on the CAS latency of the memory and whether or
not registered DIMMs are being used.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-6 Chapter 3: Functional Description
Device-Level Description

Figure 3-3 shows the datapath timing (CAS latency is 2.0).

Figure 3-3. Datapath Timing

n 2 3] 4

clk

Write Interface

control_doing_wr

control_wdata_valid

control_dgs_burst : :

control wdata T T AmI L |peA0f@eTipiFy|
control_be i i ¥ i i 1 i i i Jo3yoq

Read Interface | § i /i 0 bbb
control_doing_rd § § i(v \ § § : :
control_rdata T i . i[A07|D70{D3TDRASY

DDR SDRAM
Interface

DDR Command NOPJACTNOP.
ddrdm &
ddr_dq
ddr_dgs

NOPJPCHNOPJACTJNOP| _: WR [| NOP

1. The controller asserts control doing_rd to enable the DQ input registers so
that the read data is captured (the datapath delays this signal to match the CAS
latency). In this case, it is expecting four cycles of read data, so it holds the signal
asserted for four clock cycles. At the end of the burst, the signal is deasserted to
disable the DQ capture registers, which avoids them being clocked unnecessarily
after the DQS read postamble.

2. The controller state machine asserts the control_wdata_valid signal as soon
as it knows that it is doing a write. The signal does not need to be asserted this
early. However, in this example it simplifies the controller design. The write data
is only valid in that clock cycle and is held in the wdata registers until the write
happens.

3. The controller asserts control doing wr for the length of the burst (four beats)
to indicate that it is doing a write. This signal controls the output enables of the
DQ signals.

4. The controller reasserts control wdata_valid to request the next write data

once it knows it is now writing to the memory

=" If youuse DDR2 SDRAM and design your own controller, you need to take
the variable write latency into account when generating the
control doing wr signal.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-7
Device-Level Description

Designing Your Own Controller

The state machine that issues the read commands generates control doing rd
and it starts when the read command is issued to the memory and stays asserted for
the length of the burst. It is delayed inside the controller to cope with the following
options:

m Insert pipeline registers on address and command outputs
m Registered DIMM
m Insert extra pipeline registers in the datapath

The datapath is generated with a pipeline to cope with CAS latency in each DQS
group rather than inside the controller. Duplicating this pipeline across the
bytegroups makes timing easier to meet on the critical postamble logic—the last
register in this pipeline feeds the postamble control register. If you design you own
controller, you need to generate the datapath for the right CAS latency, otherwise this
pipeline is the wrong length.

The enabling and disabling of the capture registers (controlled by the
control_doing rdsignal)is disabled in RTL simulation because it relies so heavily
on timing in the system to work. So in RTL simulation, the capture registers are
always enabled and varying the timing of the control_doing rd signal does not
change the behavior of the datapath.You should use gate-level simulations to test the
exact timings of this signal if you design your own controller.

The same source that generates control doing_rd generates the
local_rdata_valid signal and it is delayed inside the controller by the same
amount. In addition, it is delayed to take the following datapath options into account:

B Reclock resynchronized data to the positive edge
m Insert intermediate resynchronization registers

The local rdata_ valid signal is also delayed by 4 + R cycles, where R is the
resynchronization cycle as predicted by the wizard. For example, if the
resynchronization cycle is 2, Reclock resynchronized data to the positive edge is
turned on, and Insert intermediate resynchronization registers is turned off, the
local_rdata_valid signal should be seven cycles later than the

control doing rdsignal (4+2+1+0=7).

The control_doing_wr signal controls the output enables on the DQ and DQS
pins. The state machine that issues the write commands generates it and it is delayed
inside the controller to cope with the following options:

m Insert pipeline registers on address and command outputs
m Registered DIMM
m Insert extra pipeline registers in the datapath

For DDR SDRAM, the write latency is fixed at 1 clock cycle. You should issue the
control_doing wr signal so that it starts when you issue the write command to the
memory and ensure it stays asserted for the length of the burst.

For DDR2 SDRAM, the write latency varies with the CAS latency, which the
controller takes into account and it delays the control_doing wr signal to match.
You should issue the control_doing_wr signal (CAS latency — 2) clock cycles after
the write command and ensure it stays asserted for the length of the burst.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-8 Chapter 3: Functional Description
Device-Level Description

The control_doing_wr and control_wdata_valid signals are completely
identical outputs from the controller when it is in DDR2 SDRAM mode. If the
controller is issuing full size write bursts, the control dgs_burst signal should be
issued for one clock cycle longer than control_doing wr. If the controller is not
writing for the full length of the memory burst length, the control_dgs_burst
signal should be kept asserted so that the DQS toggles for the full length of the burst.

DQS Group Block Diagrams

Figure 3—4 on page 3-9 shows the Stratix II DQS group block diagram; Figure 3-5 on
page 3-10 shows the Stratix DQS group block diagram; Figure 3—-6 on page 3-11
shows the Cyclone II DQS group block diagram; and Figure 3-7 on page 3-12 shows
the Cyclone DQS group block diagram.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description
Device-Level Description

Figure 3-4. Stratix Il DQS Group Block Diagram

(Note 1) (2)

d
doing_wr 4-0¢ .
wdata
16
T ‘b—t DQ
wdata_valid
EN
write_clk
o—f
resynched_data \
resynch_clk Optional Inverters (Note 4)
rdata
16 o_‘/
Preset (asynchronous)
doing_rd dg_enable_reset
(pipelined) b a |

postamble_clk ———— ¢

Optional Inverter (Note 4)

doing_wr

dgs_burst

be

) >

—

D Q
[—‘

dq_capture_clk r
\ g L d
(Note 3)

dgs_oe

doing_wr

write_clk

Notes to Figure 3-4:

(1) This figure shows the logic for one DQ output only. A complete byte group consists of eight times the DQ logic with the DQS and DM logic.
(2) Allclocks are c1k, unless marked otherwise.
(3) Invert combout of the /0 element (I0E) for the dgs pin before feeding in to inclock of the I0E for the DQ pin. This inversion is automatic if

you use an ALTDQ megafunction for the DQ pins.

(4) The optional inverters are controlled by the resynchronization edge and postamble edge settings on the Manual Timings tab, refer to “Manual

Timing Settings” on page A-1

B DQI0Es
DQS IOEs
Il DM altddio Megafunction

© March 2009 Altera Corporation

DDR and DDR2

SDRAM Controller Compiler User Guide

3-10

Chapter 3: Functional Description
Device-Level Description

Figure 3-5. Stratix DQS Group Block Diagram (Note 1) (2)

d
doing_wr Q a8 .
8
wdata
16
Q
T 0—.> DQ
wdata_valid
e Q
EN
4 write_clk
8
—— D
o—
resynched_data \
resynch_clk Optional Inverters (Note 5)
8
rdata D
16 o_/
Preset (asynchronous)
D Q 1 dg_enable_reset
dg_enable
postamble_clk ——— ¢ 1 Q
g
Optional Inverter (Note 5) (Note 3)

doing_wr

(Note 4)

dq_capture_clk Compensated
,—‘>¢ Delay

) - dgs_oe 5
dgs_burst 4~
D Q
DQS
— >
2
be
EN DM
doing_wr
<
I [DQIOEs
EN
DQS IOEs
Il DM IOEs
write_clk

Notes to Figure 3-5:

(1) This figure shows the logic for one DQ output only. A complete byte group consists of eight times the DQ logic with the DQS and DM logic.

(2) Allclocks are c1k, unless marked otherwise.

(3) Invert combout of the I0E for the dgs pin before feeding in to inclock of the IOE for the DQ pin. This inversion is automatic if you use an
ALTDQ megafunction for the DQ pins.

(4) Optional DQS delay matching buffers controlled by the settings on the Manual Timing tab, refer to “Manual Timing Settings” on page A-1.
(5) The optional inverters are controlled by the resynchronization edge and postamble edge settings on the Manual Timing tab, refer to “Manual

Timing Settings” on page A-1

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 3: Functional Description 3-1
Device-Level Description

Figure 3-6. Cyclone Il DQS Group Block Diagram (Note 1) (2)

——— Clock Control Block

p DQ_Aoce
doing_wr D Q q.0e D Q
8
wdata D
16 Q D Q 0
EN > Ao dg
wdata_valid
T D Q y
> Bo
EN
write_clk
8
%=Q D Q D
O_\ Al |
resynched_data EN
resynch_clk Optional InVerters (Note 4) 4
8
rdata Q D Q D Q D
16 o—‘/ - o—@
Ci B,
Preset (asynchronous) EN
D Q qu,enable,reset
dg_enable
Optional Inverter (Note 4) F
dq_capture_clk Clock Delay
Control Circuit

(Note 3) e
. DQS_A«
doing_wr dgs_oe o

o D Q

dgs_burst ,)_/
D Q

1 o

1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[
1
1
1
1
1
i
v
1
L
1
1
1
1
1
:
1
1
postamble_clk —————— _—1P Q :
1
1
1
1
1
1
1
1
|
T
1
1
1
1
|
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
|
T
1
1
1
1
1
1
1
1

be D Q
D Q——o
EN dm
doing_wr I
LI o o p al—|!
S\ B oEs
FPGA LEs
write_clk

altddio Megafunctions

Notes to Figure 3—6:
(1) This figure shows the logic for one dq output only. A complete byte group consists of eight times the DQ logic with the DQS and DM logic.
(2) Allclocks are c1k, unless marked otherwise.

(3) Each DQS requires a global clock resource. Invert combout of the ALTDDIO_BIDIR megafunction for the DQS pin before feeding into inclock
of the ALTDDIO_BIDIR megafunction for the DQ pin.

(4) The optional inverters are controlled by the resynchronization edge and postamble edge settings on the Manual Timing tab, refer to “Manual
Timing Settings” on page A-1.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-12 Chapter 3: Functional Description
Device-Level Description

Figure 3-7. Cyclone DQS Group Block Diagram (Note 1) (2)

| DQ_Aoce
. dg_oe 1
doing_wr D a * D Q
H >
1
|
8 |
wdata D 1
16 Q ; D Q 0
|
EN | > Ao da
wdata_valid i -
——{D Q t D Q 0
| > Bo
1
EN '
4 write_clk .
8 1
oé=Q D : Q D
\ : Al <—
1
resynched_data ' EN
resynch_clk Optional Inverters (Note 4) 4
8 1
rdata Q D P —a o Q »
16 o— ic < B, <—o
1
Preset (asynchronous) : EN EN
D Q qu,enable,reset :
dg_enable 1
postamble_clk ————— _—ib a f
i
Optional Inverter (Note 4) :
|
dg_capture_clk | Programmable
! Delay
|
T
(Note 3) ,
. 1 DQS_Aoce
doing_wr) dgs_oe) Q
o ——|D L 4 D
dgs_burst _/ ! > o>
| Boe
i
|
D Q D Qf—|o0
: dgs
i >
1
|
'
A e O
i >
2 i
be D Q T
| D Qf—|o
1
EN ! > dm
. —p =
doing_wr :
l—Dp a ; b ar—!
i >
|
=X i B 0Es
H FPGA LEs
write_clk

altddio Megafunctions

Notes to Figure 3-7:
(1) This figure shows the logic for one dq output only. A complete byte group consists of eight times the DQ logic with the DQS and DM logic.
(2) Allclocks are c1k, unless marked otherwise.

(3) Each DQS requires a global clock resource. Invert combout of the ALTDDIO_BIDIR megafunction for the DQS pin before feeding into inclock
of the ALTDDIO_BIDIR megafunction for the DQ pin.

(4) The optional inverters are controlled by the resynchronization edge and postamble edge settings on the Manual Timing tab, refer to “Manual
Timing Settings” on page A-1.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-13
Device-Level Description

PLL Configurations

IP Toolbench creates up to two example PLLs in your project directory, which you can
parameterize to meet your exact requirements. IP Toolbench generates the example
PLLs with an input to output clock ratio of 1:1 and a clock frequency you entered in IP
Toolbench. In addition IP Toolbench sets the correct phase outputs on the PLLs’
clocks. You can edit the PLLs to meet your requirements with the ALTPLL
MegaWizard Plug-In. IP Toolbench overwrites your PLLs in your project directory
unless you turn off the Automatically generate the PLL option.

The external clocks are generated using standard I/O pins in DDR or DDR2 SDRAM
output mode (using the ALTDDIO_OUT megafunction). This generation matches the
way in which the write DQS is generated and allows better control of the skew
between the DDR or DDR2 SDRAM clock and the DQS to meet the tpqss requirements
of the SDRAM.

The PLL has the following outputs:

m Output c0 drives the system clock that clocks most of the controller including the
state machine and the local interface. If the controller is being used in SOPC
Builder, this clock should drive the SOPC Builder generated module clock.

m Output cl drives the write data clock that lags the system clock by 270° and clocks
the write data and write data mask registers to offset them from the data strobe
signal.

The PLL configuration differs for Stratix and Cyclone series.

The recommended configuration for implementing the DDR SDRAM controller in a
Stratix or Cyclone series is to use a single enhanced PLL to produce all the required
clock signals. No external clock buffer is required as the Altera device can generate
clk and clk# signals for DDR or DDR2 SDRAM devices.

The main difference between clock configurations is that Cyclone series do not have
the DQS phase shift reference circuit. Thus Cyclone series (and Stratix II devices) do
not need the additional dgs_ref clk clock input, which drives this circuit.

In Cyclone II devices, an additional optional output (c2) is available. This output is
not normally required, unless IP Toolbench reports that a separate resynchronization
or postamble clock is required.

In Stratix series, the PLL has two other optional outputs. In most cases, these outputs
are not required. If you have chosen not to use DQS to capture your read data or if IP
Toolbench reports that a separate resynchronization or postamble clock is required,
the PLL includes the following IP Toolbench-recommended outputs:

m Output c2 drives either the optional capture clock in non-DQS mode or an
optional separate resynchronization clock.

m Output 3 drives the optional separate postamble clock.

These clocks are connected to the DDR or DDR2 SDRAM controller in the example
design file. If separate resynchronization or postamble clocks are not required, IP
Toolbench connects the resynchronization and postamble clock inputs on the
variation to the system or write clock as appropriate.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

314

Chapter 3: Functional Description
Device-Level Description

For Stratix II devices, if you turn on the Use fed-back clock option and the Enable
DQS mode option, you enable fed-back resynchronization, which uses a fed-back
clock to resynchronize the data captured by the DQS signal (refer to Figure A-2 on
page A—6). An additional resynchronization phase created by the main PLL transfers
the data back to the system clock.

Turning off Enable DQS mode enables fed-back capture mode. This mode uses a
fed-back clock to capture the read data and does not use the DQS strobe for capture
(refer to Figure A—4 on page A-8). A resynchronization phase from the system PLL is
required to safely transfer the captured data to system clock phase. This mode offers
lower performance than fed-back resynchronization, but allows greater flexibility in
your choice of pins for DQ and DQS.

Figure 3-8 on page 3-14 shows the recommended configuration for Stratix II devices.

For more information on non-DQS mode, refer to Figure A-2 on page A-6 and
Figure A—4 on page A-8.

Figure 3-8. Stratix Il PLL Configuration (Note 1)
Stratix Il Device
P Stratix [l DLL

DDR SDRAM
Controll

o clk' > ontrofler ,M‘ clk_to_sdram_n >

o1 teclk > olk_to_sdram DDR SDRAM

>

clock_source

Note to Figure 3-8:

(1) Inmostcases, clk orwrite clk are used as the resynchronization and postamble clocks, therefore you need not use a separate clock output
from the PLL.

P Enhanced PLL | resynch_clk or fedback_clock_out

capture_clk
c2 >
c3 postamble_clk >
/ Optional
Note 1 Fed-Back Clock <&

PLL

DDR and DDR2 SDRAM Controller Compiler User Guide

Figure 3-9 on page 3-15 shows the recommended configuration for Stratix and
Stratix GX devices.

The dgs_ref clk input for Stratix or Stratix GX devices can be either fed-back from
the clock output driving the SDRAM or a separate clock output from the PLL. The
phase of dgs_ref_clk relative to the other clocks in the system is unimportant. The
controller switches off this input during reads, if you turn on Switch off Stratix DLL
reference clock during reads (refer to “Manual Timing Settings” on page A-1).

© March 2009 Altera Corporation

Chapter 3: Functional Description
Device-Level Description

3-15

Figure 3-9. Stratix PLL Configuration (Note 1)

Stratix Device

dgs_ref_clk

Stratix DLL |«

DDR SDRAM
Controller
Ik
col . > o altddio
c1 write_clk > clk_to_sdram
>
clock_source P> Enhanced PLL | resynch_clk or clk_to_sdram_n | DDR SDRAM
capture_clk =
2 ostambio i
m
c3 postal < »

Note 1

Note to Figure 3-9:

(1) Inmostcases, clkorwrite clk are used as the resynchronization and postamble clocks, therefore you need not use a separate clock output

from the PLL.

Figure 3-10 shows the Cyclone II configuration for use with any PLL multiply or

divide ratios including a ratio of one.

Figure 3—-10. Cyclone Il PLL Configuration

Cyclone Il Device

DDR SDRAM
Controller
PLL clk_to_sdram
co |2 > o altddio >
write_clk]
clock_source g 3] > DDR SDRAM
clk_to_sdram_n
o resynch_clk | altddio >
Figure 3-11 on page 3-15 shows the Cyclone configuration.
Figure 3—-11. Cyclone PLL Configuration
Cyclone Device
DDR SDRAM
Controller
PLL o clk. - > clk_to_sdram
clock_source > 1 [uriteclk DDR SDRAM

clk_to_sdram_n

@ altddio
L‘ altddio

|

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-16

Chapter 3: Functional Description
Device-Level Description

DLL Configurations

For Stratix series designs, IP Toolbench creates an instance of a DLL, which is
configured to match your controller. The DLL generates the 90° phase shift on the
DQS edges that capture the read data.

On Stratix devices, the reference clock is driven off the device and fed back into the
DLL reference clock inputs (refer to Figure 3-9 on page 3-15). If you turn on Insert
logic to allow the DLL to update only during the memory refresh period, the
controller generates a control signal, stratix_dll control, which can enable the
DLL reference clock only while the controller is issuing refresh commands to the
memory.

On Stratix II devices, the DLL reference clock is fed directly from an enhanced PLL.
For an interface that is only on one side of the Stratix II device, the DLL automatically
generates a control signal, dgsupdate, to the DQS pins on the same side telling them
when it is safe to update their delay value. If your interface spans two sides of the
device, the controller can generate a control signal, stratix dll control, to only
allow the 6-bit control signal to each DQS pin to update only while the controller is
issuing refresh commands to the memory. Turning on Insert logic to allow the DLL
to update only during the memory refresh period causes the extra logic to be
inserted and should only be turned on if your interface spans two sides of the device.
Turning on this feature on a single sided interface is not required, because the DLL
controls the updates.

Table 3—4 shows the DLL signals.

Table 3-4. DLL Signals

Signal Description
clk The reference clock, which comes either from an external pin in Stratix devices or
from an enhanced PLL output in Stratix Il devices.
reset n The reset input.
delayctrlout The 6-bit output, which controls the value of the delay chain on the DQS inputs.
stratix dl1 control (1) The control signal from the controller, which is available if you turn on Insert

logic to allow the DLL to update only during the memory refresh period. It
controls when the 6-bit control value to DQS pins updates. On Stratix devices
stratix dll control disables the clock output.

dgsupdate (1)

A DLL-generated control signal that controls when the 6-bit control value to DQS
pins updates, if the interface is only on one side of the device.

Note to Table 3-4:

(1) Stratix Il devices only.

Example Design

IP Toolbench creates an example design that shows you how to instantiate and
connect up the DDR or DDR2 SDRAM controller. The example design consists of the
DDR or DDR2 SDRAM controller, some driver logic to issue read and write requests
to the controller, up to two PLLs to create the necessary clocks and a DLL (Stratix
series only). The example design is a working system that can be compiled and used
for both static timing checks and board tests.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description
Device-Level Description

3-17

Figure 3-12 shows the testbench and the example design.

[l =~ Ensure that the example driver is not optimized away in your example design, by
preserving the pnf output. Either attach it to a pin or assign it as a virtual pin in your

Quartus II project.

Figure 3—-12. Testbench & Example Design

Testbench

Example Design

o

pnf <)
P Example Driver
test_complete <&
A
clock_source | PLL

«

- P » | DDR SDRAM
p| DDR SDRAM Controller P DIMM Model
A A
DLL

Bidrectional Board
Delay Model

Table 3-5 describes the files that are associated with the example design and the

testbench.

Tahle 3-5. Example Design & Testbench Files

Filename

Description

<project name>_th.v or .vhd (7)

Testbench for the example design.

<project name>.v or .vhd (7)

Example design.

ddr_pll_<device family>.v or .vhd (2)

Example PLL.

ddr_fb_pll_stratixii.v or .vhd

Optional fed-back PLL (Stratix Il devices only).

<variation name>_example_driver.v or .vhd

Example driver.

<variation name> v or .vhd

Top-level description of the custom MegaCore function.

Notes to Table 3-5:

(1) <project name> is the name of the IP Toolbench-generated example design.
(2) Replace <device family> with st ratix for Stratix series, or cyclone for Cyclone series.

The example driver is a self-checking test generator for the DDR or DDR2 SDRAM
controller. It uses a state machine to write data patterns to a range of column
addresses, within a range of row addresses in all memory banks. It then reads back
the data from the same locations, and checks that the data matches. The pass not fail
(pnf) output transitions low if any read data fails the comparison. There is also a
pnf_ per byte output, which shows the comparison on a per byte basis. The

test complete output transitions high for a clock cycle at the end of the write or
read sequence. After this transition the test restarts from the beginning.

The data patterns used are generated using an 8-bit LFSR per byte, with each LFSR
having a different initialization seed.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

3-18

Chapter 3: Functional Description
Device-Level Description

Constraints

The testbench instantiates a DDR or DDR2 SDRAM DIMM model, a reference clock
for the PLL, and model for the system board memory trace delays. When
test_complete is detected high, a test finished message is printed out, which
shows whether the test has passed.

Altera does not provide a memory simulation model. You must obtain one from your
memory vendor.

For more details on how to run the simulation script, refer to “Simulate the Example
Design” on page 2-17.

IP Toolbench generates a constraints script, add_constraints_for_<uvariation name>.tcl,
which is a set of Quartus II assignments that are required to successfully compile the
example design.

When the constraints script runs, it creates another script,
remove_constraints_for_<uvariation name>.tcl, which you may use to remove the
constraints from your design.

The constraints script implements the following types of assignments:

m Capacitance loading for SDRAM interface pins

m I/O standard to SSTL-2 class II for DDR SDRAM interface pins (SSTL-18 class I
for DDR2 SDRAM)

m Current strength set to “min” for Stratix devices

m DM, DQ, and DQS pin placement (except for non-DQS mode on Stratix devices)
B Resynchronization and postamble registers placement

m I/O register placement for Cyclone series

m Synthesis “Don’t Optimize” set for the datapath logic

B Address and control fast output register constraints

m DQS frequency and delay settings for Cyclone devices

As the static timing analysis performed after the design compiles requires that the all

the clocks in the datapath are global, you must ensure you do not use regional clocks
for the datapath logic.

Table 3-8 shows the methods that achieve the logic placement constraints.

Table 3-6. Methods for Logic Placement Constraints

Device Family Capture Registers Resynchronization Registers
Stratix 11/Stratix 11 GX — LAB placement
Stratix/Stratix GX — LogicLock region constraints
Cyclone Il LAB placement LAB placement
Cyclone LE placement LE placement

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-19

Interfaces & Signals

For Stratix II devices, you have the following three options for the constraints:

Dedicated top and bottom I/O pins, which gives the highest performance.

Migratable DM, DQ, and DQS pin constraints on all sides of the device, which
allows you to migrate your design to a migration device at a later stage, and gives
less pins.

Non-migratable pin constraints, which give much greater flexibility and a greater
number of available pins on all sides of the device.

Interfaces & Signals

This section describes the following topics:

“Interface Description” on page 3-19

“Signals” on page 3-28

Interface Description

This section describes the following local-side interface requests:

“Writes” on page 3-20

“Reads” on page 3-21

“Read-Write-Read-Write” on page 3-23
“Read-Write-Read-Write” on page 3-23

“DDR SDRAM Initialization Timing” on page 3-25
“DDR2 SDRAM Initialization Timing” on page 3-26

L=~ These interface requests are for the native interface. For information on the
Avalon-MM interface, refer to the Avalon Interface Specifications.

The native interface is a superset of the Avalon-MM interface. The native interface has
the following additional signals. These signals, which are not part of the Avalon-MM
interface, provide extra information and control for the native interface:

local rdvalid in n
local init done

local_refresh req
local_refresh ack

local wdata_reqg

«o For information on the datapath interface, refer to “Datapath” on page 3—4.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3-20

Chapter 3: Functional Description
Interfaces & Signals

Writes

Figure 3-13 on page 3-20 shows three write requests of different sizes, the first two to
sequential addresses and the third to a new row and bank. The controller allows you
to use any burst length up to the maximum burst length set on the memory device.
For example, if you select burst length of 8 for your DDR SDRAM memory, the
controller allows bursts of length 1, 2, 3, and 4 (2, 4, 6, and 8 on the DDR SDRAM
side).

'~ The concept is similar for DDR2 SDRAM although only burst lengths 1 and 2 (2 and 4

Figure 3-13. Writes

on the DDR2 SDRAM side) are available.

Local |

local

3]

clk

nterface

|_read_req

local_write_req _1 / /){ / /

local_ready / '/ﬂ

local_size X 1 X 2 X/4 X

sadtr(n Y 1 Noy o

local_c (
local_row_addr (1) 0f:o)(:210 Poob b b EE 000 /
local_bank_addr (7) ‘E)é 3 0 , : : : : :
(1)

local_col_addr (7 H{ozﬂ;oaox i i i oo

local_wdata_req 7‘

local_wdata

DDR
|

DDR Command (2) NOP

Notes to Figure 3-13:

F451A27)%051q 848D25 AQ4A 1

local_be

LI

SDRAM
nterface

ddr_cs_n : : ‘F

ddr_cke

ddr_a i 000 i

ddr_ba)

ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_dm(0)

ddr_dq

ddr_dgs(0)

(1) Thelocal cs addr, local row addr, local bank addr,and local col addr signals are a representation of the
local_ addr signal.

(2) DDR Command shows the command that the command signals (ddr_ras_n, ddr_cas nand ddr_we_n) are issuing.

DDR and DDR2 SDRAM

Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-21

Interfaces & Signals

© March 2009 Altera Corporation

The user logic requests the first write, by asserting the local_write_reqsignal,
and the size and address for this write. In this example, the request is a burst of
length 1 (2 on the DDR SDRAM side) to chip select 1. The local_ready signal is
asserted, which indicates that the controller has accepted this request, and the user
logic can request another read or write in the following clock cycle. If the

local ready signal was not asserted, the user logic must keep the write request,
size, and address signals asserted.

The user logic requests a second write to a sequential address, this time of size 2 (4
on the DDR SDRAM side). The local ready signal remains asserted, which
indicates that the controller has accepted the request.

The controller requests the write data and byte enables for the first write from the
user logic. The write data and byte enables must be presented in the clock cycle
after the request. In this example, the controller also continues to request write
data for the subsequent writes. The user logic must be able to supply the write
data for the entire burst when it requests a write.

The user logic requests the third write to a different chip select. The controller is
able to buffer up to four requests so the local_ready signal stays high and the
request is accepted.

When it has issued the necessary bank activation command, the controller issues
the first two write requests sequentially to the memory device.

Even though no data is being written to memory, the ddr_dgs signal must
continue toggling for the entire length of the memory device's burst length (8 in
this example).

For the Avalon-MM interface you should present the address (Local_addr), the

write data (local_wdtata), and the write request (local_write_req) signal to
the controller with reference to the memory clock (c1k_to_sdram). The Avalon-MM
interface does not use local wdata regq.

Reads

Figure 3-14 on page 3-22 shows three read requests of different sizes. The controller
allows you to use any burst length up to the maximum burst length set on the
memory device. For example, if you select burst length of 8 for your DDR SDRAM
memory, the controller allows bursts of length 1, 2, 3, and 4 (2, 4, 6, and 8 on the DDR
SDRAM side).

The concept is similar for DDR2 SDRAM although only burst lengths 1 and 2 (2 and 4
on the DDR2 SDRAM side) are available.

DDR and DDR2 SDRAM Controller Compiler User Guide

3-22 Chapter 3: Functional Description
Interfaces & Signals

Figure 3-14. Reads

[1 21 [3 M 5]

clk

Local Interface

local_read_req

ocalwitereq ¢ j f f & 0 F b b b b b b p b b b
local sze OY4¥2¥TYoX + & v v i ¢)y v T

local_cs addr () 0 1 ¥ . T T T T 0

local_row_addr (1) 170 040 X oéo /
focal bank acer () O)T) 0]
local_col_acr (1) __Jfosofoesfos7(1 . oeg .]
local_rdata_valid /“ \ l v _/—
ocal rsta — I G D

DDR SDRAM
Interface

ddr_cs_n PR

ddr_cke

ddra | 600 |

TYoAE(000 |

ddr_ba R

DDR Command (2) i1 NOP:

ddr_ras_n

ddr_cas_n

ddr_we_n

ddr_dm

ddr_dq

ddr_dgs

Notes to Figure 3-14:

(1) The local cs addr, local row addr, local bank addr, and local col addr signals are a representation of the
local addr signal.

(2) DDR Command shows the command that the command signals are issuing.

1. The user logic requests the first read by asserting the 1local_read_req signal,
and the size and address for this read. In this example, the request is a burst of
length 4 (8 on the DDR SDRAM side). The local_ready signal is asserted, which
indicates that the controller has accepted this request, and the user logic can
request another read or write in the following clock cycle. If the local ready
signal was not asserted, the user logic must keep the read request, size, and
address signals asserted.

2. The user logic requests a second read to a different address, this time of size 2 (4
on the DDR SDRAM side). The local_ready signal remains asserted, which
indicates that the controller has accepted the request.

3. The user logic requests a third read to a different address, this time of size 1 (2 on
the DDR SDRAM side). The 1local_ready signal remains asserted, which
indicates that the controller has accepted the request.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-23
Interfaces & Signals

4. The controller returns the read data for the first request by asserting the
local_rdata_valid signal. The exact number of clock cycles between the
controller accepting the request and returning the data depends on the number of
other requests pending in the controller, the state the memory is in, and the timing
requirements of the memory (e.g., the CAS latency).

5. The controller returns the read data for the subsequent read requests.

Read-Write-Read-Write

Figure 3-15 on page 3-23 shows a sequence of interleaved reads and writes.

Figure 3—-15. Read-Write-Read-Write

nre2 3] 4] 5] [6]

Local Interface
local_read_req

local_write_req

local_ready : : : : : : : : : : : : : :
local_size ~ 0 X 1 X / 0
local_cs_addr (1) — 0 x 2 X 0 x 2 x 0 : : : : :
local_row_addr (1) mxmxmmxoozq 7 dooo /
local_bank addr () 0 T (2 T\ 2 | 7 1 o]
local_col_addr (7) 000;X019;X086;X01A§X 085fx é)OO i i i i i i
ocalrvainn] g\ o] o]]
localrdatavaid | - - i o im0 bl gy
local_rdata ' ' — ' ' ' ' ' — 'XFFDé)X ' ' '
local_wdata_req FJ_\ i i

local wdata 1 DFOB .+ [. & pscb i+ [. 14D9_

DDR SDRAM
Interface

ddresn — & FF . | FBFF(FBYFE] FF. FE[FR(FBY | FF. _[FE] | FF
ddrcke —+ T P
ddra — T | 0000 | J0T430000j00320021] 10000, pi0Cp000j0034] 0000 JOTOA| | 0000
dirba 0 T Ao T 2] o0 [zl ofi) o0 iz | 0

DDR Command ()~ NOP | JACTINOP[RD:JACT| _NOP. |WRNOP[RD| NOF —JWR] | NO
e e I s T s S S s S s S 1
VRN SN SN N SN SN SN N N N N G o

ddr_dgs

Notes to Figure 3-15:

(1) The local cs addr, local row addr, local bank addr, and local col addr signals are a representation of the
local addr signal.

(2) DDR Command shows the command that the command signals are issuing.

1. The user logic requests a read request by asserting the 1ocal_read_req signal
along with the size and address for that read. Because the 1ocal_ready signal is
high, that request can be considered accepted.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-24 Chapter 3: Functional Description
Interfaces & Signals

2. The user logic requests a write, a read, and another write request, which are
accepted.

3. The controller asserts the write data request signal to ask the user logic to present
valid write data and byte enables on the next clock edge.

4. The read data from the first read request is returned and marked as valid by the
read data valid signal.

5. The controller again asserts the write data request for the second write request.

6. The read data from the second read request is returned.

User Refresh Gontrol

Figure 3-16 shows the user refresh control interface. This feature allows you to control
when the controller issues refreshes to the memory. This feature allows better control
of worst case latency and allows refreshes to be issued in bursts to take advantage of

idle periods.

Figure 3—-16. User Refresh Control

ar &AL ‘ o ‘ o ‘ 5

clk

reset.n _ [

Local Interface

local_refresh req __| [v i 1 1 1 & & &]\
local refteshack _ | .\ o o 0 0 L L

DDR SDRAM Interface |

ddrcs.n —FF_)OO FFJOO) | FF__ oo FF
ddrcke T FF
ddra 70000 J0A00 T 0000
ddr_ba 5 —
DDR Command —TNOF —JPCHINOPJARF| | NOF T JARF| | NO
dorcasn T T
ddwen — | —————————————

Note to Figure 3-16:
(1) DDR Command shows the command that the command signals are issuing.

1. The user logic asserts the refresh request signal to indicate to the controller that it
should perform a refresh. The state of the read and write requests signal does not
matter as the controller gives priority to the refresh request (although it completes
any currently active reads or writes).

2. The controller asserts the refresh acknowledge signal to indicate that it has issued
a refresh. This signal is still available even if the user refresh control option is not
switched on, allowing the user logic to keep track of when the controller is issuing
refreshes.

3. The user logic keeps the refresh request signal asserted to indicate that it wishes to
perform another refresh request.

The controller again asserts the refresh acknowledge signal to indicate that it has
issued a refresh. At this point the user logic deasserts the refresh request signal and
the controller continues with the reads and writes in its buffers.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-25
Interfaces & Signals

DDR SDRAM Initialization Timing

“*.® DDRSDRAM and DDR2 SDRAM initialization timing is different. For DDR2 SDRAM
initialization timing, refer to “DDR2 SDRAM Initialization Timing” on page 3-26.

The DDR SDRAM controller initializes the SDRAM devices by issuing the following
memory command sequence:

m NOP (for 200 ms, programmable)
m PCH

m Extended LMR (ELMR)

m LMR

NOP (for 200 clock cycles, fixed)
PCH

ARF

ARF

LMR

Figure 3-17 on page 3-25 shows a typical initialization timing sequence, which is
described below. The length of time between the reset and the first PCH command
should be 200 ms. This time can be reduced for simulation testing by setting the start-
up timer parameter in IP Toolbench.

Figure 3—17. DDR SDRAM Device Initialization Timing

I 3 [el 5] [6]

clk

ddr_cke i :

dora |

ddr_ba |

ddr_cs_n

ddr_ras_n

ddr_cas_n

ddr_we_n

local_init_done :

DDR Command | | | !

Key:
P =PCH
L=LMR
A =ARF
200 clock cycles

1. A PCH command is sent to all banks by setting the precharge pin, the address bit
al10],ora[8] high.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-26

Chapter 3: Functional Description
Interfaces & Signals

An ELMR command is issued to enable the internal delay-locked loop (DLL) in the
memory devices. An ELMR command is an LMR command with the bank address
bits set to address the extended mode register.

An LMR command sets the operating parameters of the memory such as CAS
latency and burst length. This LMR command is also used to reset the internal
memory device DLL. The DDR SDRAM controller allows 200 clock cycles to

elapse after a DLL reset and before it issues the next command to the memory.

A further PCH command places all the banks in their idle state.
Two ARF commands must follow the PCH command.

The final LMR command programs the operating parameters without resetting the
DLL.

The DDR SDRAM controller asserts the local_init_done signal, which shows that
it has initialized the memory devices.

DDR2 SDRAM Initialization Timing

The DDR2 SDRAM controller initializes the memory devices by issuing the following
command sequence:

NOP (for 200 ms, programmable)
PCH

ELMR, register 2
ELMR, register 3
ELMR, register 1
LMR

PCH

ARF

ARF

LMR

ELMR, register 1
ELMR, register 1

Figure 3-18 on page 3-27 shows a typical DDR2 SDRAM initialization timing
sequence, which is described below. The length of time between the reset and the
clock enable signal going high should be 200 ms. This time can be reduced for
simulation testing by setting the start-up timer parameter in IP Toolbench.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description 3-27
Interfaces & Signals

Figure 3-18. DDR2 SDRAM Device Initialization Timing

) 2] 3 3 [[poe] 7] 7] 8] 9]

ddr_ba

ddr_cs_n

ddr_ras_n

ddr_cas_n

ddr_we_n

local_init_done i

DDR Command

Key:
P =PCH 200 clock cycles
L=LMR
A =ARF

1. The clock enable signal (CKE) is asserted 200 ps after coming out of reset.

2. The controller then waits 400 ns and then issues the first PCH command by setting
the precharge pin, the address bit a [10] or a [8] high. The 400 ns is calculated by
taking the number of clock cycles calculated by the wizard for the 200 ps delay and
dividing this by 500. If a small initialization time is selected for simulation
purposes, this delay is always at least 1 clock cycle.

3. Two ELMR commands are issued to load extend mode registers 2 and 3 with
Zeros.

4. An ELMR command is issued to extend mode register 1 to enable the internal DLL
in the memory devices.

5. An LMR command is issued to set the operating parameters of the memory such
as CAS latency and burst length. This LMR command is also used to reset the
internal memory device DLL.

6. A further PCH command places all the banks in their idle state.
7. Two ARF commands must follow the PCH command.

8. A final LMR command is issued to program the operating parameters without
resetting the DLL.

9. 200 clock cycles after step 5, two ELMR commands are issued to set the memory
device off-chip driver (OCD) impedance to the default setting.

The DDR2 SDRAM controller asserts the local_ init_done signal, which shows
that it has initialized the memory devices.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-28

Chapter 3: Functional Description
Interfaces & Signals

Signals

Table 3-7 shows the DDR and DDR2 SDRAM controller system signals.

Table 3-7. System Signals (Part 1 of 2)

Signal Name

Direction

Description

addrcmd_clk

Input

The clock to the address and command output registers. Only
available if Insert extra pipeline registers in the datapath is on. The
addrcmd_clk signal allows you to adjust the address and
command output timing, if required. The addrcmd_c1k signal is
connected to the system clock by default.

capture clk Input Optional clock that can be used instead of DQS to capture read data,
for example in the Stratix side banks.

clk Input System clock.

dgs_delay ctrl([5:0] Input Control bus from the DLL to the DQS pins.

dgsupdate The Stratix Il DLL generates the dgsupdate signal for the DQS pins to
control when the DQS delay chain value can update. Only available if
the interface is on a single side of the device and Insert logic to allow
the DLL to update during the memory refresh period is off.

fedback clock_in Input Fed-back clock input.

postamble clk (1) Input The postamble logic clock, which disables the capture registers before
the end of the DQS read postamble period.

reset n Input System reset, which can be asserted asynchronously but must be
deasserted synchronous to the rising edge of the system clock.

resynch clk (7) Input Clock that resynchronizes read data from the DQS clock domain to the
system clock domain. Typically, you can use the system clock as the
resynchronization clock.

resynch clk edge select Input | Allows you to switch on a second pair of registers, clocked on the

negative edge of the resynchronization clock, immediately after the
resynchronization registers. This feature allows safer transfer of your
resynchronized read data back to the system clock domain, if your
resynchronization clock phase is variable. It is only available in
designs targetting a HardCopy Il device or if a HardCopy Il device is
specified as a companion device in your project. By default, the
example design connects the signal to logic zero, which disables the
extra set of registers.

The resynch_clk edge select is added to HardCopy Il
designs to allow you to safely adjust the resynchronization clock while
still maintaining a safe transfer back to the system clock domain. An
extra set of resynchronization registers are inserted on the opposite
edge and a multiplexer to select which register's output to pass on to
the system clock register (refer to Figure 3-19).

The output of the capture register goes to the resynchronization
register, which may be clocked on the rising edge of a dedicated PLL
output. The extra logic (a falling edge register and a multiplexer) gets
inserted before the system clock register.

You should keep this select signal programmable if your
resynchronization clock phase can be tuned by the PLL
reconfiguration block. If you tie it off to a fixed value, you may limit the
range across which you can adjust your resynchronization clock.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 3: Functional Description
Interfaces & Signals

3-29

Table 3—-7. System Signals (Part 2 of 2)

Signal Name

Direction Description

write clk

Input Shifted clock that center aligns write data to the memory.

dgs_ref clk

Output | Stratix DLL reference clock output.

fedback clock out

Output | Fed-back clock output.

stratix dll_control

Output | Disables the Stratix DLL reference clock during reads.

Note to Table 3-7:

(1) This signal only exists on the custom variation when a dedicated clock phase is required, otherwise the connection is made inside the custom

variation.

Figure 3-19. Circuit for resynch_clk_edge_select

Register

Capture Resynchronization
Register

\ 4

Piveli local_rdata
Extra Multiplex |—> R;peis':‘:r >
Resynchronization > 9

»

Register

Table 3-8 shows the DDR and DDR2 SDRAM controller local interface signals.

Table 3-8. Local Interface Signals (Part 1 of 2)

Signal Name Direction Description

local addr/[] Input Memory address at which the burst should start. The width of this bus is sized
using the following equation:
For one chip select:
width = bank bits + row bits + column bits — 1
For multiple chip selects:
width = chip bits + bank bits + row bits + column bits — 1
The least significant bit (LSB) of the column address on the memory side is
ignored, because the local data width is twice that of the memory data bus
width.
The order of the address bits is set in the clear text part of the MegaCore
function (auk_ddr_sdram.vhd). The order is chips, bank, row, column, but
you can change it if required.

local bel] Input Byte enable signal, which you use to mask off individual bytes during writes.

local burstbegin Input Avalon-MM burst begin strobe, which indicates the beginning of an Avalon-
MM burst. This signal is only available when the local interface is an Avalon-
MM interface and the memory burst length is greater than 2.

local read req Input Read request signal.

local refresh reqg Input User controlled refresh request. If User Controlled Refresh is turned on,

local refresh regq becomes available and you are responsible for
issuing sufficient refresh requests to meet the memory requirements. This
option allows complete control over when refreshes are issued to the memory
including ganging together multiple refresh commands. Refresh requests take
priority over read and write requests unless they are already being processed.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

3-30

Chapter 3: Functional Description
Interfaces & Signals

Table 3-8. Local Interface Signals (Part 2 of 2)

Signal Name

Direction

Description

local sizell

Input

The burst size of the requested access, which is encoded as a binary number.
The controller supports maximum local burst lengths of 1, 2, or 4, for DDR
SDRAM:; and 2 for DDR2 SDRAM.

You may request any size up to the maximum burst length, so for example if
you chose a memory burst length of 8, the local burst size is 4 and you may
request local bursts of length 1, 2, 3 or 4. Similarly, if you chose a memory
burst length of 4, the local burst length is 2 and you may request local bursts
of length 1 or 2.

If you chose a memory burst length of 2 (local burst length of 1), the
local size[] portistiedto 1and is not visible on the controller interface.
For all other memory burst lengths, local size is available.

local wdatall

Input

Write data bus. The width of Local wdata is twice that of the memory data
bus.

local write reg

Input

Write request signal.

local init done

Output

Memory initialization complete signal, which is asserted once the controller
has completed its initialization of the memory. Read and write requests are still
accepted before local init done is asserted, however they are not
issued to the memory until it is safe to do so.

local rdatall

Output

Read data bus. The width of local rdata is twice that of the memory data
bus.

local rdata valid

Output

Read data valid signal. The local rdata_ valid signal indicates that
valid data is present on the read data bus. The timing of

local rdata_ valid isautomatically adjusted to cope with your choice
of resynchronization and pipelining options.

local rdvalid in

n Output

An early version of the read data valid signal which appears three cycles before
it. Not present in Avalon-MM mode.

local ready

Output

The local ready signal indicates that the DDR or DDR2 SDRAM
controller is ready to accept request signals. If local ready is asserted in
the clock cycle that a read or write request is asserted, that request has been
accepted. The local ready signal is deasserted to indicate that the DDR
or DDR2 SDRAM controller cannot accept any more requests.

local _refresh ack

Output

Refresh request acknowledge, which is asserted for one clock cycle every time
a refresh is issued. Even if the User Controlled Refresh option is not selected,
local refresh_ ack stillindicates to the local interface that the
controller has just issued a refresh command.

local wdata_req

Output

Write data request signal, which indicates to the local interface that it should
present valid write data on the next clock edge. Not present in Avalon-MM
mode.

Table 3-9 shows the DDR and DDR2 SDRAM interface signals.

Table 3-9. DDR & DDR2 SDRAM Interface Signals (Part 1 of 2) (Note 1)

Signal Name Direction Description
ddr_dql] Bidirectional | Memory data bus. This bus is half the width of the local read and write data
busses.
ddr_dgs|] Bidirectional | Memory data strobe signal, which writes data into the DDR or DDR2 SDRAM and
captures read data into the Altera device.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 3: Functional Description 3-31
Parameters

Table 3-9. DDR & DDR2 SDRAM Interface Signals (Part 2 of 2) (Note 1)

Signal Name Direction Description
clk_to_sdram Output Clock for the memory device.
clk_to_sdram n Output Inverted clock for the memory device.
ddr_al] Output Memory address bus.
ddr bal] Output Memory bank address bus.
ddr cas n Output Memory column address strobe signal.
ddr cke[] Output Memory clock enable signals.
ddr_cs nl] Output Memory chip select signals.
ddr_dm[] Output Memory data mask signal, which masks individual bytes during writes.
ddr_odt Output Memory on-die termination control signal (DDR2 SDRAM only).
ddr ras n Output Memory row address strobe signal.
ddr we n Output Memory write enable signal.

Note to Table 3-9:
(1) You can change the ddr_ signal name prefix in IP Toolbench.

Parameters

The parameters can be set only in IP Toolbench (refer to “DDR & DDR2 SDRAM
Controller Walkthrough” on page 2-9). Table 3-10 shows the global parameters.

Table 3-10. Global Parameters

Parameter Value Units Description
Presets Part — A part number for a particular memory device, module, or the name of an
number or Altera development board. Choosing an entry other than Custom sets many of
custom the parameters in the wizard to the correct value for the specified part. If any

such parameter is changed to a value that is not supported by the specified
device, the preset automatically changes to custom. You can add your own
devices or boards to this list by editing the memory_types.dat file in the
\constraints directory.

Clock speed >75 (1) MHz | The clock frequency used by the memory controller. Because the controller
uses double data rate, the data rate is twice the clock frequency.

Note to Table 3-10:
(1) Depends on the FPGA and the memory device that you choose.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-32

Chapter 3: Functional Description
Parameters

Memory

Table 3-11. Memory Interface Parameters

Table 3-11 shows the memory interface parameters.

Parameter

Value

Units

Description

Data bus width

>8

Bits

The width of your DDR or DDR2 SDRAM data interface. Your local
interface is twice the width of the memory interface. This value
depends on:

m The memory
m Bandwidth requirement
m Number of DDIO pins available on the selected FPGA device

Number of chip selects 1,2,4,0r8

The number of chip selects in your memory interface. This is
equivalent to the depth of your memory in terms of number of
chips. This value depends on the type of memory DIMM selected.
If there are two DIMMs and the memory modules on both DIMMs
have two ranks, the number of chip selects is 4.

Number of chip selects
per DIMM

1or2

The number of chip selects on each DIMM in your memory
system. This option is completely dependent on the type of
external SDRAM that you are using. SDRAMs may come in two
memory chips (called rank) connected in parallel, with only a
unique chip enable signal. This configuration allows the two ranks
to share address and data lines. Selectively asserting only one
chip enable signal at a time, allows twice the memory depth
compared with only a single chip.

If there are two memory chips in the memory module, select 2,
otherwise select 1.

Use dedicated PLL
outputs

On or off

Turn on to use dedicated PLL outputs to generate the clocks,
which is recommended for HardCopy Il devices.

HardCopy Il designs use dedicated PLL outputs for noise
immunity, better signal integrity, and minimal variation over
process, temperature, and voltage.

When turned off, the ALTDDIO megafunction generates the clock
outputs.

Number of clock pairs
from FPGA to memory

1106

The number of differential clock pairs driven from the FPGA to the
memory. More clock pairs reduce the loading of each output.

Table 3-12 shows the memory property parameters.

Table 3-12. Memory Property Parameters (Part1 of 2) (Note 1)
Parameter Range Units Description
Row address bits 10to 14 Bits The number of row address bits for your memory.
Column address bits 81013 Bits The number of column address bits for your memory.
Bank address bits 20r3 Bits The number of bank address bits for your memory.
Precharge address bit 8or10 - The address bit to use as the precharge pin.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 3: Functional Description 3-33
Parameters

Table 3-12. Memory Property Parameters (Part2 of 2) (Note 1)

Parameter Range Units Description

DQ bits per DQS pin 8 Bits The number of data (DQ) bits for each data strobe (DQS) pin. This
option depend on the type of memory selected. Memories either
support x4 or x8 mode. Stratix |l and Stratix Ill devices support

both modes. Cyclone IlI devices do not support the DQS mode, as
the devices do not have the DQS-related circuitry.

Use x4 floorplan files that — — Two sets of recommended pins are provided for use with x4
include DM pins mode (four DQ per DQS) on the sides of Stratix Il devices. If you
do not intend to use the memory DM pins, turn off this control to
give more available pins for your DDR SDRAM interface.

Registered DIMM / — — This option depends on the type of memory selected.
Unbuffered memory

Select Registered DIMM for higher performance systems such as
servers, workstations, routers, and switches. To assure data
integrity, Registered DIMM uses additional devices: one to two
registers to latch address and command signals, and one PLL
clock buffer to adjust timing.

Registered DIMMs have their address and control lines buffered
on the DIMM to reduce signal loading. Because the registered
DIMM requires a buffer, they are more expensive than unbuffered
DIMMSs. Unbuffered DIMMs do not buffer the address lines and
control lines, so they cost less and may be limited in the amount
the system may have installed because of system loading.
However an unbuffered DDR DIMM is able to operate one clock
cycle faster than a registered DIMM.

Note to Table 3-12:
(1) These are set by the device that you choose in the Presets list.

Controller

Table 3-13 shows the local interface options.

Table 3-13. Local Interface

Parameter Range Description

Local Interface Native or Avalon | Specifies the local side interface between the user logic and the memory
controller, refer to “Interface Description” on page 3-19.

This interface refers to the connection of the user logic (driver) to the
controller. There are few differences between the two interfaces in
performing read and write transactions. The Avalon-MM interface is
supported by SOPC builder (refer to the Avalon Interface Specifications).
For non-SOPC builder designs, you can build the driver logic to interface
to the controller with either the native interface (refer to “Interface
Description” on page 3-19) or the Avalon-MM interface.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3-34

Chapter 3: Functional Description
Parameters

Table 3-14 shows the memory initialization options.

Table 3-14. Memory Initialization Options

Parameter Range Units Description
ODT setting Disabled, 50, 75, Q Enables on-die termination (ODT) resistance in the DDR2
or 150 SDRAM and enables dynamic control of it by the controller.
Choosing Disabled disable the on-die termination
resistance in the DDR2 SDRAM. The ddr2_odt control
signals are driven with a fixed value of zero.
Choosing 50, 75, or 150 Qenables a 50-, 75-, or 150-Q
ODT in the DDR2 SDRAM. The ddr2_odt signals enable
and disable the ODT as required.
CAS latency 2.0,2.5,0r3.0 Cycles | The delay in clock cycles from the read command to the
(for DDR first output data from the memory.
SDRAM);
3,4,0r5
(for DDR2
SDRAM)
Burst length 2,4, or8 (for — The number of data transfers between the FPGA and the
DDR SDRAM); memory in each read or write transaction. The number of
4 (for DDR2 transactions on the local interface is half this value.
SDRAM)
Burst type Sequential or — This parameter is a memory Initialization option. Refer to
Interleaved the memory vendor data sheet for the type of read and
writes transactions that it supports.
Controls the order in which data is transferred between
FPGA and memory during a read or write transaction.
Drive strength Normal or — Controls the drive strength of the memory device’s output
Reduced buffers. Reduced drive strength is not supported on all
memory devices.
Memory device DLL enable On or off — When turned on, the DLL within the memory device is

enabled. This parameter is a memory Initialization option
and by default turn on this option. Memory vendors do
provide the option of not using the DLL within the memory,
but it is too difficult to perform memory transactions
without the DLL.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 3: Functional Description
Parameters

3-35

Table 3-15 shows the clocking options.

Tahle 3-15. Clocking Options

Parameter

Description

Enable DQS mode

When turned on, the registers that capture data from the DQ pins during
reads are clocked by a delayed version of DQS. Otherwise, a PLL-
generated clock captures the data (Stratix series only).

DQS mode provides higher performance than non-DQS mode. (refer to
AN 328: Interfacing DDR2 SDRAM with Stratix || Devices).

Only top and bottom banks support DQS circuitry, but non-DQS mode
uses side banks too. (7)

Use non-migratable DQ, DQS, and DM pins

Only Stratix Il devices support this option.

When the option is turned off, there are pins that are common across
the devices in the same family. For example, the pins that are available in
EP25130F1020C3 is also available in EP2S90F1020C3. If you compile a
DDR or DDR2 SDRAM design to an EP2S130F1020C3 device, later you
can easily migrate it to an EP2S90F1020C3 device.

When turned on, the wizard allows much greater flexibility in the
placement of DQ, DQS, and DM pins, but you lose the ability to migrate
the design to a migration device.

Use fedback clock

When turned on, the wizard uses the fedback clock for
resynchronization or capture. This clock eases resynchronization for the
read data for interface speeds > 200 MHz. When you use this clock, the
design uses an additional feedback PLL.

When you turn on both DQS mode and fedback clock mode, IP
Toolbench issues a warning Resynchronization and Postamble settings
must be chosen manually in the Manual Timings pane when using
DQS Fedback Clock mode. Manual control allows you flexibility to
adjust the phase of both the resynchronization clock and postamble
clock. If you do not turn on Manual control, the postamble clock and the
resynchronization clocks are derived from either the system clock or the
write clock.

For more information on fedback clock usage for improving the
performance, refer to Appendix D, Maximizing Performance. (7)

Note to Table 3—-15:

(1) For block diagram of the registers, refer to Figure A-2 and Figure A-4 on page A-6.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

http://www.altera.com/literature/an328.pdf

3-36 Chapter 3: Functional Description

Parameters
Table 3-16 shows the memory controller options.
Table 3-16. Memory Controller Options
Parameter Description
Insert pipeline registers on address and This register helps to achieve the required performance at frequencies >
command outputs 200 MHz. When turned on, the wizard inserts a pipeline register stage

between the memory controller and the command and address outputs.
When this option is turned on an extra cycle (c1k_to sdram) of
latency is added between the time at which Local ready signal is
asserted at the local interface and the time the address or command
appears at the memory interface. Refer to Figure 3-20.

Insert extra pipeline registers in the datapath This option is available only if you turn on Insert pipeline registers on
address and command outputs.

When turned on, the wizard inserts a second pipeline register stage
between the memory controller and the address and command outputs,
which results in an additional cycle (c1k_to_sdram) of latency.
These registers are inserted in the clear-text datapath and the clock to
these registers is available as an input on your variation. These registers
help your design to meet higher internal clock frequency. The clock can
be adjusted if necessary. By default, it is connected to the system clock
and its edge is set by the Clock address/command output registers

on the negative edge option. Refer to Figure 3-20 and Figure 3-21.

Clock address/command output registers on the | When turned on, this option helps in meeting the setup and hold
negative edge requirements of the memory device for command and address with
respect to clock. However, you should perform your own timing
analysis of address/command timing. Generally, turn on this option,
except for Stratix Il designs operating at 200 MHz or higher. Refer to
Figure 3-22

User controlled refresh When turned on, you specify when auto-refresh commands are issued.
Otherwise, the controller issues regular auto-refresh commands at an
interval specified by tREFI, refer to “User Refresh Control” on

page 3—-24.

Figure 3-20 to Figure 3-22 show the additional registers that you can specify with the
following memory controller options:

m A = Insert pipeline registers on address and command outputs
m B = Insert extra pipeline registers in the datapath

m C =Clock address/command output registers on the negative edge

Figure 3-20. Additional Pipeline Registers—A = On, B = On, C= Off

A B Positive Edge
I Address and Command

|7 Output

clk addrcmd_clk

FSM

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description
Parameters

3-37

Figure 3-21. Additional Pipeline Registers—A = On, B = Off, C= On

FSM

I

I

A

|

B Negative Edge
I Address and Command
Output

I
clk

Figure 3-22. Additional Pipeline Registers—A = 0On, B = On, C= On

FSM

A

B

Negative Edge

I Address and Command

clk

L]

addrcmd_clk

9 Output

Table 3-17 shows the DLL reference clock options.

Table 3-17. DLL Reference Clock Options

Parameter

Description

Insert logic to allow the DLL
to update only during the
memory refresh period

On or off

For Stratix devices, Altera recommends you turn on this option to switch
off the DLL during read operations and so reduce jitter. For Stratix Il
devices, Altera recommends you turn on this option only if your memory
interface spans two sides of the device or if you intend to share a DLL
between two or more interfaces on two sides of the device. Refer to “DLL
Configurations” on page 3-16.

Controller Timings

The memory timing parameters on the controller timings tab adjust the controller’s
timing to meet the timing parameters specified in the datasheet for the memory
devices. The Controller Timings tab shows the following three columns of
information:

m Required

m Cycles

m Actual

The Required column specifies the timing requirements from the memory device
datasheet; these requirements can be minimum or maximum times. The values in the
required column are automatically set by your chosen memory device from the
Memory Device list.

The Cycles column specifies the number of cycles that the controller uses to meet
these timing requirements.

The Actual column reports the actual time that the controller uses, based on the
values in the cycles column and the clock speed.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

3-38

Chapter 3: Functional Description
Parameters

For minimum timing requirements, the values in the actual column must be greater
than or equal to the requirement; for maximum timing requirements, the figure in the
actual column must be less than or equal to the requirement. You can choose whether
to set the values in the cycle column or allow the wizard to choose the most
appropriate values.

Table 3-18 shows the memory timing parameters.

Table 3-18. Memory Timing Parameters

Parameter Range Description

Manually choose Onor Off | Turn on, to enter values in the cycles column; turn off and the wizard calculates the

clock cycles values in the cycles column.

trer <65534 Interval between refresh commands (maximum). The controller performs regular
refresh at this interval unless user controlled refresh is turned on (refer to “Controller ”
on page 3-33).

tir <65534 Memory initialization time (minimum). After reset, the controller does not issue any
commands to the memory during this period.

tre 2t05 Precharge command period (minimum). The controller does not access the memory
for this period after issuing a precharge command.

treo 2t05 Active to read-write time (minimum). The controller does not issue read or write
commands to a bank during this time after issuing an active command.

trre 7 1o 31 Auto-refresh command period (minimum). The length of time the controller waits
before doing anything else after issuing an auto-refresh command.

twr 2t05 Write recovery time (minimum). The controller waits for this time after the end of a
write transaction before issuing a precharge command.

tras 41015 Active to precharge time (minimum). The controller waits for this time after issuing an
active command before issuing a precharge command to the same bank.

turo 2103 Load mode register command period (minimum). The controller waits for this time
after issuing a load mode register command before issuing any other commands.

twr 1103 Write to read command delay (minimum). The controller waits for this time after the
end of a write command before issuing a subsequent read command to the same
bank. This timing parameter is specified in clock cycles and so has no entry in the
Required column.

Memory Timings

Table 3-19 shows memory device datasheet settings. IP Toolbench uses these values

t

o perform timing analysis.

Table 3-19. Device Datasheet Settings (Part 1 of 2)

Parameter Units Description
thasa ps The maximum DQS to DQ skew; DQS to last DQ valid, per group, per access.
tans ps The maximum data hold skew factor.
toasck ps The access window of DQS from CK/CK#.
tac ps The access window of DQ from CK/CK#.
tox_max ps The maximum permitted clock cycle time.
tos ps The minimum DQ and DM input setup time relative to DQS.
tou ps The minimum DQ and DM input hold time relative to DQS.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Chapter 3: Functional Description
Parameters

3-39

Table 3—19. Device Datasheet Settings (Part 2 of 2)

Parameter Units Description
toass cycle The minimum write command to first DQS latching transition.
toass cycle The maximum write command to first DQS latching transition.

Board Timings

Table 3-20 shows the pin loading parameters.

Tahle 3-20. Pin Loading

Parameter Units Description

Manual pin load control Onoroff | Turn on or turn off the manual pin load control.

Pin loading on FPGA DQ/DQS pins pF The default capacitive loading on the FPGA DQ/DQS pins is based
on the chosen memory type. You should update this figure if it does
not match your board and memory devices.

Pin loading on FPGA pF The default capacitive loading on the FPGA address/command pins

address/command pins is based on the chosen memory type. You should update this figure
if it does not match your board and memory devices.

Pin loading on FPGA clock pins pF The default capacitive loading on the FPGA clock pins is based on

the chosen memory type. You should update this figure if it does
not match your board and memory devices.

Table 3-21 shows the board trace delay parameters. IP Toolbench uses these values to

perform timing analysis.

Table 3-21. Board Trace Delays

Parameter Units Description

FPGA clock output to memory chip clock ps The nominal or average value of the delay attributable to the board

input, nominal delay traces from the FPGA clock output pin to the memory device clock
input pin.

Memory DQ/DQS outputs to FPGA inputs, ps The nominal or average value of the delay attributable to the board

nominal delay traces from the memory device DQS and DQ clock output pins to the
FPGA input pins in read mode.

Fed-back clock trace, nominal delay ps The nominal or average value of the delay attributable to the board
traces from the FPGA clock output pin to the fed-back clock input
pin. This delay should match the sum of the clock and DQ/DQS trace
lengths.

Tolerance on nominal board delays + % The tolerance on the nominal board trace delays. This tolerance
should take into account any variability between individual boards,
due to temperature or voltage, and different trace lengths to different
memory devices in your system.

Worst trace skew between DQS/DQ/DM in ps The worst case skew with respect to DQS and any other DQ or DM

any one data group signal in any one byte group between any one memory device and
the FPGA.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

3-40

Chapter 3: Functional Description
Parameters

Project Settings

Table 3-22 shows the example design options.

Table 3-22. Example Design Options

Parameter

Description

Update the example design
file that instantiates the
controller variation

When this option is turned on, IP Toolbench parses and updates the example design file. It
only updates sections that are between the following markers:

<<START MEGAWIZARD INSERT <tagname>
<<END MEGAWIZARD INSERT <tagname>

If you edit the example design file, ensure that your changes are outside of the markers or
remove the markers. Once you remove the markers, you must keep the file updated, because
IP Toolbench can no longer update the file.

When you turn on this option, IP Toolbench updates the example testbench and the ModelSim
simulation script.

Automatically apply
datapath-specific contraints
to the Quartus Il project

When this option is turned on, the next time you compile, the Quartus Il software
automatically runs the add constraints script. Turn off this option if you do not want the script
to run automatically

Automatically verify
datapath-specific timing in
the Quartus Il project

When this option is turned on, after every compilation the Quartus Il software automatically
runs the verify timing script. Turn off this option if you do not want the script to run
automatically.

Update the example design
PLLs

When this option is turned on, IP Toolbench automatically overwrites the PLLs.Turn off this
option, if you do not want the wizard to overwrite the system PLL or the optional fed-back
PLL.

Table 3-23 shows the variation path options.

Table 3-23. Variation Path Options

Parameter

Description

Enable hierarchy control

The constraints script analyzes your design, to automatically extract the hierarchy to your
variation. To prevent the constraints script analyzing your design, turn on Enable hierarchy
control, and enter the correct hierarchy path to your datapath.

Hierarchy path to your
custom variation

The hierarchy path is the path to your DDR or DDR2 SDRAM datapath, minus the top-level
name. The hierarchy entered in the wizard must match your design, because the constraints
and timing scripts rely on this path for correct operation.

Table 3-24 shows the device pin prefixes and names options.

Tahle 3-24. Device Pin Prefixes & Names Options

Parameter

Description

Pin name of the clock
driving the memory (+)

The suggested c1k_to_sdram pin name, which you may edit, but must end in [0].

Pin name of the clock
driving the memory (-)

The suggested c1k to sdram_n pin name, which you may edit, but must end in [0].

Pin name of fed-back clock
input

The suggested fedback _clock_in pin name, which you may edit.

Pin prefix all pins on the
devices with

This string is used to prefix the pin names for the FPGA pins connected to the DDR or DDR2
SDRAM.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Chapter 3: Functional Description 3-41
MegaCore Verification

Manual Timings
The manual timing settings do not need to be changed under normal circumstances.

For more information on the manual timing settings, refer to “Manual Timing
Settings” on page A-1.

MegaCore Verification

MegaCore verification involves simulation testing and hardware testing.

Simulation Testing

Altera has carried out extensive random, directed tests with functional test coverage
using industry-standard Denali models to ensure the functionality of the DDR and
DDR2 SDRAM controller. In addition, Altera has carried out a wide variety of gate-
level tests of the DDR and DDR2 SDRAM controllers to verify the post-compilation
functionality of the controllers.

Hardware Testing

Table 3-25 shows the Altera development boards on which Altera hardware tested
the DDR and DDR2 SDRAM controllers.

Table 3-25. Altera Development Boards

Development Board Altera Device Memory Device

Stratix Il High-Speed 10 Development Board | EP2S60F1020C3 Micron DDR2-533 DIMM (MT8HTF3272AG-
53EB3ES)

Stratix 1l PCI Development Board EP2S60F1020C3 Infineon DDR400 SO-DIMM
(HYS64D32020GDL-5-B)

Stratix PCI Development Board EP1S25F1020C5 Infineon DDR400 SO-DIMM
(HYS64D32020GDL-5-B)

Stratix PCI Development Board, Professional | EP1S60F1020C6 Micron DDR333 SO-DIMM

Edition (MT8VDDT3264HG-335C2)

Stratix GX High-Speed Development Board EP1SGX25FF1020C6ES Micron DDR400 DIMM
(MT16VDDT3264AG-40BB5)

Internal Stratix Memory Test Board EP1S25F780C5 Micron DDR400 DIMM
(MT16VDDT3264AG-40BB5)

Nios Development Board, Cyclone I EP2C35F672C6 Micron 128-Mbit DDR-333 device

(EP2C35) (MT46V16M16-6T)

Cyclone Il EP2C35 PCI Development Board EP2C35F672C6 Micron 256-Mbit DDR2-533 device
(MT47H16M16BG-37E)

Cyclone 1l EP2C35 DSP Development Board | EP2C35F672C6 Micron DDR2-533 DIMM (MT8HTF3264AY-
40EB3)

Cyclone Memory Board EP1C6Q240C6 Micron 128-Mbit DDR266 device
(MT46V8M16-75)

Internal Cyclone Memory Test Board EP1C20F400C6 Micron DDR266 DIMM
(MT16VDDT3264AG-265B1)

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

3-42 Chapter 3: Functional Description
MegaCore Verification

Table 3-26 shows the non-Altera development boards on which Altera hardware
tested the DDR and DDR2 SDRAM controllers.

Tahle 3-26. Non-Altera Development Boards (Note 1)

Development Board Altera Device Memory Device

Cyclone Twister Board EP1C6Q240C6 Micron 128-Mbit DDR266 device
(MT46V8M16-752)

Note to Table 3-26:
(1) For more information on the Cyclone Twister board, refer to www.fpga.nl.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

www.fpga.nl

/NO[EF

A. Manual Timing Settings

Parameters

Table A—-1 shows the resynchronization options.

For more information on the resynchronization options, refer to “Resynchronization”
on page A-4).

Table A-1. Resynchronization Options (Part 1 of 2)

Parameter

Description

Reclock resynchronized data
to the positive edge

Automatic, Always, or Never

When this option is set to “Always” the wizard inserts a set
of positive edge system clock registers in the read data path
and delays the read data valid signal appropriately. The extra
registers are useful if you are resynchronizing with a phase
other than the positive edge of the system clock, but at the
expense of a clock cycle of latency. Choosing Never
produces lower latency. However, it is then your
responsibility to reclock the read data to the positive edge of
the system clock. When this option is set to Automatic, the
wizard decides whether or not to insert the extra set of
registers based on the choice of resynchronization edge and
system clock.

When the resynchronization clock phase is close to the
positive edge of the system clock, this option inserts an
additional set of registers, clocked on the negative edge of
system clock, between the resynchronization clock domain
and the system clock domain.

data in cycle

Manual resynchronization On or off Turn on to specify the details of the resynchronization clock.

control Otherwise, the details are calculated automatically based on
system timing. You must turn on this option when you turn
on the DQS mode and the fedback PLL options.

Resynchronize captured read |0to 6 The number of cycles of delay to allow for the round trip

delay.

Resynchronization clock
setting

0 (c1k, rising edge),

90 (write_clk, falling
edge),

180 (c1k, falling edge)

270 (write_c1k, rising
edge), or

dedicated

Defines which clock to use for resynchronization: the system
clock, the write clock (a 90° advanced version of the system
clock), or a dedicated resynchronization clock. Also defines
which edge of the chosen clock to use to resynchronize the
captured data. If you select falling edge, the data path
automatically inserts inverters on the clock inputs to the
resynchronization registers.

When the resynchronization clock is set to either the system
clock or the write clock, you cannot alter the phase of the
resynchronization clock. To alter the resynchronization phase
clock, select the resynchronization clock as dedicated and
set the required phase.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM CGontroller Compiler User Guide

A-2

Parameters

Table A-1. Resynchronization Options (Part 2 of 2)

Parameter

Description

Dedicated clock phase

0to 359

This parameter is available only when you select Dedicated
for the Resynchronization clock setting. You can enter the
phase of the dedicated resynchronization clock for timing
analysis. IP Toolbench uses this value to set up the PLL
phase shift.

Fed-back clock phase

0 to 359

Allows you to enter the phase of the fed-back clock that is
used for timing analysis. IP Toolbench uses this value to set
up the PLL phase shift.

Insert intermediate
resynchronization registers

On or off

When turned on, an extra pipeline register, clocked on the
negative edge of system clock, is inserted in the read path
after the resynchronization registers. Turn on when the
resynchronization clock is too close to the system clock for
reliable transfer between them. Refer to “Intermediate
Resynchronization Registers” on page A-10.

Table A-2 shows the postamble options (DQS mode only).

page A-10).

Table A-2. Postamble Options (Part 1 of 2)

<o For more information on the resynchronization options, refer to “DQS Postamble” on

Parameter

Description

Manual postamble control

On or off

Turn on to specify the details of the postamble logic clock
and to set the postamble clock phase manually. Otherwise,
the details are calculated automatically based on system
timing.

This option is only available when you turn on Enable DQS
Mode in the controller settings tab.

Enable DQS postamble logic

On or off

When turned on, the postamble logic is used. If the
postamble logic is not used, there is a possibility of data loss
in the last transfer of each read burst.

Turn on to use the postamble logic. Turn off to remove the
postamble logic from the design (refer to Figure 3—4 on
page 3-9 to Figure 3—7 on page 3-12). When you turn off
the postamble logic you may see data loss in the last transfer
of each burst read. If you turn off this option, you must
ensure the read capture occurs correctly.

Insert intermediate
postamble registers

On or off

When turned on, the doing rd delayed signalis
generated using the positive edge of the system clock and
when turned off, doing rd_delayed is generated using
the negative edge of the system clock. Turn on when the
negative edge of the system clock is too close to the positive
edge of the postamble clock. Refer to “Intermediate
Postamble Registers” on page A-12.

Postamble cycle

0to6

The number of cycles of delay to allow for round-trip delay.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Parameters

A-3

Table A-2. Postamble Options (Part 2 of 2)

Parameter

Description

Postamble clock setting

0 (c1k, rising edge),

90 (write_clk, falling
edge),

180 (c1k, falling edge)

270 (write_ clk, rising
edge), or

Selects which clock to use for the postamble logic: the
system clock, the write clock (a 90° advanced version of the
system clock), or a dedicated postamble clock. Also defines
which edge of the chosen clock to use for the postamble
logic. If you select falling edge, the data path automatically
inserts inverters on the clock inputs to the postamble control
registers.

matching buffers

dedicated
Dedicated clock phase 0to 359 Allows you to enter the phase of the dedicated postamble
clock that is used for timing analysis. IP Toolbench uses this
value to set up the PLL phase shift.
Number of DQS delay Oto8 Inserts the chosen number of delay buffers on the undelayed

DQS in Stratix devices. Insert delay buffers when you are
using low frequencies, to ensure that the capture registers
are not disabled too early.

Table A-3 shows the capture options (non-DQS mode only).

Table A-3. Capture Options

Parameter

Description

Manual capture control

On or off

Turn on to specify the details of the clock used for the
capture logic. Otherwise, the details are calculated
automatically based on system timing, “DQS Postamble” on
page A-10.

Capture setting

0 (c1k, rising edge),

90 (write_ clk, falling
edge),

180 (c1k, falling edge)

270 (write_ clk, rising
edge), or

dedicated

Selects which clock to use for the capture logic: the system
clock, the write clock (a 90° advanced version of the system
clock), or a dedicated capture clock. Also defines which edge
of the chosen clock to use for the capture logic. If you select
falling edge, the data path automatically inserts inverters on
the clock inputs to the capture registers.

Dedicated clock phase

0to 359

Allows you to enter the phase of the dedicated capture clock
that is used for timing analysis. IP Toolbench uses this value
to set up the PLL phase shift.

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

A-4

Resynchronization

Table A—4 shows the timing analysis options.

Table A-4. Timing Analysis Options

Parameter

Description

Use the results of the last compile to estimate the setup and
hold margins

Turn on to achieve a better estimate of the setup and hold
margins your design is likely to achieve. It also allows the
wizard to pick more accurate phases for the
resynchronization, postamble, and capture clocks. You must
successfully compile your design and run the verify timing
script to generate the necessary updated estimates file,
before you can use this option.

Resynchronization

Resynchronization is the process of transferring data from the read DQS clock domain
back to the system clock domain. The phase relationship of DQS to the system clock
can be calculated for your specific hardware setup and depends on the round trip
delay. The round trip delay is the time it takes for the read command to reach the
memory and for the read data to return to and be captured into the Altera device.

The DDR and DDR2 SDRAM Controller Compiler provides a variety of
resynchronization clocking schemes. The wizard automatically chooses the best
scheme for your system based on the parameters that you enter. The data is
transferred from the read DQS clock domain to a resynchronization clock domain
before final transfer to the system clock domain. The resynchronization clock can be
the positive or negative edge of either the system clock or the write clock. If safe
resynchronization cannot be guaranteed using one of these four phases, a separate
output of the phase-locked loop (PLL) is used as the resynchronization clock. If the
resynchronization clock phase is close to the positive edge of the system clock, an
additional set of registers, clocked on the negative edge of system clock, is inserted
between the resynchronization clock domain and the system clock domain.

You can choose to have the read data at the output of the DDR or DDR2 SDRAM
controller (Local rdata) reclocked to the positive edge of the system clock domain
by turning on Reclock resynchronized data to the positive edge on the Manual
Timing tab of the wizard. If you do not turn it on, the output data is clocked by the
resynchronization clock and it is your responsibility to transfer it to the system clock

domain.

If you wish to specify your own resynchronization clock instead of using the
automatically selected one, you can do so on the Manual Timing tab of the wizard. If
you require more control than is available on the Manual Timing tab, you can modify
the example design created by the wizard to connect the resynchronization clock to

any clock source.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Resynchronization

A-5

Resynchronization Registers

Figure A-1 shows the resynchronization registers.

Figure A-1. Resynchronization Registers

Intermediate resynchronization registers
(see Note 1)

Capture registers

A

local_rdata
o
1 | l
PLL clk \ {>c
resynch_clk 90°

Reclock resynchronized data
to rising edge registers
(see Note 2)

M Clocked by delayed DQS Clock
[Clocked by Resynchronization Clock
Clocked by System Clock

Notes to Figure A-1:

(1) IP Toolbench automatically inserts the intermediate resynchronization registers, depending on your choice of resynchronization phase.

(2) IP Toolbench automatically inserts these registers if the design needs them.

Resynchronization registers

DQ

DQS

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

A-6

Resynchronization

Figure A-2. Resynchronization Registers—Stratix Il Devices with Fed-back Resynchronization

Figure A-2 shows the resynchronization registers for Stratix I devices with DQS
capture and optional fed-back clock (refer to Table 3-15 on page 3-35).

Fed-back PLL
(Optional)

fedback_
resynch_clk

Intermediate resynchronization registers

(see Note 1) Capture registers
local_rdata DQ
— 00—
e '
PLL clk \ {>¢
resynch_clk DQS

Notes to Figure A-2:

Reclock resynchronized data Resynchronization registers
to rising edge registers
(see Note 2)

Il Clocked by Fed-back Clock

M Clocked by delayed DQS Clock

[Clocked by Resynchronization Clock
Clocked by System Clock

(1) IP Toolbench automatically inserts the intermediate resynchronization registers, depending on your choice of resynchronization phase.
(2) IP Toolbench automatically inserts these registers if the design needs them.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

A-7
Resynchronization

Figure A—4 shows the resynchronization registers for Stratix II series (non-DQS
mode).

Figure A-3. Resynchronization Registers—Stratix Series, Non-DQS Mode

Intermediate resynchronization registers

(see Note 1) Capture registers
local_rdata DQ
— 00—
| : l
PLL clk \
resynch_clk
capture_clk

Reclock resynchronized data Resynchronization registers
to rising edge registers
(see Note 2)

B Clocked by Capture Clock
[Clocked by Resynchronization Clock
Clocked by System Clock

Notes to Figure A-3:
(1) IP Toolbench automatically inserts the intermediate resynchronization registers, depending on your choice of resynchronization phase.
(2) 1P Toolbench automatically inserts these registers if the design needs them.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

A-8

Resynchronization

Figure A—4 shows the resynchronization registers for Stratix I devices with fed-back
capture (refer to Table 3-15 on page 3-35).

Figure A-4. Resynchronization Registers—Stratix Il Devices with Fed-back Capture

Fed-back PLL
(Optional)

capture_clk

Intermediate resynchronization registers

(see Note 1)

Capture registers

DQ

local_rdata
— 00—
] : l
PLL clk \
resynch_clk

€/7

Notes to Figure A-4:

Reclock resynchronized data
to rising edge registers
(see Note 2)

B Clocked by Capture Clock
[Clocked by Resynchronization Clock
Clocked by System Clock

Resynchronization registers

(1) IP Toolbench automatically inserts the intermediate resynchronization registers, depending on your choice of resynchronization phase.

(2) IP Toolbench automatically inserts these registers if the design needs them.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

A-9
Resynchronization

Table A-5 shows the manual resynchronization parameters.

Table A-5. Manual Resynchronization Parameters

Cycle Clock Edge Phase (°)
0,1,2,3,4,56 clk Rising 0(17)
write clk Falling 90
clk Falling 180
write clk Rising (2) 270

Notes to Tahle A-5:

(1) Resynchronization cycle 0 phase 0 is defined as the first rising edge of c1k capable of
resynchronizing the read data for CAS latency = 2.

(2) Use the intermediate resynchronization option to guarantee timing between the
resynchronization registers and registers on the system clock.

Figure A-5 on page A-9 shows an example of how to choose the best manual
resynchronization phase. In this example the best resynchronization phase is cycle =
0, phase = 270°, and the rising edge of write_clk.

This example is for CAS latency = 2. For CAS latency = 2.5, add 180° to the
resynchronization phase; for CAS latency = 3, add 1 cycle to the resynchronization
cycle.

Figure A-5. Choosing the Best Resynchronization Phase

write_clk

dgs (90° shifted)

Theoretical Q Output :
of DQ Capture Register H X
(see Note 1)

H/L

|<_>| Thedretical Round Trip Delay

Actual Data Validat | i
D Input of Resynchronization X H/L ><

Register (see Note 1) : : :
Safe Resynchronization Window H——H

Resynchronization

Grce

Resynchronization
Phase

‘o 270 ‘o i180

Best Resynchronization Phase

Note to Figure A-5:
(1) Figure 3—4, Figure 3-5, and Figure 3-6 on page 3-9 show these registers.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

A-10
DQS Postamble

Intermediate Resynchronization Registers

Figure A—6 shows the time available to latch the data from the resynchronization
registers, T1. This time T1 may not be sufficient to latch the data properly. If the
negative edge of the system clock latches data, there is time T2 to latch the
resynchronized data. To latch the data with the negative system clock edge, turn on
Insert an intermediate resynchronization register (refer to Figure A-7).

Figure A-6. Time Between Resynchronization and System Clock
Resynchronization r—] ﬁ
Clock i :
System Clock ‘

—> «———T1

— «— T2

Figure A-7. Inserting an Intermediate Resynchronization Register

Resynchronization

Clock | |7

System Clock

Intermediate
Register

Resynchronization _|
Clock

System Clock

DQS Postamble

The DDR and DDR2 SDRAM DQ and DQS pins use the SSTL I/O standard. When
neither the FPGA nor the SDRAM device are driving the DQ and DQS pins, the
signals go to a high-impedance state. Because a pull-up resistor terminates both DQ
and DQS to Vy; the effective voltage on the high-impedance line is V1. According to
the specification for the SSTL 1/O standard, this state is an intermediate logic level
and the input buffer may interpret it as either a logic high or logic low. If there is any
noise on the DQS line, the input buffer may interpret the noise as strobe edges.

When the DQS signal transitions to a high-impedance state after a read postamble,
you must disable the DQS capture registers. This action ensures the captured data is
not corrupted before it is successfully resynchronized.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

DQS Postamble

A-11

Postamble Logic

The DDR and DDR2 SDRAM Controller Compiler provides this DQS postamble logic.
IP Toolbench automatically chooses the best postamble logic clocking scheme for your
system based on the parameters that you enter. The postamble clock can be the
positive or negative edge of either the system clock or the write clock. If a safe
postamble cannot be guaranteed using one of these four phases, a separate output of
the PLL is used as the postamble clock. If the postamble clock phase is close (<90°) to
the positive edge of the system clock, an alternative postamble control
synchronization scheme is used.

Figure 3-4 through Figure 3-6 on page 3-11 show the postamble logic. For Stratix
devices, the dg_enable register clocked by the DQS signal is placed in an LE close to
the associated DQ group to drive their input clock enables. The data input to the
dg_enable register is set to GND, and the preset is connected to logic generated by
the controller. The postamble logic ensures that the register is released from preset
prior to the last active negative edge of DQS, so that the dg_enable signal goes low
with the last active negative edge of DQS. The input clock enable is therefore disabled
before DQS transitions to high-impedance at the end of the DQS read postamble.

You can specify your own postamble clock instead of using the automatically selected
one, on the Manual Timing tab of the wizard. Also, you can disable the DQS
postamble logic completely, on the Manual Timing tab of the wizard.

DQS postamble logic is not required for DDR and DDR2 SDRAM if you are using a
dedicated read data capture clock (non-DQS mode). As such, in non-DQS mode the
wizard disables the DQS postamble logic.

Table A—6 shows the manual postamble parameters.

Table A-6. Manual Postamble Parameters

Cycle Clock Edge Phase (°)
0,1,2,3,4,5,6 |clk Rising 0(17)
write_clk Falling 90
clk Falling 180
write_clk Rising (2) 270

Notes to Tahle A-6:

(1) Postamble cycle 0 phase 0 is defined as the first rising edge of clk capable of generating the postamble enable
preset signal for CAS latency = 2.

(2) Use the intermediate postamble option to guarantee timing

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

A-12
DQS Postamble

Figure A-8 shows an example of how to choose the best postamble phase. In this
example the best postamble phase is cycle = 0, phase = 270°, and the rising edge of
write clk.

This example is for CAS latency = 2. For CAS latency = 2.5, add 180° to the
calculation; for CAS latency = 3, add 1 cycle.

Figure A-8. Choosing the Best Postamble Phase

write_clk

dq

dgs (90° shifted)

Theoretical Postamble \
Preset Enable Window : :

'4—>| Theoretical Round Trip Dejay

Actual Postamble Y
Preset Enable Window : : I
Safe Postamble Window |«¢—————— |
Postamble : H :
Cycle : 0 : i : 2
Postamble ‘0 1180 ‘0 1180
Phase : : : : :

7

Best Postamble Phase

Intermediate Postamble Registers

Figure A-8 shows the postamble clock phase close to the negative edge of the system
clock and the time available for the register to latch the doing rd delayed signalis
T1. If the time T1 is not sufficient to latch the data properly, clock the register that
outputs doing rd_delayed signal with the positive edge of the system clock,
which is time T2 to latch the doing_rd_delayed data and is larger than T1. To latch
the data with the positive edge of the system clock, turn on Insert an intermediate
postamble register (refer to Figure A-9).

Figure A-9. Time Between Postamble and System Clock
Postamble r
Clock l :
System Clock |

— > «——T1

— «— T2

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

A-13
Examples

Figure A-10. Inserting an Intermediate Postamble Register

resynched_data inter_rdata
dqg_capture fedback_resynched_data inter_rdata
dq D Q D Q D Q D Q D Q|—
|; _O
das —>— _
resynch_clk
[
Q@ Db ‘Ha D Q D
Fedback Fedback System ok Present when
Clock Input PLL PLL | Jostamble clk Intermediate Postamble
Register is On
Examples

Example A-1 and Example A-2 show the generated PLLs and the PLL outputs for the
following options:

m Use fedback clock = On

® Manual resynchronization control = On

B Resynchronization clock setting = Dedicated
m Manual postamble control = On

m Postamble clock setting = Dedicated

Example A-1. System PLL and Clock Outputs

ddr pll stratixii g stratixpll ddr pll inst
(
.c0 (clk),
.cl (write clk),
.c2 (dedicated resynch or capture clk),
.inclk0 (clock source)
)i

Example A-2. Fedback PLL and Clock Outputs

ddr pll fb stratixii g stratixpll ddr fedback pll inst
(
.c0 (fedback resynch clk),
.cl (dedicated postamble clk),
.inclk0 (fedback clk in)
)i

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

A-14
Examples

Example A-3 and Example A—-4 show the top-level design files with a dedicated
resynchronization clock and a derived clock from either the write clock or the system
clock.

In Example A-3, the top-level design includes the resync_clk.

Example A-3. Top-Level Design File (Dedicated Resynchronization Clock)

ddr2_ top ddr2 top ddr sdram
(
.clk (clk),
.clk_to sdram (unused clk),
.clk_to sdram n (unused clk n),
.ddr2_a (ddr2 a),
.ddr2 ba (ddr2 ba),
.ddr2_cas n (ddr2_cas_n),
.ddr2 cke (ddr2 cke),
.ddr2 cs n (ddr2 cs n),
.ddr2_dm (ddr2_dm[3 : 0]),
.ddr2 dg (ddr2 dq),
.ddr2_dgs (ddr2_dgsl[3 : 0]),
.ddr2_odt (ddr2_odt),
.ddr2_ras n (ddr2_ras_n),
.ddr2 we n (ddr2 we n),
.dgs_delay ctrl (dgs_delay ctrl),
.dgsupdate (dgsupdate),
.fedback clk out (fedback clk out),
.fedback_resynch_clk (fedback resynch clk),
.local addr (ddr2 local addr),
.local be (ddr2 local be),
.local _init done (),
.local rdata (ddr2 local rdata),
.local rdata valid (ddr2 local rdata valid),
.local_rdvalid in n (),
.local read req (ddr2 local read req),
.local ready (ddr2 local ready),
.local _refresh ack (),
.local_size (ddr2_ local_size),
.local wdata (ddr2 local wdata),
.local wdata req (ddr2_ local wdata_ req),
.local write req (ddr2 local write req),
.postamble clk (dedicated postamble clk),
.reset_n (reset_n),
.resynch clk (dedicated resynch or capture clk),
.stratix dll control (stratix dll control),
.write clk (write clk)

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Examples

A-15

Example A—4 shows the top-level example design file with the resynchronization
clock derived from either the write clock or the system clock.

L=~ The top-level design does not contain the resync_clk

Example A-4. Top-Level Design File (Derived Resynchronization Clock)

ddr2_ top ddr2 top ddr sdram

(

.clk (clk),

.clk_to sdram (unused clk),

.clk_to sdram n (unused clk n),

.ddr2_a (ddr2_a),

.ddr2 ba (ddr2 ba),

.ddr2_cas n (ddr2_cas_n),

.ddr2 cke (ddr2 cke),

.ddr2 cs n (ddr2 cs n),

.ddr2_dm (ddr2_dm[3 : 0]),

.ddr2_dq (ddr2_dq),

.ddr2_dgs (ddr2_dgs[3 : 0]),

.ddr2_odt (ddr2_odt),

.ddr2 ras n (ddr2 ras n),

.ddr2 we n (ddr2 we n),

.dgs_delay ctrl (dgs_delay ctrl),
.dgsupdate (dgsupdate),

.fedback clk out (fedback clk out),
.fedback_resynch_clk (fedback resynch clk),
.local addr (ddr2 local addr),

.local be (ddr2 local be),

.local _init done (),

.local rdata (ddr2 local rdata),

.local rdata valid (ddr2 local rdata valid),
.local_rdvalid in n (),

.local read req (ddr2 local read req),
.local ready (ddr2 local ready),

.local _refresh ack (),

.local size (ddr2 local size),

.local wdata (ddr2 local wdata),

.local _wdata reqg (ddr2_ local wdata_ req),
.local write req (ddr2 local write req),
.postamble clk (dedicated postamble clk),
.reset_n (reset_n),

.stratix dll control (stratix dll control),
.write clk (write clk)

© March 2009 Altera Corporation

DDR and DDR2 SDRAM Controller Compiler User Guide

A-16
Examples

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

fAN ERA B. DDR SDRAM on the Nios Development
= o Board, Cyclone Il Edition

This appendix walks you through the procedure for using the Altera DDR SDRAM
Controller MegaCore function with the Nios® II processor and SOPC Builder. To
ensure that you create a reliable working system, follow these steps:

1. In SOPC Builder, when adding a DDR SDRAM component for a system with the
Nios Development Board, Cyclone™ II Edition, use the specific IP Toolbench
preset. All other wizard settings are then correct.

=" You may have to change some signal names (refer to step 6).

2. During the generation of an SOPC Builder system that contains a DDR SDRAM
controller component, SOPC Builder creates a PLL source file (.v or .vhd) and a
symbol file (.bsf) to synthesize the DDR SDRAM clocks. The PLL source and
symbol file names are ddr_pll_cycloneii. This PLL must be instantiated at the top
level of the design and should drive the DDR write_clk signal and the main
system clock. The c1 output of the PLL has a 270° phase shift and is the PLL
output that you should connect to the DDR SDRAM controller’s write clk.

['=" Use the same PLL to drive both the DDR SDRAM write clock and the system clock, to
reduce clock skew between the two clocks. Figure B-1 shows an example of how you
should connect the PLL in a top-level schematic for an SOPC Builder system that
contains a DDR SDRAM controller and two system clocks.

Figure B-1. Example of DDR SDRAM PLL Connections

ddr_pll_cycloneii i
KO incik frequency: 50.000 Mz s p e R R R R EEREFEEEERE SRR
Operation Mode: Normal cl S G a6 6 060N00I00000 060000
€2
Clk |Ratio|Ph (d2)]DC (%) = Rl |6 |5 |86 6660 aconb0a0aabac0n0ba:
<0 | 95 | 0.00 | 50.00 n S S S S S S S R
o1 | 945 |270.00] 50.00 Aol
o2 | 11] 0.00 | 5000 Aol
inst3 Tyclone l 1 Lo
JEEE e e o | R - istandard 2¢35
S S S S S50 Iy i i K S [N
::::::::::1:::::::::::::::::_'”“’r\? | ek ck 90
.............................. reset_n
Ll sl oo
...................................... . Injon_tu_the_bmonjlo[3 UI
oriiiiioiiiiiioiiiiiiiiiioiiiiioiiiii Ll e, ok o the ddr sdram

© March 2009 Altera Corporation DDR and DDR2 SDRAM CGontroller Compiler User Guide

3. The DDR SDRAM device on the Nios Development Board, Cyclone II Edition, has
a minimum operating frequency of 77 MHz. So your design must have an fyx
greater than or equal to 77 MHz to use the DDR SDRAM. If a Quartus II
compilation of your system results in an fy;4x less than 77 MHz, turn on some of the
following Quartus II optimizations to increase the fy;,x:

a. Change the optimization technique to speed:
m Choose Settings (Assignments menuy).
m Choose Analysis & Synthesis Settings.
m In Optimization Technique, select Speed.
b. Turn on one-hot state machine processing:
m Choose Settings (Assignments menuy).
m Choose Analysis & Synthesis Settings.
m For State Machine Processing, choose One-Hot.
c. Turn off multiplexer restructuring:
m Choose Settings (Assignments menuy).
m Choose Analysis & Synthesis Settings.
m For Restructure Multiplexers, choose Off.
d. Turn on physical synthesis in the fitter:
m Choose Settings (Assignments menuy).
m Expand Fitter Settings by clicking the + symbol.
m Choose Physical Synthesis Optimizations.
m Turn on Perform physical synthesis for combinational logic.
m Turn on Perform register duplication.
m Turn on Perform register retiming.
m For Physical synthesis effort, select Normal.
4. When you have made these settings, save the project and recompile the design in

the Quartus II software.

L=~ These settings significantly increase the time required to compile the design in the
Quartus II software, but are likely to increase the fyx.

5. On the Nios Development Board Cyclone II Edition (rev00 only), the DDR
SDRAM pins ras and cas are accidentally switched on the PCB schematic. So to
maintain consistency between the PCB schematic and Quartus II pin assignments,
these two pins must also be switched in your Quartus II top-level design when
targeting the Nios Development Board, Cyclone II Edition (rev00 only).

- For the correct connection of the ras and cas pins, refer to the Cyclone II 2C35
standard example design shipped with the Nios II Development Kit.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

B-3

6. The DDR SDRAM wizard automatically creates constraint scripts for the high-
speed DDR SDRAM signals in the top-level design. Therefore, the DDR SDRAM
controller top-level pin names must match what the DDR SDRAM controller
wizard expects. Otherwise, the proper constraints are not made. The following
three settings in the DDR wizard define the pin names to which constraints are
made:

m Pin name of clock driving memory (+)
m Pin name of clock driving memory (-)
m Prefix all DDR SDRAM pins with

Ensure that the DDR SDRAM controller pins at the top-level design adhere to the
naming conventions defined in these settings.

7. For the constraint scripts to work correctly, you must name some 1-bit DDR
SDRAM signals using bus notation at the top-level design, if the top-level design is
a BDF schematic file, which means they require a suffix of [0]. Locate the following
example pins and rename with a [0] suffix:

m clk to sdram p

m clk to sdram n

m sdram cs_n

m sdram cke

The pins now have the following names:
m clk to sdram p[0]

m clk to sdram n[0]

m sdram cs n([0]

m sdram cke[0]

[l =~ The pin names can change depending on the settings made in step 6, but they must
have the [0] suffix in the top-level schematic.

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

B-4

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

C. HardCopy Il Design Walkthrough

This walkthrough explains the additional steps that are needed to use the DDR or
DDR2 SDRAM Controller MegaCore function in a HardCopy II design.

“.e For details of a complete walkthrough, refer to “DDR & DDR2 SDRAM Controller
Walkthrough” on page 2-9.

You can create a HardCopy II design either with the main target set to a HardCopy II
device and a Stratix Il migration device, or with the main revision targeting a Stratix II
device and a companion revision targeting HardCopy II device.

To create a HardCopy II design, follow these steps:

1.

Create a new Quartus II project and choose a family, a device, and a companion
device.

=~ Altera recommends you choose a —4 speed grade device.

Launch IP Toolbench from the MegaWizard Plug-In Manager

Parameterize your custom variation.

Choose the constraints.

"=~ HardCopy II devices do not have dedicated hardware for DDR or DDR2
SDRAM capture on as many pins as the Stratix II companion, so there are
less DQS groups available.

Generate the variation.

Compile the design, which adds placement constraints for critical registers in the
read part of the datapath, and produces a report of the predicted timing margins.

The timing report that appears automatically is not available to the HardCopy
Design Centre, therefore add a set of timing constraints to help timing closure, by
running the DDR and DDR2 SDRAM timing wizard (DTW)—choose Tcl scripts
(Tools menu) and choose dtw.

«o For more information on the HardCopy II design flow, refer to Back-End Design Flow

for HardCopy Series Devices chapter in volume 2 of the Hardcopy 11 Device Handbook.

8.

10.

To save time re-entering the parameters of the DDR or DDR2 SDRAM Controller
MegaCore function, import the parameters from the <variation
name>_ddr_setting.txt file, by clicking Import... on the third page of the wizard.

The DTW also needs an estimate of the t-, on the pins that drive the clock to the
DDR or DDR2 SDRAM. When the design has been compiled extract these
automatically in the relevant pane of the wizard.

Click Finish. The DTW adds timing constraints to the project, which are preserved
when migrating to HardCopy II devices.

© March 2009 Altera Corporation DDR and DDR2 SDRAM CGontroller Compiler User Guide

http://www.altera.com/literature/hb/hardcopy-ii/hc_h51019.pdf
http://www.altera.com/literature/hb/hardcopy-ii/hc_h51019.pdf

"=~ Some of these constraints may conflict with constraints added by the
MegaCore function. These conflicts are detected, and you should click Yes,
to let the DTW override these conflicts.

The timing assignments that are set are visible in the assignments editor.

11. If you are using the PLL reset circuit included in the example design created for
you, add the following false path assignment to your top-level .sdc file:

set false path -from [get registers soft reset reg2 n] -to *

12. Choose Start > Timing Analyzer (Processing menu) to run timing analysis on the
design. The results appear in the timing analyzer section of the compilation report.

13. Create a HardCopy II companion revision that targets the HardCopy device, using
the Quartus II revisions feature that allows multiple variations within one project.

“ ™. e For more information on revisions, refer to the Quartus II Help.

a. Choose HardCopy II Utilities > Create/Overwrite HardCopy II Companion
Revision (Project menu), to create another revision in your project, which
allows you to use one project to target both the Stratix II and HardCopy II
devices.

b. Choose Revisions (Project menu) and set the HardCopy Il revision to be
current. You may now compile the design.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

D. Maximizing Performance
/ANO S RYA]

To achieve maximum performance, your design should use the fedback clock DQS
mode. You should use this mode for 267-MHz designs. However, there is no
automatic setup of the fedback PLL, or the resyncronization and postamble clock
phases in fedback clock DQS mode. Use the steps in this appendix to achieve timing
closure.

As an example, this appendix demonstrates how to close timing on an Altera Stratix I
Memory Board 2 with a Stratix II 4 speed-grade device. This appendix follows the
“MegaWizard Plug-In Manager Design Flow” on page 2-8, but indicates the
differences or additional steps.

e For more information on the Stratix Il Memory Board 2, contact your local Altera
representative.

Achieving 267 MHz on a —4 speed grade device is easier with a narrow interface,
because there is likely to be less skew across the byte groups. Achieving 267 MHz is
also easier on smaller devices than larger devices, because the clock network is faster
in small devices.

Device & Board Settings

To specify the correct device and board settings, follow these steps:

1. When you create a new Quartus II project, select an EP2S60F1020C4 Stratix II
device.

2. In the MegaWizard Plug-In Manager, expand the Interfaces > Memory
Controllers directory then click DDR2 SDRAM Controller <version>.

3. In the IP Toolbench—Parameterize window:
a. On the Memory tab, in the Presets list, choose Infineon HYS72T64000GU-3.7.
b. On the Controller tab, turn on Use fedback clock and Enable DQS mode.
c. On the Board Timings tab, type the following board trace delays:
m 1500 ps for FPGA clock output
m 1500 ps for memory DQ/DQS outputs

m 3000 ps for the fedback clock trace, nominal delay

=~ Use measurement or simulation to derive precise values for your board.

© March 2009 Altera Corporation DDR and DDR2 SDRAM CGontroller Compiler User Guide

Adjust the PLL Phases

Adjust the PLL Phases

Assign Pins

There is no automatic setup of the fedback PLL, or the resyncronization and
postamble clock phases in fedback clock DQS mode (refer to Figure A-2 on page A-6).
To adjust the PLL phases, follow these steps:

1. On the Manual Timing tab, turn on Manual resynchronization control and
Manual postamble control.

2. In Postamble clock setting, choose Dedicated clock.

3. Click Show Timing Estimates.
=~ The following parameters must be set in the given order.

4. Balance the following setup and hold time properties on the Show Timing
Estimates window, by adjusting the relevant parameter on the Manual Timing
tab.

a. For Stage 1 Resynchronization, adjust the resynchronization fedback clock
phase.

b. For Stage 2 Resynchronization, adjust the resynchronize captured read data in
cycle.

c. For Stage 1 Postamble Control, adjust the postamble dedicated clock phase.
d. For Stage 1 Postamble Control, adjust the postamble cycle.

You can now set up constraints and generate your custom variation.

When you compile a project, the add_constraints_for_<uvariation name>.tcl script
automatically assigns the DQ/DQS pins. To assign the other pins that are needed for
the DDR2 SDRAM interface on the Stratix Il Memory Board 2, run the

<install directory>/lib/stratix_s2mb2_pins.tcl.

Place the Fedback PLL

The fedback PLL needs to be driven directly from the input pin, and not routed
through the FPGA, otherwise the Quartus II software issues a warning and your
design does not meet timing.

On the Stratix I Memory Board 2 the fedback clock input pin is on the side of the
device, and the memory interface is on the top. Because the example design feeds the
DLL from the fedback PLL by default, the PLL is automatically placed on the top and
its clock input is therefore routed through the FPGA. To improve the design’s

timing, you should manually place the PLL on the side and drive the DLL input from
the system clock. If the fedback clock input pin is on the same side as the DQ pins, the
DLL may be fed from the fedback PLL.

DDR and DDR2 SDRAM Controller Compiler User Guide © March 2009 Altera Corporation

Update the PLL Phases

Update the PLL Phases

After compilation you should return to IP Toolbench and update the PLL phases. The
verify timing script reports the margins on the various registers in the read path. To
update the PLL phases, follow these steps:

1. Edit your custom variation in IP Toolbench.

2. On the Manual Timings tab, turn on Use the results of the last comile to estimate
setup and hold margins.

IP Toolbench uses initial estimates based on a nominal design. After you run the
verify timing script for the first time, IP Toolbench uses data from your design to
make more accurate estimates of the margins.

3. Adjust the PLL phases to meet timing.
4. Recompile the design. The verify timing script should report improved margins.

5. To balance the setup and hold margins, or to fix negative margins return to step
“Adjust the PLL Phases” on page D-2.

L= The calculation of setup and hold margins for the registers driven from the
fedback PLL can appear confusing—a small adjustment of the phase can
cause a large change in setup and hold margins. The timing script
automatically calculates the cycle that the data is transferred in. A small
change to the phase can change the cycle on which the data is transferred,
which results in a large change on the setup and hold margins.

L= If the second resynchronization path does not meet timing, or to increase
the available margin, add a maximum-data-arrival-skew constraint
between the first and second stage resynchronization registers. This
constraint constrains the routing and placement of these registers and
reduces skew across this bus. Add these constraints by executing the
following commands in the Tcl Console:

set instance assignment -name TPD REQUIREMENT "1.6 ns" -from
resynched data -to *fedback_resynched data*'

set global assignment -name PLACEMENT EFFORT MULTIPLIER 2.0

set global assignment -name ROUTER EFFORT MULTIPLIER 2.0
set_global_assignment -name STRATIXII OPTIMIZATION TECHNIQUE SPEED

© March 2009 Altera Corporation DDR and DDR2 SDRAM Controller Compiler User Guide

D-4

Update the PLL Phases

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

Additional Information
éAN ISR

Revision History

The following table shows the revision history for this user guide.

Date Version Changes Made
March 2009 9.0 Updated release information.
November 2008 8.1 Updated release information.
May 2008 8.0 Updated device support.
October 2007 7.2 m Updated walkthrough.
m Added more information on resynch_clk_edge select Signal.
May 2007 7.1 Updated device support.
March 2007 7.0 No changes.
December 2006 6.1 Updated format.
June 2006 3.4.1 | Improved definition of burst length.
April 2006 3.4.0 |m Implemented minor format changes.
m Added fedback clock mode appendix.
m Added PLL output options to IP Toolbench.
m Added more datapath signal behavior.
December 2005 3.3.1 | No changes.

How to Gontact Altera

For the most up-to-date information about Altera products, see the following table.

Contact
Contact (Note 1) Method Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com
Altera literature services Email literature@altera.com
Non-technical support (General) Email nacomp@altera.com
(Software Licensing) Email authorization@altera.com

Note:
(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions that this document uses.

© March 2009 Altera Corporation DDR and DDR2 SDRAM CGontroller Compiler User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
mailto:literature@altera.com
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info-ii

Additional Information
Typographic Conventions

Visual Cue

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type

Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters

Indicates document titles. For example, AN 579: Stratix IV Design Guidelines.

Italic type

Indicates variables. For example, n+ 1.

Variable names are enclosed in angle brackets (< >). For example, <file name>and
<project name>.pof file.

Initial Capital Letters

Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title”

Quotation marks indicate references to sections within a document and titles of
Quartus Il Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, datai,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c: \gqdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

Bullets indicate a list of items when the sequence of the items is not important.

The hand points to information that requires special attention.

CAUTION

A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

WARNING

A warning calls attention to a condition or possible situation that can cause you
injury.

e

The angled arrow instructs you to press Enter.

The feet direct you to more information about a particular topic.

DDR and DDR2 SDRAM Controller Compiler User Guide

© March 2009 Altera Corporation

	Contents
	1. About This Compiler
	Release Information
	Device Family Support
	Features
	General Description
	Performance and Resource Utilization
	Installation and Licensing
	OpenCore Plus Evaluation

	2. Getting Started
	Design Flow
	SOPC Builder Design Flow
	DDR & DDR2 SDRAM Controller Walkthrough
	Create Your Top-Level Design
	Simulate the SOPC Builder Design
	Compile the SOPC Builder Design
	Program a Device

	MegaWizard Plug-In Manager Design Flow
	DDR & DDR2 SDRAM Controller Walkthrough
	Simulate the Example Design
	Compile the Example Design
	Program a Device
	Implement Your Design

	Set Up Licensing

	3. Functional Description
	Block Description
	Control Logic
	Datapath

	OpenCore Plus Time-Out Behavior
	Device-Level Description
	Datapath
	PLL Configurations
	DLL Configurations
	Example Design
	Constraints

	Interfaces & Signals
	Interface Description
	Signals

	Parameters
	Memory
	Controller
	Controller Timings
	Memory Timings
	Board Timings
	Project Settings
	Manual Timings

	MegaCore Verification
	Simulation Testing
	Hardware Testing

	A. Manual Timing Settings
	Parameters
	Resynchronization
	Resynchronization Registers
	Intermediate Resynchronization Registers

	DQS Postamble
	Postamble Logic
	Intermediate Postamble Registers

	Examples

	B. DDR SDRAM on the Nios Development Board, Cyclone II Edition
	C. HardCopy II Design Walkthrough
	D. Maximizing Performance
	Device & Board Settings
	Adjust the PLL Phases
	Assign Pins
	Place the Fedback PLL
	Update the PLL Phases

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

