

32-Channel ±40V Liquid Crystal Display Row Driver

Ordering Information

	Package Options						
Device	44-Lead Quad Plastic Chip Carrier	44-Lead Quad Plastic Gullwing					
HV6008	HV6008PJ	HV6008PG					

Features

- ☐ Symmetrical ± 40V output swing
- □ Active return to GND
- ☐ 15mA peak source/sink/GND current per channel
- → +5V control logic
- Special shift register with clear
- Phase shift control
- Output enable
- Data out enable
- 1MHz shift register
- Surface mount package available

Absolute Waxing Parings

Supply voltage, V _{DD1}	-6V			
Supply voltage V _{DD2} ¹	+6V			
Supply vallage, v 1,2	+42V			
Supply voltage.	-42V			
Logic input levels	$V_{\rm DD1}$ - 0.3V to $V_{\rm DD2}$ + 0.3V			
Ground currrent ²	700mA			
Continuous total power dissipation ³	1W			
Operating temperature range	-40°C to +85°C			
Storage temperature range	-65°C to +150°C			
·	·			

Notes:

- 1. All voltages are referenced to GND.
- Duty cycle is limited by the total power dissipated in the package.
- 3. For operation above 25°C ambient derate linearly to 85°C at 16.7mW/°C.

General Description

Not recommend ew designs.

The HV60 is 22-ch and lich id crystal display driver with 3-state DMOS or F outrocan be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

The HV60 is 22-ch and lich id crystal display driver with 3-state be set to +40V, -40V, or GND.

Ph. logic, and 32-bit shift register with Clear, Enable, and Ph. logic, and 32 high voltage output buffers. With the nable of low, all outputs are placed in the return to zero (D) s. e. When Enable is high, each output reflects the data shift register bit. All outputs with a logic "0" in their shift er will be in the return to zero state. Outputs with a logic "1" neir shift register will reflect the state of the phase shift pin. These outputs will be switched to V_{PP} when phase shift is high and V_{NN} when phase shift is logic "0".

Additional functions provided are Shift Register Clear and Data Out. All bits of the shift register are changed to logic "0" when Clear is pulled low. With Clear at a logic "1", normal shift register operation proceeds. The data output reflects the status of the 32nd shift register stage.

Electrical Characteristics (over recommended operating conditions unless noted)

DC Characteristics

Symbol	Para	meter	Min	Тур	Max	Units	Conditions
I _{DD1,2}	V _{DD} supply current	V _{DD1}	_		500	μΑ	$V_{I} = 4V, V_{DD1} = -6V$ $V_{I} = 4V, V_{DD2} = +6V$
V _{IH}	Logic input high		+2		V_{DD2}	V	$V_{DD1} = -4.5V,$
V _{IL}	Logic input low		V _{DD1}		-2	V	V _{DD2} = +4.5V
V _{OH}	Logic output high		+2			V	$V_{DD1} = -4.5V$ $V_{DD2} = +4.5V$
V _{OL}	Logic output low				-2	V	$I_{OH} = -15\mu A$ $I_{OL} = 250\mu A$
I _{IH}	High-level logic input	current			+3	μΑ	$V_I = V_{DD}$, $V_{DD1,2} = max$
I _{IL}	Low-level logic input	current			-50	μΑ	$V_I = 0V$, $V_{DD1,2} = max$
I _{PP}	High voltage supply	current			+1	mA	Static, no load
I _{NN}	High voltage supply	current			-1	mA	Static, no load
V _{OH}	Output voltage high		+39			V	$V_{PP}, V_{NN} = \pm 40$
V _{CL}	Output voltage clam)	-20		+20	mV	No load
V _{OL}	Output voltage low				-39	V	
Z _{OH}	Output switch imped	ence high		1000			
Z _{CL}	Output switch imped	Output switch impedance clamp				Ω	V_{PP} , $V_{NN} = \pm 40$
Z _{OL}	Output switch imped	ance low		700			$I_O = \pm 15 \text{mA}$
Io	DC output current	Output H or L			5	mA	1 output only
		Data out H or L			150	μΑ	

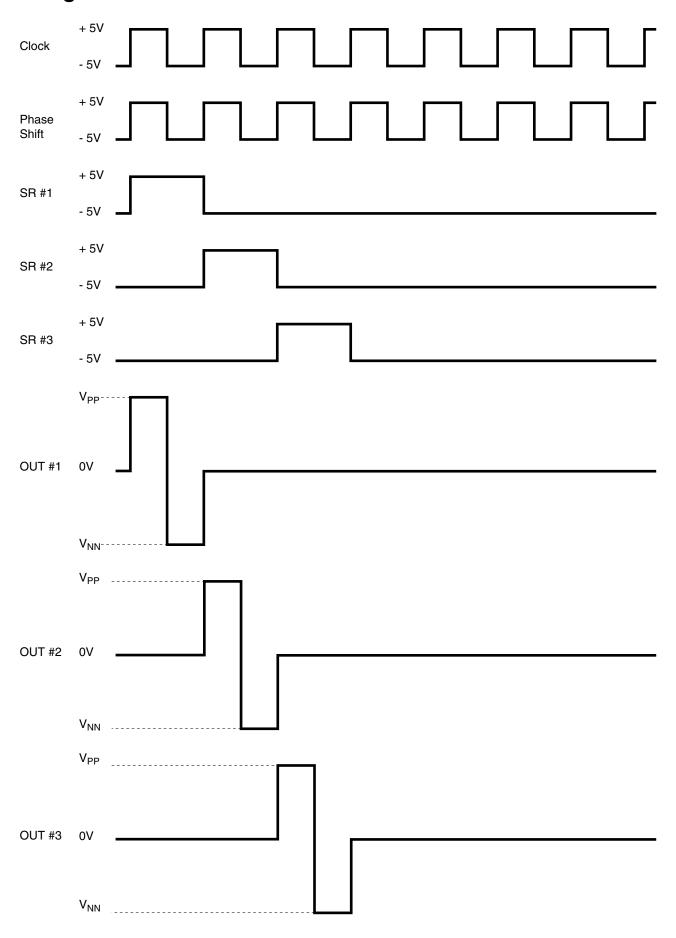
AC Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
t _{WH}	Width of high data pulse	500			ns	
t _{WL}	Width of low data pulse	500			ns	
t _{SU}	Data set-up time before clock falls	25			ns	
t _H	Data hold time after clock falls	10			ns	
	Phase shift duty cycle		50		%	

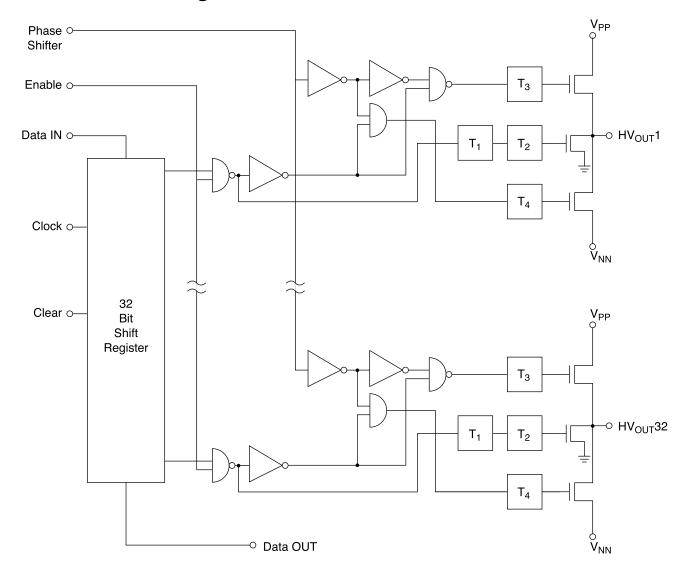
Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	Units
V_{DD1}	Logic supply voltage	-4		-6	V
V_{DD2}	Logic supply voltage	+4		+6	V
V _{PP}	High voltage supply	+10		+40	V
V _{NN}	High voltage supply	-10		-40	V
V _{IH}	High-level input voltage	+2V		V_{DD2}	V
V _{IL}	Low-level input voltage	-2V		V _{DD1}	V
I _{O Pk.}	Peak output current (any state)			±80	mA
T _A	Operating free-air temperature	-40		+70	°C
f _{DIN}	Input data rate			1	MHz
f _{PS}	Phase shift rate			20	KHz

Note:


Power-up sequence should be the following:

- 1. Connect ground.
- 2. Apply V_{DD}.


- 3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
- 4. Apply V_{PP} and V_{NN}.

Power-down sequence should be the reverse of the above.

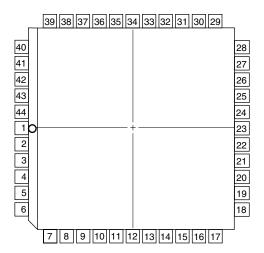
Switching Waveform

Functional Block Diagram

Function Table

			Inputs			i		
Function	Data	CLK	CLR	Enable	Phase	Shift Reg	HV Outputs	Data Out
	ln				Shift	1 232	1 232	
CLR Reg	X	Х	Н	Х	Х	ALL L	ALL GND	Г
All output GND	Х	Х	Х	L	Х	* * *	ALL GND	*
Load S/R	H or L	↓	L	L	Х	H or L **	ALL GND	*
					Х	L LL	GND GNDGND	*
Output State	X	H or L	L	Н	Н	Н НН	$V_{PP} V_{PP}V_{PP}$	*
					L	Н НН	V _{NN} V _{NN} V _{NN}	*

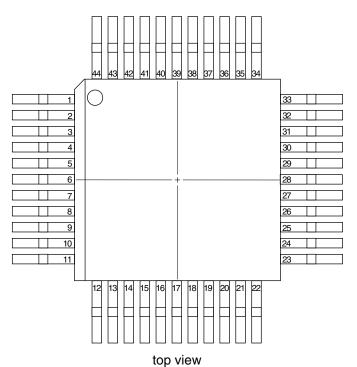
Notes:


- X = Irrelevant
 * = Dependent
- * = Dependent on previous stage's state before the last CLK
- = High to low transition
- H = High level
- L = Low level

Pin Configurations

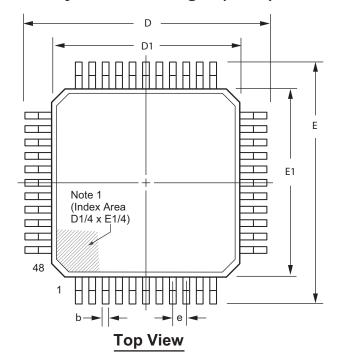
44-Pin J-Lead

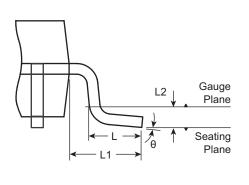
Pin	Function	Pin	Function
1	HV _{OUT} 16	23	$V_{DD\ 1}$
2	HV _{OUT} 15	24	Enable
3	HV _{OUT} 14	25	$V_{DD\ 2}$
4	HV _{OUT} 13	26	GND
5	HV _{OUT} 12	27	Data Out
6	HV _{OUT} 11	28	HV _{OUT} 32
7	HV _{OUT} 10	29	HV _{OUT} 31
8	V_{PP}	30	HV _{OU} 30
9	HV _{OUT} 9	31	HV _{OUT} 29
10	HV _{OUT} 8	32	HV _{OUT} 28
11	HV _{OUT} 7	33	HV _{OUT} 27
12	HV _{OUT} 6	34	HV _{OUT} 26
13	HV _{OUT} 5	35	HV _{OUT} 25
14	HV _{OUT} 4	36	HV _{OUT} 24
15	HV _{OUT} 3	37	V_{NN}
16	HV _{OUT} 2	38	HV _{OUT} 23
17	HV _{OUT} 1	39	HV _{OUT} 22
18	Data In	40	HV _{OUT} 21
19	GND	41	HV _{OUT} 20
20	Phase Shift	42	HV _{OUT} 19
21	Clock	43	HV _{OUT} 18
22	Clear	44	HV _{OUT} 17


Package Outlines

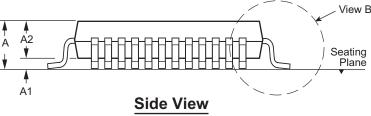
top view 44-pin J Lead Package

44-Pin Quad Palstic Package


Pin	Function	Pin	Function
1	HV _{OUT} 21	23	Data In
2	HV _{OUT} 20	24	GND
3	HV _{OUT} 19	25	Phase Shift
4	HV _{OUT} 18	26	Clock
5	HV _{OUT} 17	27	Clear
6	HV _{OUT} 16	28	V_{DD1}
7	HV _{OUT} 15	29	Enable
8	HV _{OUT} 14	30	V_{DD2}
9	HV _{OUT} 13	31	GND
10	HV _{OUT} 12	32	Data Out
11	HV _{OUT} 11	33	HV _{OUT} 32
12	HV _{OUT} 10	34	HV _{OUT} 31
13	V_{PP}	35	HV _{OUT} 30
14	HV _{OUT} 9	36	HV _{OUT} 29
15	HV _{OUT} 8	37	HV _{OUT} 28
16	HV _{OUT} 7	38	HV _{OUT} 27
17	HV _{OUT} 6	39	HV _{OUT} 26
18	HV _{OUT} 5	40	HV _{OUT} 25
19	HV _{OUT} 4	41	HV _{OUT} 24
20	HV _{OUT} 3	42	V_{NN}
21	HV _{OUT} 2	43	HV _{OUT} 23
22	HV _{OUT} 1	44	HV _{OUT} 22



44-pin Quad Plastic Gullwing Package


44-Lead PQFP Package Outline (PG)

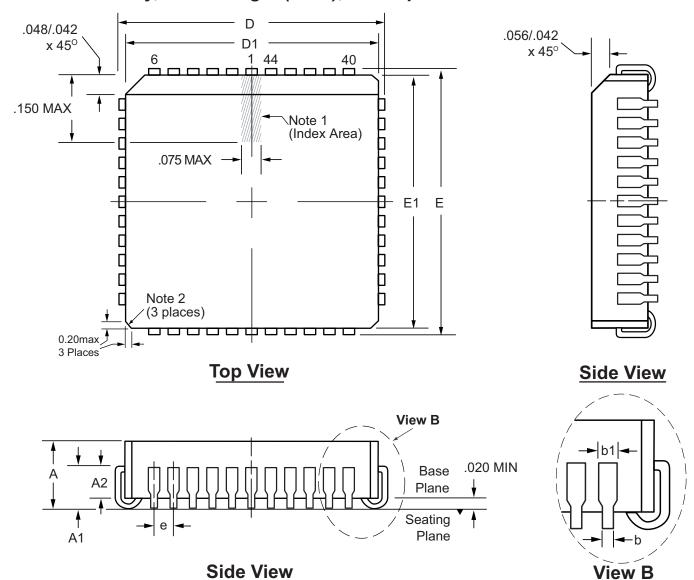
10x10mm body, 2.45mm height (max.), 0.80mm pitch

View B

View B

Note 1: A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbo	ol	Α	A1	A2	b	D	D1	Е	E1	е	L	L1	L2	θ	θ1
Dimension (mm)	MIN	-	0.25	1.95	0.30	13.65	9.80	13.65	9.80	0.00	0.73	4.05	0.05	3.5°	5°
	NOM	-	-	2.00	-	13.90	10.00	13.90	10.00	0.80 BSC	0.88	1.95 REF	0.25 BSC	-	-
(11111)	MAX	2.45	-	2.10	0.45	14.15	10.20	14.15	10.20	ВОО	1.03	IXLI	Воо	7°	16°


JEDEC Registration M0-112, Variation AA-2, Issue B, Sep.1995. Drawings not to scale.

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max.), .050in pitch

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature. 2. Exact shape of this feature is optional.

Sym	bol	Α	A1	A2	b	b1	D	D1	E	E1	е
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650	050
	NOM	.172	.105	-	-	-	.690	.653	.690	.653	.050 BSC
(inches)	MAX	.180	.120	.083	.021	.036	.695	.656	.695	.656	

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993. Drawings are not to scale.

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

View B

Doc. #: DSPD-44PLCCPJ

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Supertex:

HV6008PG-M914 HV6008PJ-M903 HV6008PJ HV6008PG