TF262TH

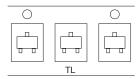
N-Channel JFET –20V, 140 to 350μA, 0.95mS

www.onsemi.com

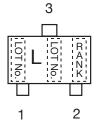
Features

- Low Output Noise Voltage : V_{NO} = -112dB typ. (V_{CC} =2V, R_L =2.2k Ω , C_{in} =5pF)
- Ultrasmall Package Facilitates Miniaturization in End Products : 1.4mm × 1.2mm × 0.34mm
- Especially Suited for use in electret condenser microphone for audio equipments and telephones
- · Adoption of FBET process
- · Halogen Free compliance

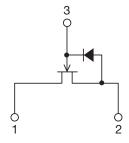
Specifications


Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Gate to Drain Voltage	V _{GDO}		-20	V
Gate Current	IG		10	mA
Drain Current	ID		1	mA
Allowable Power Dissipation	PD		100	mW
Junction Temperature	Tj		150	°C
Storage Temperature	Tstg		-55 to +150	°C


This product is designed to "ESD immunity < 200V*", so please take care when handling.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


Packing Type: TL

Marking

Electrical Connection

TF262TH-4-TL-H TF262TH-5-TL-H

1 : Drain 2 : Source 3 : Gate

SOT-623 / VTFP

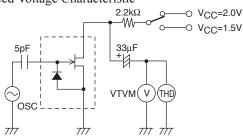
ORDERING INFORMATION

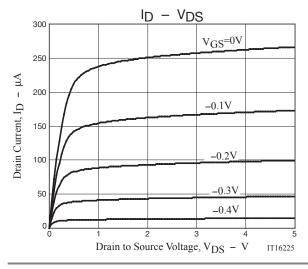
See detailed ordering and shipping information on page 6 of this data sheet.

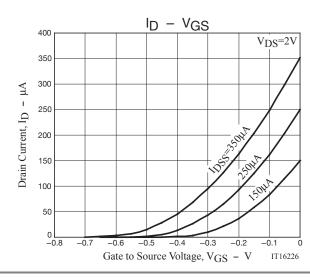
^{*} Machine Model

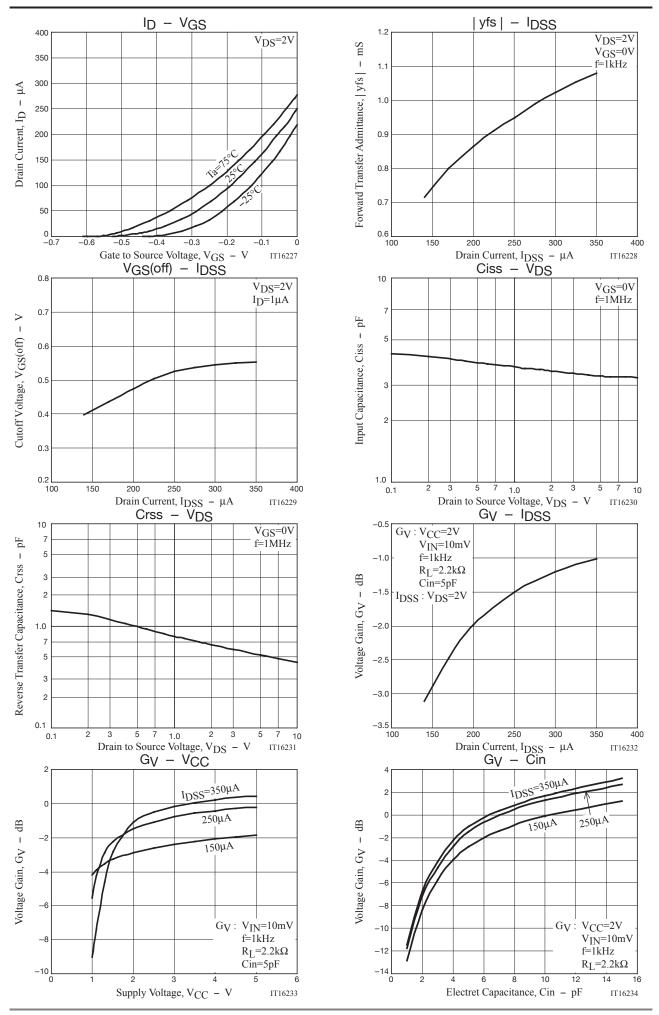
Electrical Characteristics at Ta=25°C

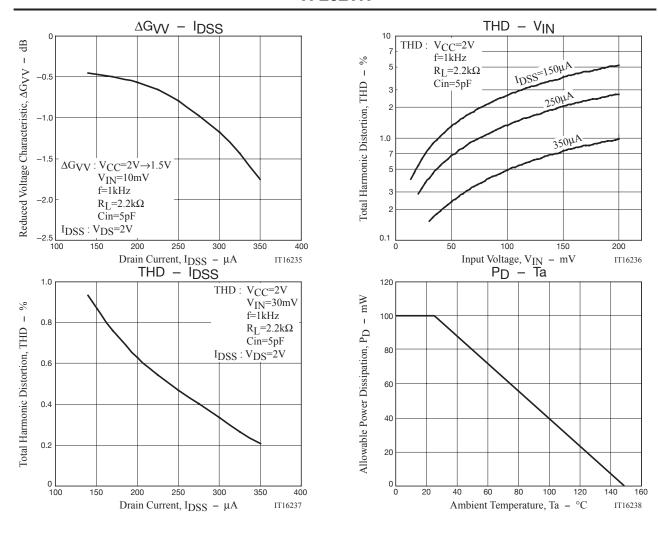
Parameter	Cumple of	Conditions	Ratings			Limit
	Symbol	Conditions	min	typ	max	Unit
Gate to Drain Breakdown Voltage	V(BR)GDO	I _G =-100μA	-20			V
Cutoff Voltage	VGS(off)	V _{DS} =2V, I _D =1μA	-0.2	-0.5	-1.0	V
Drain Current	IDSS	V _{DS} =2V, V _{GS} =0V			350*	μΑ
Forward Transfer Admittance	yfs	V _{DS} =2V, V _{GS} =0V, f=1kHz 0.5		0.95		mS
Input Capacitance	Ciss	V _{DS} =2V, V _{GS} =0V, f=1MHz		3.5		pF
Reverse Transfer Capacitance	Crss	V _{DS} =2V, V _{GS} =0V, f=1MHz		0.65		pF
[Ta=25°C, V _{CC} =2.0V, R _L =2.2kΩ, Cin=5pF, See specified Test Circuit.]						
Voltage Gain	GV	V _{IN} =10mV, f=1kHz	-1.5			dB
Reduced Voltage Characteristic	∆GVV	V_{IN} =10mV, f=1kHz, V_{CC} =2.0V \rightarrow 1.5V	-0.8		-2.0	dB
Frequency Characteristic	∆Gvf	f=1kHz to 110Hz			-1.0	dB
Total Harmonic Distortion	THD	V _{IN} =30mV, f=1kHz	0.5			%
Output Noise Voltage	V _{NO}	V _{IN} =0V, A Curve		-112		dB

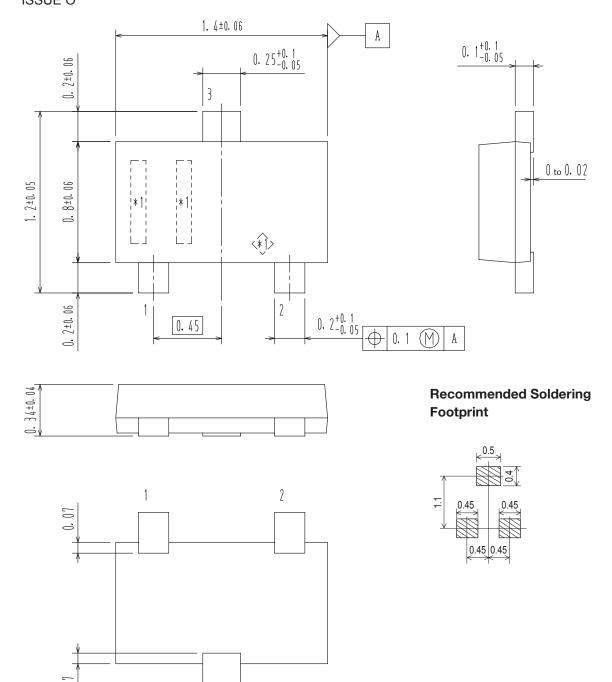

^{* :} The TF262TH is classified by IDSS as follows : (unit : $\mu A)$


Marking	L4	L5
Rank	4	5
IDSS	140 to 240	210 to 350


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Test Circuit


Voltage gain Frequency Characteristic Distortion Reduced Voltage Characteristic


Package Dimensions

unit : mm

TF262TH-4-TL-H, TF262TH-5-TL-H

SOT-623 / VTFP

CASE 631AD ISSUE O

3

*1:Lot indication

TF262TH

ORDERING INFORMATION

Device	Package	Shipping	memo	
TF262TH-4-TL-H	SOT-623 / VTFP	8,000pcs. / Tape and Reel	Pb-Free and Halogen Free	
TF262TH-5-TL-H	501-623 / VIFP			

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf . SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent r