TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/L1 Series

TMP91C630

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CMOS 16-Bit Microcontrollers TMP91C630F

Outline and Features

TMP91C630 is a high-speed 16-bit microcontroller designed for the control of various mid- to large-scale equipment. With 2 Kbytes of boot ROM included, it allows your programs to be erased and rewritten on board.

TMP91C630 comes in a 100-pin flat package. Listed below are the features.

- (1) High-speed 16-bit CPU (900/L1 CPU)
 - Instruction mnemonics are upward-compatible with TLCS-90/900
 - 16 Mbytes of linear address space
 - General-purpose registers and register banks
 - 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
 - Micro DMA: Four-channels (444 ns/2 bytes at 36 MHz)
- (2) Minimum instruction execution time: 111 ns (at 36 MHz)

(3) Built-in RAM: 6 Kbytes Built-in ROM: None

Built-in Boot ROM: 2 Kbytes

RESTRICTIONS ON PRODUCT USE

030619EBP

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunctionor failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

- (4) External memory expansion
 - Expandable up to 16 Mbytes (shared program/data area)
 - Can simultaneously support 8-/16-bit width external data bus
 - · · · Dynamic data bus sizing
- (5) 8-bit timers: 6 channels
 - Event counter :2 channels
- (6) 16-bit timer/event counter: 1 channel
- (7) Serial bus interface: 2 channels
- (8) 10-bit AD converter: 8 channels
- (9) Watchdog timer
- (10) Chip Select/Wait controller: 4 blocks
- (11) Interrupts: 35 interrupts
 - 9 CPU interrupts: Software interrupt instruction and illegal instruction
 - 19 internal interrupts: 7 priority levels are selectable.
 - 7 external interrupts: 7 priority levels are selectable.

 (Level mode, rising edge mode and falling edge mode are selectable.)
- (12) Input/output ports: 53 pins
- (13) Standby function

Three halt modes: Idle2 (programmable), Idle1, Stop

- (14) Operating voltage
 - VCC = 2.7 V to 3.6 V (fc max = 36 MHz)
- (15) Package
 - 100-pin QFP: P-LQFP100-1414-0.50F

91C630-2 2005-11-15

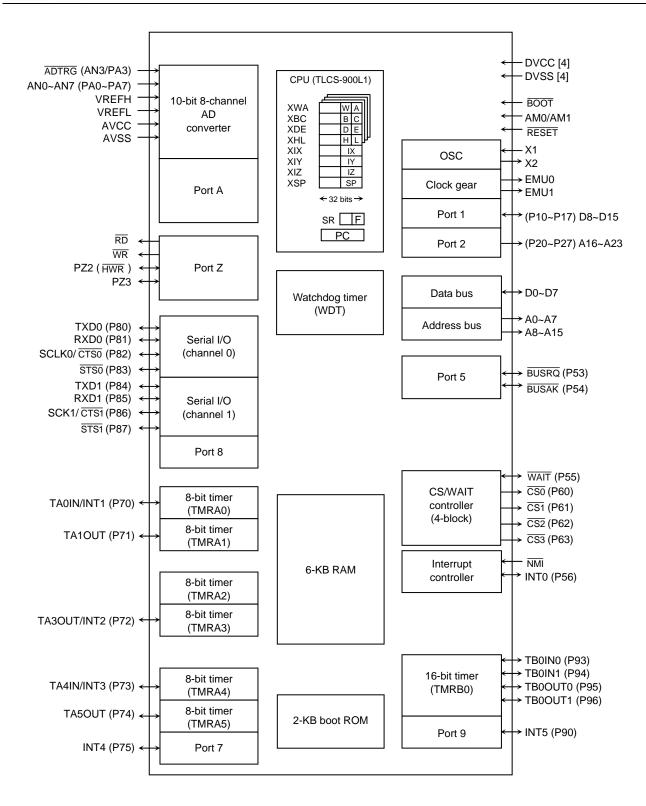


Figure 1.1 TMP91C630 Block Diagram

2. Pin Assignment and Pin Functions

The Pin Assignment and Pin Functions of the TMP91C630F are showed in Figure 2.1.1.

2.1 Pin Assignment Diagram

Figure 2.1.1 shows the pin assignment of the TMP91C630F.

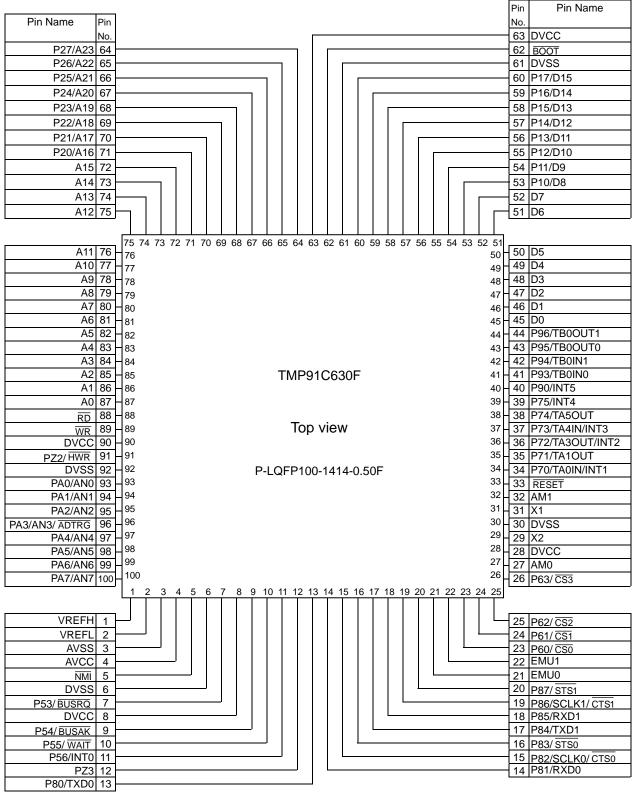


Figure 2.1.1 Pin Assignment Diagram (100-Pin LQFP)

2.2 Pin Names and Functions

The names of the Input/Output pins and their functions are described below. Table 2.2.1 to Table 2.2.3 show Pin name and functions.

Table 2.2.1 Pin Names and Functions (1/3)

Pin Names	Number of Pins	I/O	Functions
D0 to D7	8	I/O	Data (lower): Bits 0 to 7 of data bus
P10 to P17	8	I/O	Port 1: I/O port that allows I/O to be selected at the bit level (When used to the external 8-bit bus)
D8 to D15		I/O	Data (upper): Bits 8 to15 of data bus
P20 to P27	8	Output	Port 2: Output port
A16 to A23		Output	Address: Bits 16 to 23 of address bus
A8 to A15	8	Output	Address: Bits 8 to 15 of address bus
A0 to A7	8	Output	Address: Bits 0 to 7 of address bus
RD	1	Output	Read: Strobe signal for reading external memory
WR	1	Output	Write: Strobe signal for writing data to pins D0 to D7
P53	1	I/O	Port 53: I/O port (with pull-up resistor)
BUSRQ		Input	Bus request: Signal used to request bus release (high-impedance).
P54	1	I/O	Port 54: I/O port (with pull-up resistor)
BUSAK		Output	Bus acknowledge: Signal used to acknowledge bus release (high-impedance).
P55	1	I/O	Port 55: I/O port (with pull-up resistor)
WAIT		Input	Wait: Pin used to request CPU bus wait. ((1 + N) waits mode)
P56	1	I/O	Port 56: I/O port (with pull-up resistor)
INT0		Input	Interrupt request pin0: Interrupt request pin with programmable level/rising
			edge/falling edge
P60	1	Output	Port 60: Output port
CS0		Output	Chip select 0: Outputs 0 when address is within specified address area.
P61	1	Output	Port 61: Output port
CS1		Output	Chip select 1: Outputs 0 when address is within specified address area.
P62	1	Output	Port 62: Output port
CS2		Output	Chip select 2: Outputs 0 when address is within specified address area.
P63	1	Output	Port 63: Output port
CS3		Output	Chip select 3: Outputs 0 when address is within specified address area.
P70	1	I/O	Port 70: I/O port
TAOIN		Input	8-bit TMRA0 input
INT1		Input	Interrupt request pin 2: Interrupt request pin with programmable level/rising
			edge/falling edge
P71	1	I/O	Port 71: I/O port
TA1OUT		Output	8-bit TMRA0 or 8-bit TMRA1 output
P72	1	I/O	Port 72: I/O port
TA3OUT		Output	8-bit TMRA2 or 8-bit TMRA3 output
INT2		Input	Interrupt request pin 2: Interrupt request pin with programmable level/rising
			edge/falling edge

Table 2.2.2 Pin Names and Functions (2/3)

Pin Names	Number of Pins	I/O	Functions
P73	1	I/O	Port 73: I/O port
TA4IN		Input	8-bit TMRA4 input
INT3		Input	Interrupt request pin 3: Interrupt request pin with programmable level/rising
			edge/falling edge.
P74	1	I/O	Port 74: I/O port
TA5OUT		Output	8-bit TMRA4 or 8-bit TMRA5 output
P75	1	I/O	Port 75: I/O port
INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable
P80	1	I/O	Port 80: I/O port (with pull-up resistor)
TXD0		Output	Serial send data 0: Programmable open-drain output pin
P81	1	I/O	Port 81: I/O port (with pull-up resistor)
RXD0		Input	Serial receive data 0
P82	1	I/O	Port 82: I/O port (with pull-up resistor)
SCLK0		Input	Serial clock I/O 0
CTS0		I/O	Serial data send enable 0 (Clear to send)
P83	1	I/O	Port 83: I/O port (with pull-up resistor)
STS0			Serial data request signal 0
P84	1	I/O	Port 84: I/O port (with pull-up resistor)
TXD1		Output	Serial send data 0: Programmable open-drain output pin
P85	1	I/O	Port 85: I/O port (with pull-up resistor)
RXD1		Input	Serial receive data 1
P86	1	I/O	Port 86: I/O port (with pull-up resistor)
SCLK1		Input	Serial clock I/O 1
CTS1		I/O	Serial data send enable 1 (Clear to send)
P87	1	I/O	Port 87: I/O port (with pull-up resistor)
STS1			Serial data request signal 1
P90	1	I/O	Port 90: I/O port
INT5		Input	Interrupt request pin 5: Interrupt request pin with programmable level/rising
			edge/falling edge
P93	1	I/O	Port 93: I/O port
TB0IN0		Input	Timer B0 input 0
P94	1	I/O	Port 94: I/O port
TB0IN1		Input	Timer B0 input 1
P95	1	I/O	Port 95: I/O port
TB0OUT0		Output	Timer B0 output 0
P96	1	I/O	Port 96: I/O port
TB0OUT1		Output	Timer B0 output 1
PA0 to PA7	8	Input	Port A0 to A7: Pins used to input port.
AN0 to AN7		Input	Analog input 0 to 7: Pins used to input to AD converter.
ADTRG		Input	AD trigger: Signal used to request AD start (PA3).
PZ2	1	I/O	Port Z2: I/O port (with pull-up resistor)
HWR		Output	High write: Strobe signal for writing data to pins D8 to D15
PZ3	1	I/O	Port Z3: I/O port (with pull-up resistor)

Table 2.2.3 Pin Names and Functions (3/3)

Pin Names	Number of Pins	I/O	Functions
BOOT	1	Input	This pin sets boot mode (with pull-up resistor)
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with programmable falling edge level or with both edge levels programmable
AM0 to AM1	2	Input	Operation mode:
			AM1 = 0 and AM0 = 1: External 16-bit bus is fixed
			or external 8-/16-bit buses are mixed.
			AM1 = 0 and AM0 = 0: External 8-bit bus is fixed.
RESET	1	Input	Reset: Initializes TMP91C630F (with pull-up resistor)
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
AVCC	1	I/O	Power supply pin for AD converter
AVSS	1		GND supply pin for AD converter
X1/X2	2		Oscillator connection pins
DVCC	4		Power supply pins
DVSS	4		GND pins (0 V)
EMU0	1	Output	Open pin
EMU1	1	Output	Open pin

Note 1: An external DMA controller cannot access the device's built-in memory or built-in I/O devices using the BUSRQ and BUSAK signals.

3. Operation

This section describes the basic components, functions and operation of the TMP91C630.

Notes and restrictions which apply to the various items described here are outlined in section 7. Precautions and restrictions at the end of this databook.

3.1 CPU

The TMP91C630 incorporates a high-performance 16-bit CPU (the 900/L1 CPU). For a description of this CPU's operation, please refer to the section of this databook which describes the TLCS-900/L1 CPU.

The following sub-sections describe functions peculiar to the CPU used in the TMP91C630; these functions are not covered in the section devoted to the TLCS-900/L1 CPU.

3.1.1 Reset

When resetting the TMP91C630 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then set the $\overline{\text{RESET}}$ input to Low level at least for 10 system clocks (8.89 μs at 36 MHz).

Thus, when turn on the switch, be set to the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input to Low level at least for 10 system clocks.

Clock gear is initialized 1/16 mode by Reset operation. It means that the system clock mode fsys is set to fc/32 (= fc/16 \times 1/2).

When the reset has been accepted, the CPU performs the following:

 Sets the program counter (PC) as follows in accordance with the reset vector stored at address FFFF00H to FFFF02H:

PC<0:7> ← Data in location FFFF00H PC<8:15> ← Data in location FFFF01H PC<16:23> ← Data in location FFFF02H

- Sets the stack pointer (XSP) to 100H.
- Sets bits <IFF0:IFF2> of the status register (SR) to 111 (thereby setting the interrupt level mask register to level 7).
- Sets the <MAX> bit of the status register to 1 (MAX mode).
 (Note: As this product does not support MIN mode, do not program a 0 to the <MAX> bit.)
- Clears bits <RFP0:RFP2> of the status register to 000 (thereby selecting register bank 0).

When the reset is cleared, the CPU starts executing instructions according to the program counter settings. CPU internal registers not mentioned above do not change when the reset is cleared.

When the reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.

Note: The CPU internal register (except to PC, SR and XSP) and internal RAM data do not change by resetting.

Figure 3.1.1 shows the timing of a reset for the TMP91C630.

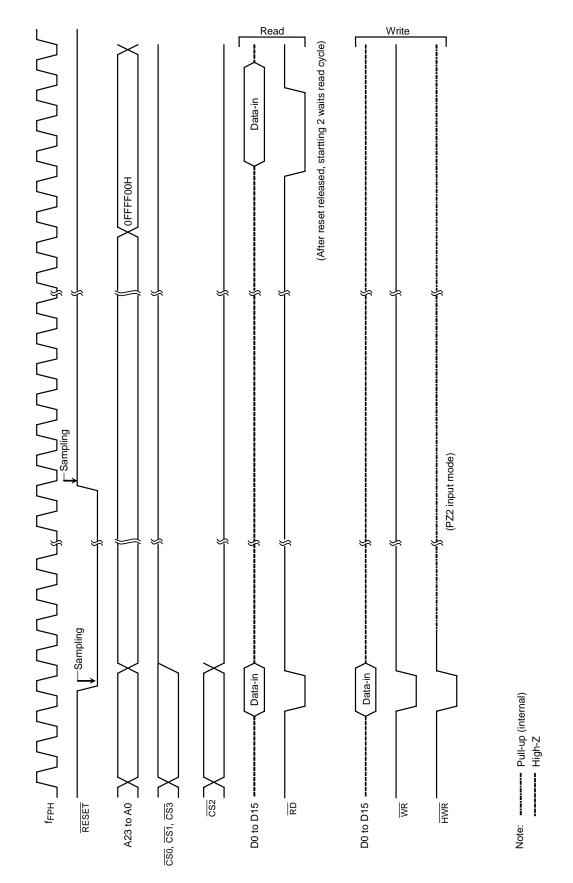


Figure 3.1.1 TMP91C630 Reset Timing Example

91C630-9 2005-11-15

3.2 Outline of Operation Modes

There are multi-chip and multi-boot modes. Which mode is selected depends on the device's pin state after a reset.

• Multi-chip mode: The device normally operations in this mode. After a reset, the device starts executing the external memory program.

 Multi-boot mode: This mode is used to rewrite the external flash memory by serial transfer (UART).

After a reset, internal boot program starts up, executing an on-board rewrite program.

Table 3.2.1 Operation Mode Setup Table

	•	•			
On a ration Made	Mode Setup Input Pin				
Operation Mode	RESET	BOOT			
Multi-chip mode	1	Н			
Multi-boot mode		L			

3.3 Memory Map

Figure 3.3.1 is a memory map of the TMP91C630.

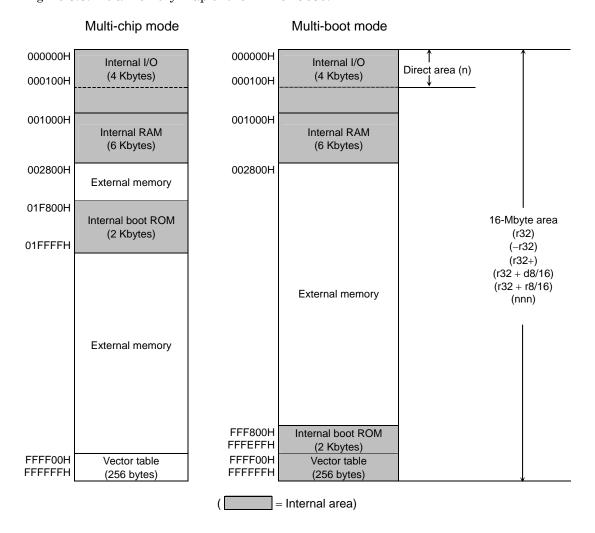


Figure 3.3.1 TMP91C630 Memory Map

4. Electrical Characteristics

4.1 Maximum Ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	Vcc	-0.5 to 4.0	V
Input voltage	VIN	-0.5 to Vcc + 0.5	V
Output current (per pin)	IOL	2	mA
Output current (per pin)	IOH	-2	mA
Output current (total)	ΣIOL	80	mA
Output current (total)	ΣΙΟΗ	-80	mA
Power dissipation (Ta = 85°C)	PD	600	mW
Soldering temperature (10 s)	TSOLDER	260	°C
Storage temperature	TSTG	-65 to 150	°C
Operating temperature	TOPR	-40 to 85	°C

Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

	Parameter	Symbol	Condition	Min	Typ. (Note)	Max	Unit
	Power supply voltage (AVCC = DVCC) (AVSS = DVSS = 0 V)	Vcc	fc = 10 MHz to 36 MHz	2.7		3.6	٧
	D0 to D7, P10 to P17 (D8 to D15)	V _{IL}	Vcc = 2.7 V to 3.6 V			0.6	
ge	The other ports	V _{IL1}	Vcc = 2.7 V to 3.6 V			0.3 Vcc	
Input Low Voltage	RESET, NMI, BOOT P56 (INT0), P70 (INT1) P72 (INT2), P73 (INT3) P75 (INT4), P90 (INT5)	V _{IL2}	Vcc = 2.7 V to 3.6 V	-0.3		0.25 Vcc	
=	AM0, 1	V _{IL3}	Vcc = 2.7 V to 3.6 V			0.3	
	X1	V_{IL4}	Vcc = 2.7 V to 3.6 V			0.2 Vcc	
	D0 to D7, P10 to P17 (D8 to D15)	V_{IH}	Vcc = 2.7 V to 3.6 V	2.0			V
age	The other ports	V _{IH1}	Vcc = 2.7 V to 3.6 V	0.7 Vcc			
nput High Voltage	RESET , NMI , BOOT P56 (INT0), P70 (INT1) P72 (INT2), P73 (INT3) P75 (INT4), P90 (INT5)	V _{IH2}	Vcc = 2.7 V to 3.6 V	0.75 Vcc		Vcc + 0.3	
-	AM0, 1	V _{IH3}	Vcc = 2.7 V to 3.6 V	Vcc - 0.3			
	X1	V _{IH4}	Vcc = 2.7 V to 3.6 V	0.8 Vcc			
Οι	utput low voltage	V_{OL}	IOL = 1.6 mA			0.45	V
Οι	ıtput high voltage	V_{OH}	IOH = -400 μA	2.4			V

Note: Typical measurement Condition is Ta = 25°C, Vcc = 3.0 V unless otherwise noted.

DC Characteristics (2/2)

Parameter	Symbol	Min	Typ. (Note 1)	Max	Condition	Unit
Input leakage current	ILI		0.02	±5	$0.0 \leq V_{IN} \leq Vcc$	μА
Output leakage current	ILO		0.05	±10	$0.2 \leq V_{IN} \leq Vcc - 0.2$	μΑ
Power down voltage (at STOP, RAM back-up)	VSTOP	2.0		3.6	$V_{IL2} = 0.2 \text{ Vcc},$ $V_{IH2} = 0.8 \text{ Vcc}$	V
RESET pull-up resistor	RRST	80		400	Vcc = 2.7 V to 3.6 V	kΩ
BOOT pull-up resistor	RBT	80		400	Vcc = 2.7 V to 3.6 V	kΩ
Pin capacitance	CIO			10	fc = 1 MHz	pF
Schmitt width RESET, NMI, BOOT, INT0 to 5	VTH	0.4	1.0		Vcc = 2.7 V to 3.6 V	V
Programmable pull-up resistor	RKH	80		400	Vcc = 2.7 V to 3.6 V	kΩ
NORMAL (Note 2): (Note 3)			17	25	Vcc = 2.7 V to 3.6 V	
IDLE2 (Note 3)			4	8	fc = 36 MHz	mA
IDLE1 (Note 3)	Icc		1.5	3.5	IC = SO IVII IZ	
STOP			0.1	10	Vcc = 2.7 V to 3.6 V	μΑ

Note 1: Typical measurement condition is Ta = 25°C, Vcc = 3.0 V unless otherwise noted.

Note 2: Icc measurement conditions (NORMAL):

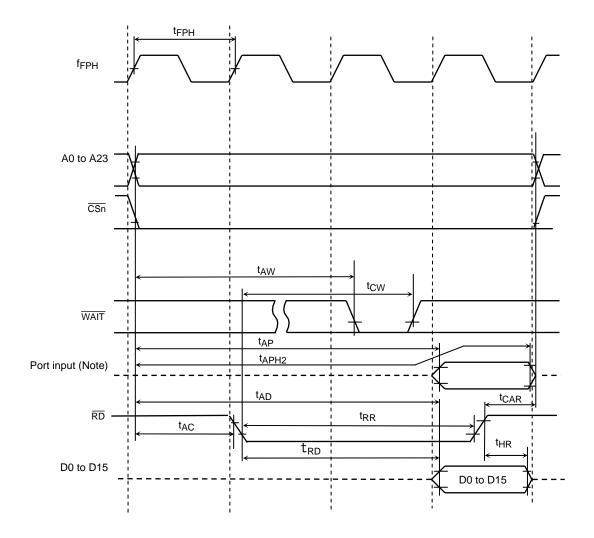
All functions operate; output pins are open and input pins are fixed.

Note 3: Power supply current from AVCC pin is included in power supply current (Icc) of DVCC pin.

4.3 AC Characteristics

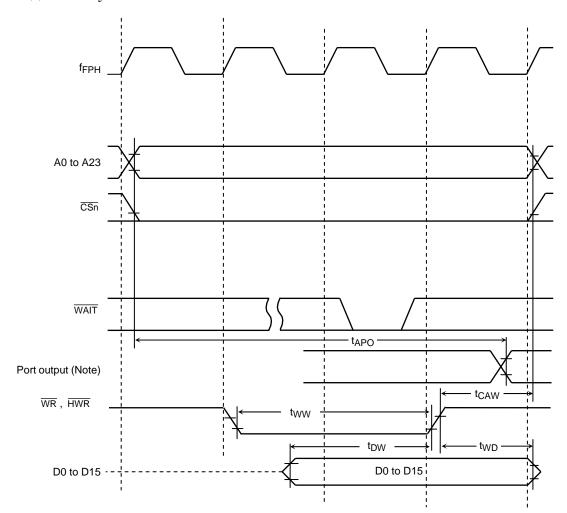
(1) Vcc = 2.7 to 3.6 V

No.	Parameter	Symbol	Variable		f _{FPH} = 3	36 MHz	Unit
110.	rarameter	Cymbol	Min	Max	Min	Max	010
1	f _{FPH} period (= x)	t _{FPH}	27.6	100	27.6		ns
2	A0 to 23 valid $\rightarrow \overline{RD} / \overline{WR}$ fall	t _{AC}	x – 26		1.6		ns
3	$\overline{\text{RD}}$ rise \rightarrow A0 to A23 hold	tCAR	0.5x - 13.8		0.0		ns
4	$\overline{\text{WR}} \text{ rise} \rightarrow \text{A0 to A23 hold}$	t _{CAW}	x – 13		14.6		ns
5	A0 to A23 valid \rightarrow D0 to D15 input	t _{AD}		3.5x - 40		56.6	ns
6	\overline{RD} fall \rightarrow D0 to D15 input	t _{RD}		2.5x - 34		35.0	ns
7	RD low width	t _{RR}	2.5x - 25		44.0		ns
8	$\overline{\text{RD}}$ rise \rightarrow D0 to D15 hold	t _{HR}	0		0		ns
9	WR low width	tww	2.0x - 25		30.2		ns
10	D0 to D15 valid $\rightarrow \overline{WR}$ rise	t _{DW}	1.5x - 35		6.4		ns
11	$\overline{\text{WR}}$ rise \rightarrow D0 to D15 hold (1 + N) waits mode	t _{WD}	x - 25		2.6		ns
12	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input (1 + N) waits mode	t _{AW}		3.5x - 60		36.6	ns
13	$\overline{\text{RD}} / \overline{\text{WR}} $	t _{CW}	2.5x + 0		69.0		ns
14	A0 to A23 valid → PORT input	t _{APH}		3.5x - 76		20.6	ns
15	A0 to A23 valid → PORT hold	t _{APH2}	3.5x		96.6		ns
16	A0 to A23 valid → PORT valid	t _{APO}		3.5x + 60	_	156.6	ns


AC Measuring Conditions

• Output Level : High = 0.7 Vcc, Low = 0.3 Vcc, $C_L = 50 \text{ pF}$

• Input Level : High = 0.9 Vcc, Low = 0.1 Vcc


Note: Symbol x in the above table means the period of clock f_{FPH} , it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting.

(2) Read cycle

Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

(3) Write cycle

Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as \overline{WR} and \overline{CS} are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.4 AD Conversion Characteristics

AVCC = DVCC, AVSS = DVSS

Parameter	Symbol	Min	Тур.	Max	Unit
Analog reference voltage (+)	VREFH	Vcc - 0.2 V	Vcc	Vcc	
Analog reference voltage (-)	VREFL	V _{ss}	V _{SS}	Vss + 0.2 V	V
Analog input voltage range	VAIN	V _{REFL}		V _{REFH}	
Analog current for analog Reference voltage <vrefon> = 1</vrefon>	IREF (VREFL = 0V)		0.94	1.35	mA
<vrefon> = 0</vrefon>			0.02	5.0	μА
Error (not including quantizing errors)	_		±1.0	±4.0	LSB

Note 1:1 LSB = (VREFH - VREFL)/1024 [V]

Note 2: The value of lcc includes the current which flows through the AVCC pin.

4.5 Serial Channel Timing (I/O Internal Mode)

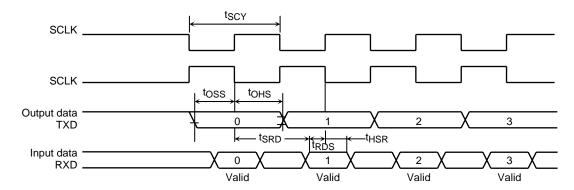
Note: Symbol x in the below table means the period of clock f_{FPH} , it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting.

(1) SCLK input mode

Parameter	Symbol	Varial	36 MHz (Note)		Unit	
	,,,,,,	Min	Max	Min Max		0
SCLK period	tscy	16X		0.44		μS
Output data → SCLK rising/falling edge*	toss	t _{SCY} /2 - 4X - 85		25		ns
SCLK rising/falling edge* → Output data hold	tons	$t_{SCY}/2 + 2X + 0$		276		ns
SCLK rising/falling edge* → Input data hold	tHSR	3X + 10		92		ns
SCLK rising/falling edge* → Valid data input	tSRD		t _{SCY} – 0		440	ns
Valid data input → SCLK rising/falling edge*	t _{RDS}	0		0		ns

*) SCLK rinsing/falling edge: The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.


Note: at $t_{SCY} = 16X$

(2) SCLK output mode

Parameter	Symbol	Vari	36 MHz (Note)		Unit	
rarameter	Cymbol	Min	Max	Min	Max	Offic
SCLK period (programable)	tSCY	16X	8192X	0.44		μS
Output data →SCLK rising/falling edge*	toss	t _{SCY} /2 - 40		180		ns
SCLK rising/falling edge* → Output data hold	tOHS	t _{SCY} /2 - 40		180		ns
SCLK rising/falling edge* → Input data hold	tHSR	0		0		ns
SCLK rising/falling edge* → Valid data input	tSRD		t _{SCY} - 1X - 90		324	ns
Valid data input \rightarrow SCLK rising/falling edge*	t _{RDS}	1X + 90		117		ns

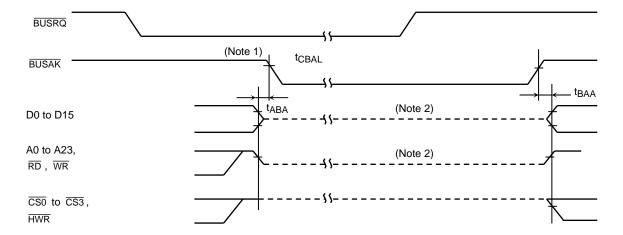
*) SCLK rinsing/falling edge: The rising edge is used in SCLK rising mode. The falling edge is used in SCLK falling mode.

Note: at $t_{SCY} = 16X$

4.6 Event Counter (TA0IN, TA4IN, TB0IN0, TB0IN1)

Parameter	Symbol	Variable		36 MHz		Linit	
Farameter	Symbol	Min	Max	Min	Max	Unit	
Clock perild	t _{VCK}	8X + 100		320		ns	
Clock low level width	t _{VCKL}	4X + 40		150		ns	
Clock high level width	tvckh	4X + 40		150		ns	

Note: Symbol x in the above table means the period of clock f_{FPH} , it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting.


4.7 Interrupts

Note: Symbol x in the above table means the period of clock f_{FPH} , it's half period of the system clock f_{SYS} for CPU core. The period of f_{FPH} depends on the clock gear setting.

(1) $\overline{\text{NMI}}$, INT0 to INT5 interrupts

Parameter	Symbol	Vari	36 MHz		Unit	
		Min	Max	Min	Max	Offic
NMI, INTO to INT5 low level width	tINTAL	4X + 40		150		ns
NMI, INT0 to INT5 high level width	tINTAH	4X + 40		150		ns

4.8 Bus Request/Bus Acknowledge

Parameter	Symbol	Variable		f _{FPH} = 36 MHz		Unit
		Min	Max	Min	Max	O.III
Output buffer to BUSAK low	t _{ABA}	0	80	0	80	ns
BUSAK high to output buffer on	t _{BAA}	0	80	0	80	ns

Note 1: Even if the $\overline{\text{BUSRQ}}$ signal goes Low, the bus will not be released while the $\overline{\text{WAIT}}$ signal is Low. The bus will only be released when $\overline{\text{BUSRQ}}$ goes Low while $\overline{\text{WAIT}}$ is High.

Note 2: This line shows only that the output buffer is in the Off state.

It does not indicate that the signal level is fixed.

Just after the bus is released, the signal level set before the bus was released is maintained dynamically by the external capacitance. Therefore, to fix the signal level using an external resister during bus release, careful design is necessary, since fixing of the level is delayed.

The internal programmable pull-up/pull-down resistor is switched between the Active and Non-Active states by the internal signal.