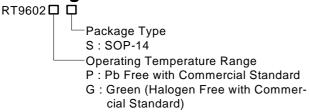


Dual Channel Synchronous-Rectified Buck MOSFET Driver

General Description


The RT9602 is a dual power channel MOSFET driver specifically designed to drive four power N-Channel MOSFETs in a synchronous-rectified buck converter topology. These drivers combined with RT9237/A and RT9241A/B series of Multi-Phase Buck PWM controllers provide a complete core voltage regulator solution for advanced microprocessors.

The RT9602 can provide flexible gate driving for both high side and low side drivers. This gives more flexibility of MOSFET selection.

The output drivers in the RT9602 have the capability to drive a 3000pF load with a 40nS propagation delay and 80nS transition time. This device implements bootstrapping on the upper gates with only a single external capacitor required for each power channel. This reduces implementation complexity and allows the use of higher performance, cost effective, N-Channel MOSFETs. Adaptive shoot-through protect-ion is integrated to prevent both MOSFETs from conducting simultaneously.

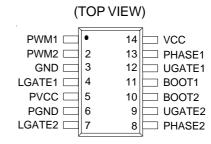
The RT9602 can detect high side MOSFET drain-to-source electrical short at power on and pull the 12V power by low side MOS and cause power supply to go into over current shutdown to prevent damage of CPU.

Ordering Information

Note:

RichTek Pb-free and Green products are :

- ▶RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶Suitable for use in SnPb or Pb-free soldering processes.
- ▶100%matte tin (Sn) plating.

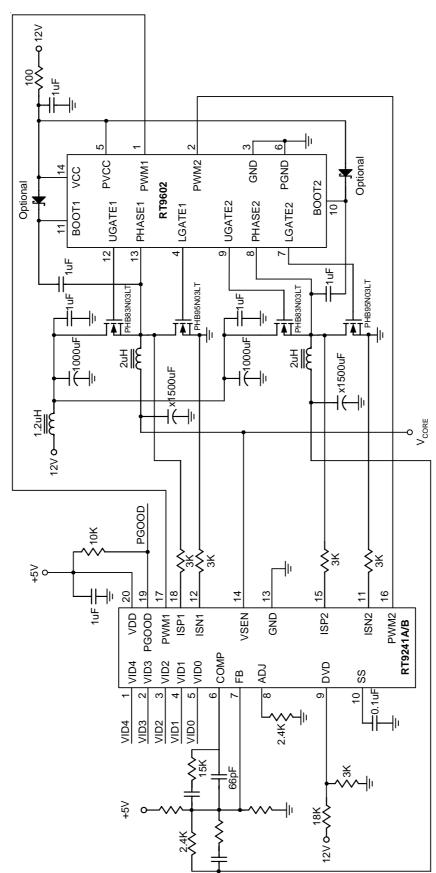

Features

- Drives Four N-Channel MOSFETs
- Adaptive Shoot-Through Protection
- Internal Bootstrap Devices
- Small SOP-14 Package
- 5V to 12V Gate-Drive Voltages for Optimal Efficiency
- Tri-State Input for Bridge Shutdown
- Supply Under-Voltage Protection
- Power ON Over-Voltage Protection
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Core Voltage Supplies for Intel Pentium[®] 4 and AMD[®] AthlonTM Microprocessors
- High Frequency Low Profile DC-DC Converters
- High Current Low Voltage DC-DC Converters

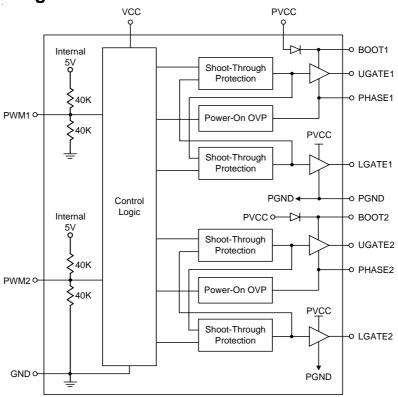
Pin Configurations



SOP-14

DS9602-08 March 2007

Typical Application Circuit



Functional Pin Description

Pin No.	Pin Name	Pin Function
1	PWM1	Channel 1 PWM Input
2	PWM2	Channel 2 PWM Input
3	GND	Ground Pin
4	LGATE1	Lower Gate Drive of Channel 1
5	PVCC	Upper and Lower Gate Driver Power Rail
6	PGND	Lower Gate Driver Ground Pin
7	LGATE2	Lower Gate Drive of Channel 2
8	PHASE2	Connect this pin to phase point of channel 2. Phase point is the connection point of high side MOSFET source and low side MOSFET drain
9	UGATE2	Upper Gate Drive of Channel 2
10	BOOT2	Floating Bootstrap Supply Pin of Channel 2
11	BOOT1	Floating Bootstrap Supply Pin of Channel 1
12	UGATE1	Upper Gate Drive of Channel 1
13	PHASE1	Connect this pin to phase point of channel 1. Phase point is the connection point of high side MOSFET source and low side MOSFET drain
14	VCC	Control Logic Power Supply

Function Block Diagram

Absolute Maximum Ratings (Note 1)

 Supply Input Voltage, V_{CC}	V _{CC} + 0.3V 15V
DC	-10V to 30V
BOOT to GND	
DC< 200ns	-0.3V to 42V
UGATE LGATE	
• Package Thermal Resistance (Note 3) SOP-14, θ_{JA}	127.67°C /W
Ambient Temperature Junction Temperature	
Storage Temperature Range Lead Temperature (Soldering, 10 sec.)	-40°C to 150°C
• ESD Susceptibility (Note 2)	
HBM (Human Body Mode) MM (Machine Mode)	

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units				
V _{CC} Supply Current										
Bias Supply Current	I _{VCC}	$f_{PWM} = 250 \text{kHz}, \ V_{PVCC} = 12 \text{V}, \ C_{BOOT} = 0.1 \mu\text{F}, \ R_{PHASE} = 20 \Omega$	1	5.5	8	mA				
Power Supply Current	I _{PVCC}	f_{PWM} = 250kHz, V_{PVCC} = 12V, C_{BOOT} = 0.1 μ F, R_{PHASE} = 20 Ω	-	5.5	10	mA				
Power-On Reset										
V _{CC} Rising Threshold			8.6	9.9	10.7	V				
Hysteresis			0.6	1.35		V				
PWM Input	PWM Input									
Maximum Input Current		V _{PWM} = 0 or 5V	80	127	150	μΑ				
PWM Floating Voltage		VCC = 12V	1.1	2.1	3.7	V				
PWM Rising Threshold			3.3	3.7	4.3	V				
PWM Falling Threshold			1.0	1.26	1.5	V				
UGATE Rise Time		$V_{PVCC} = V_{VCC} = 12V$, 3nF load		30		ns				
LGATE Rise Time		$V_{PVCC} = V_{VCC} = 12V$, 3nF load		30		ns				
UGATE Fall Time		$V_{PVCC} = V_{VCC} = 12V$, 3nF load		40		ns				
LGATE Fall Time		V _{PVCC} = V _{VCC} = 12V, 3nF load		30		ns				
UGATE Turn-Off Propagation Delay		V _{VCC} = V _{PVCC} = 12V, 3nF load		60		ns				
LGATE Turn-Off Propagation Delay		V _{VCC} = V _{PVCC} = 12V, 3nF load		45		ns				
Shutdown Window			1.26		3.7	V				
Output										
Upper Drive Source	R _{UGATE}	V _{VCC} = 12V, V _{PVCC} = 12V		1.75	3.0	Ω				
Upper Drive Sink	RUGATE	V _{VCC} = 12V, V _{PVCC} = 12V		2.8	5.0	Ω				
Lower Drive Source	RLGATE	V _{VCC} = 12V, V _{PVCC} = 12V		1.9	3.0	Ω				
Lower Drive Sink	R _{LGATE}	V _{VCC} = V _{PVCC} = 12V		1.6	3.0	Ω				

- **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Devices are ESD sensitive. Handling precaution recommended.
- Note 3. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Application Information

The RT9602 has power on protection function which held UGATE and LGATE low before VCC up cross the rising threshold voltage. After the initialization, the PWM signal takes the control. The rising PWM signal first forces the LGATE signal turns low then UGATE signal is allowed to go high just after a non-overlapping time to avoid shoot-through current. The falling of PWM signal first forces UGATE to go low. When UGATE and PHASE signal reach a predetermined low level, LGATE signal is allowed to turn high. The non-overlapping function is also presented between UGATE and LGATE signal transient.

The PWM signal is recognized as high if above rising threshold and as low if below falling threshold. Any signal level in this window is considered as tri-state, which causes turn-off of both high side and low-side MOSFET. When PWM input is floating (not connected), internal divider will pull the PWM to 1.9V to give the controller a recognizable level. The maximum sink/source capability of internal PWM reference is $60\mu A$.

The PVCC pin provides flexibility of both high side and low side MOSFET gate drive voltages. If 8V, for example, is applied to PVCC, then high side MOSFET gate drive is 8V to 1.5V (approximately, internal diode plus series resistance voltage drop). The low side gate drive voltage is exactly 8V.

The RT9602 implements a power on over-voltage protection function. If the PHASE voltage exceeds 1.5V at power on, the LGATE would be turn on to pull the PHASE low until the PHASE voltage goes below 1.5V. Such function can protect the CPU from damage by some short condition happened before power on, which is sometimes encountered in the M/B manufacturing line.

Driving power MOSFETs

The DC input impedance of the power MOSFET is extremely high. When V_{gs} at 12V (or 5V), the gate draws the current only few nanoamperes. Thus once the gate has been driven up to "ON" ON level, the current could be negligible.

However, the capacitance at the gate to source terminal should be considered. It requires relatively large currents to drive the gate up and down 12V (or 5V) rapidly. It also required to switch drain current on and off with the required speed. The required gate drive currents are calculated as follows.

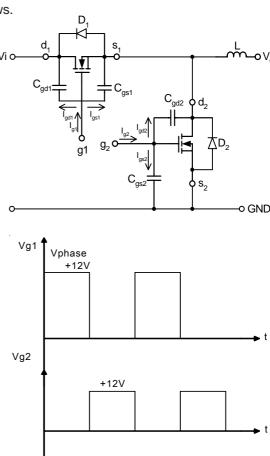


Figure 1. The gate driver must supply I_{gs} to C_{gs} and I_{gd} to C_{gd}

In Figure 1, the current I_{g1} and I_{g2} are required to move the gate up to 12V. The operation consists of charging C_{gd} and C_{gs} . C_{gs1} and C_{gs2} are the capacitances from gate to source of the high side and the low side power MOSFETs, respectively. In general data sheets, the C_{gs} is referred as " C_{iss} " which is the input capacitance. C_{gd1} and C_{gd2} are the capacitances from gate to drain of the high side and the low side power MOSFETs, respectively and referred to the data sheets as " C_{rss} ," the reverse transfer capacitance. For example, t_{r1} and t_{r2} are the rising time of the high side and the low side power MOSFETs respectively, the required current I_{gs1} and I_{gs2} , are showed below

$$Igs1 = Cgs1 \frac{dVg1}{dt} = \frac{Cgs1 \times 12}{tr1}$$
 (1)

$$I_{gs2} = C_{gs2} \frac{dV_{g2}}{dt} = \frac{C_{gs2} \times 12}{t_{r2}}$$
 (2)

According to the design of RT9602, before driving the gate of the high side MOSFET up to 12V (or 5V), the low side MOSFET has to be off; and the high side MOSFET is turned off before the low side is turned on. From Figure 1, the body diode " D_2 " had been turned on before high side MOSFETs turned on

$$I_{gd1} = C_{g1} \frac{dV}{dt} = C_{gd1} \frac{12V}{t_{r1}}$$
 (3)

Before the low side MOSFET is turned on, the C_{gd2} have been charged to Vi. Thus, as C_{gd2} reverses its polarity and g_2 is charged up to 12V, the required current is

$$I_{gd2} = C_{gd2} \frac{dV}{dt} = C_{gd2} \frac{V_{i+12V}}{t_{r2}}$$
 (4)

It is helpful to calculate these currents in a typical case. Assume a synchronous rectified BUCK converter, input voltage V_i = 12V, V_{g1} = V_{g2} = 12V. The high side MOSFET is PHB83N03LT whose C_{iss} = 1660pF, C_{rss} = 380pF,and t_r = 14nS. The low side MOSFET is PHB95N03LT whose C_{iss} = 2200pF, C_{rss} = 500pF, and t_r = 30nS, from the equation (1) and (2) we can obtain

$$I_{gs1} = \frac{1660 \times 10^{-12} \times 12}{14 \times 10^{-9}} = 1.428 \text{ (A)}$$
 (5)

$$I_{gs2} = \frac{2200 \times 10^{-12} \times 12}{30 \times 10^{-9}} = 0.88 \text{ (A)}$$
 (6)

from equation. (3) and (4)

$$I_{gs1} = \frac{380 \times 10^{-12} \times 12}{14 \times 10^{-9}} = 0.326 \text{ (A)}$$
 (7)

$$I_{gs2} = \frac{500 \times 10^{-12} \times (12 + 12)}{30 \times 10^{-9}} = 0.4(A)$$
 (8)

the total current required from the gate driving source is

$$I_{g1} = I_{gs1} + I_{gd1} = (1.428 + 0.326) = 1.745(A)$$
 (9)

$$I_{g2} = I_{gs2} + I_{gd2} = (0.88 + 0.4) = 1.28(A)$$
 (10)

By a similar calculation, we can also get the sink current required from the turned off MOSFET.

Layout Consider

Figure 2. shows the schematic circuit of a two-phase synchronous-buck converter to implement the RT9602. The converter operates for the input rang from 5V to 12V.

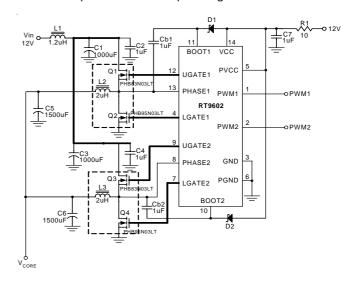


Figure 2. Two- Phase Synchronous-Buck Converter Circuit

When layout the PCB, it should be very careful. The power-circuit section is the most critical one. If not configured properly, it will generate a large amount of EMI. The junction of Q1, Q2, L2 and Q3, Q4, L4 should be very close. The connection from Q1, and Q3 drain to positive sides of C1, C2, C3, and C4; the connection from Q2, and Q4 source to the negative sides of C1, C2, C3, and C4 should be as short as possible.

Next, the trace from Ugate1, Ugate2, Lgate1, and Lgate2 should also be short to decrease the noise of the driver output signals. Phase1 and phase2 signals from the junction of the power MOSFET, carrying the large gate drive current pulses, should be as heavy as the gate drive trace. The bypass capacitor C7 should be connected to PGND directly. Furthermore, the bootstrap capacitors (C_{b1} , C_{b2}) should always be placed as close to the pins of the IC as possible.

Select the Bootstrap Capacitor

Figure 3. shows part of the bootstrap circuit of RT9602. The V_{CB} (the voltage difference between BOOT1 and PHASE1 on RT9602) provides a voltage to the gate of the high side power MOSFET. This supply needs to be ensured that the MOSFET can be driven. For this, the capacitance C_B has to be selected properly. It is determined by following constraints.

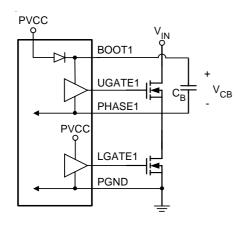


Figure 3. Part of Bootstrap Circuit of RT9602

In practice, a low value capacitor C_B will lead the overcharging that could damage the IC. Therefore to minimize the risk of overcharging and reducing the ripple on V_{CB} , the bootstrap capacitor should not be smaller than $0.1\mu F$, and the larger the better. In general design, using $1\mu F$ can provide better performance. At least one low-ESR capacitor should be used to provide good local de-coupling. Here, to adopt either a ceramic or tantalum capacitor is suitable.

Power Dissipation

For not exceeding the maximum allowable power dissipation to drive the IC beyond the maximum recommended operating junction temperature of $125^{\circ}C$, it is necessary to calculate power dissipation appropriately. This dissipation is a function of switching frequency and total gate charge of the selected MOSFET. Figure 4. shows the power dissipation test circuit. C_L and C_U are the UGATE and LGATE load capacitors, respectively. The bootstrap capacitor value is $0.01\mu F$.

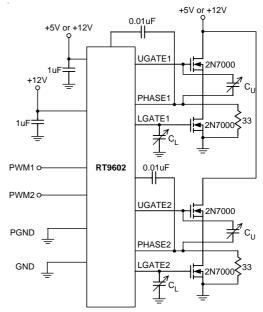


Figure 4. RT9602 Power Dissipation Test Circuit

Figure 5. shows the power dissipation of the RT9602 as a function of frequency and load capacitance. The value of the C_U and C_L are the same and the frequency is varied from 100kHz to 600kHz. PVCC and V_{CC} is 12V and connected together. Figure 6.shows the same characterization for PVCC tied to 5V instead of 12V.

DS9602-08 March 2007

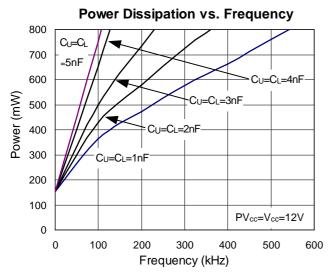


Figure 5. Power Dissipation vs. Frequency (RT9602)

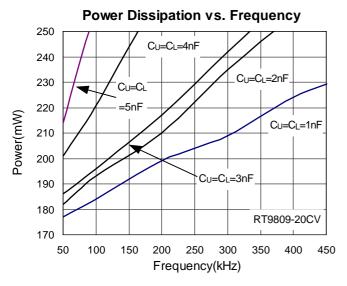


Figure 6. Power Dissipatin vs. Frequency, PVCC = 5V

The operating junction temperature can be calculated from the power dissipation curves (Figure 5 and Figure 6). Assume the RT9602's PVCC = V_{CC} =12V, operating frequency is 200kHz, and the C_U = C_L =1.5nF which emulate the input capacitances of the high side and low side power MOSFETs. From Figure 5, the power dissipation is 500mW. In RT9602, the package thermal resistance θ_{JA} is 127.67°C/W, the operating junction temperature is calculated as:

$$T_J = 127.67$$
°C/W x 500mW+ 25°C = 88.84°C (11)
where the 25°C is the ambient temperature.

The method to improve the thermal transfer is to increase the PCB copper area around the RT9602, first. Then, adding a ground pad under IC to transfer the heat to the peripheral of the board.

Power on Over-Voltage Protection Function

The RT9602 provides a protect function which can avoid some short condition happened before power on.

The following discussion about the power on over-voltage protection function of RT9602 is based on the experiments of the high side MOSFET directly shorted to 12V. The test circuit as shown in the typical application circuit (with RT9241A/B dual-channel synchronous-rectified buck controller) the V_{CC} and the phase signals are measured on the VCC pin and the phase pin of RT9602. The LGATE signal is measured on the gate terminal of MOSEFET.

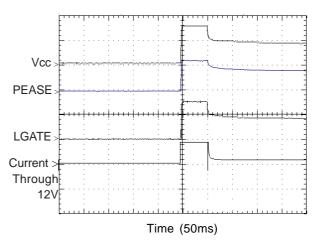


Figure 7 High Side Direct Short

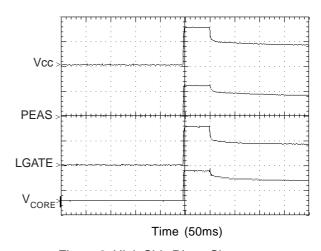


Figure 8. High Side Direct Short

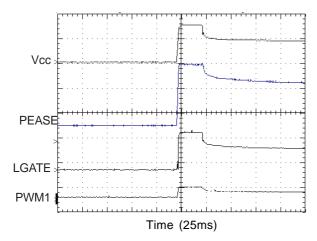
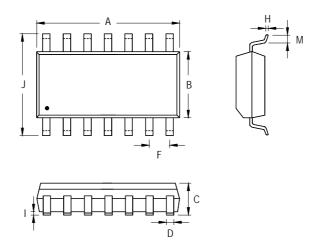



Figure 9. High Side Direct Short

Referring to Figure 7, when V_{CC} exceeds 1.5V, RT9602 turns on the LGATE to clamp the Phase through the low side MOSFET. During the turn-on of the low side MOSFET, the current of ATX 12V is limited at 25A although the maximum current of ATX 12V listed on the case of ATX is 15A. After the ATX 12V shuts down, the V_{CC} falls slowly. Please note that the trigger point of RT9602 is at 1.5V V_{CC} , and the clamped value of phase is at about 2.4V. Next, reference to Figure 8, it is obvious that since the Phase voltage increases during the power-on, the V_{CORE} increases correspondingly, but is gradually decreased as LGATE and V_{CC} decrease. In Figure 9, during the turn-on of the low side MOSFET, the V_{CC} is much less than 12V, thus the RT9241A/B keeps the PWM signal at high impedance state.

Outline Dimension

Sumbal	Dimensions	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	8.534	8.738	0.336	0.344	
В	3.810	3.988	0.150	0.157	
С	1.346	1.753	0.053	0.069	
D	0.330	0.508	0.013	0.020	
F	1.194	1.346	0.047	0.053	
Н	0.178	0.254	0.007	0.010	
I	0.102	0.254	0.004	0.010	
J	5.791	6.198	0.228	0.244	
М	0.406	1.270	0.016	0.050	

14-Lead SOP Plastic Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

8F, No. 137, Lane 235, Paochiao Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)89191466 Fax: (8862)89191465

Email: marketing@richtek.com