


# Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288  
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog  
Part Data Sheet, 9498103002  
Printed: 2013-02-27



Part Number: 9498103002

Frequency Range: Dimensions

Description: 98 E CORE

Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: E Cores

Generic Name: E19/5

## Mechanical Specifications

Weight: 4.600 (g)

## Part Type Information

The E core geometry offers an economical design approach for a wide range of inductive applications. The 77 and 78 materials are used in a variety power designs.

-Part number is for a single core.

-E cores can be supplied with the center post gapped to a mechanical dimension. E cores can also be gapped to an AI value. These cores will be supplied as sets. For any gapped E core requirement contact our customer service group.

-AI value is measured at 1 kHz, < 10 gauss.

-See [www.fair-rite.com/newfair/pdf/Directcurrent.pdf](http://www.fair-rite.com/newfair/pdf/Directcurrent.pdf) for document 'The Effect of Direct Current on the Inductance of a Ferrite Core', Figure 4 for information on AI vs. gap length.

-Fair-Rite equivalents to lamination sizes:

E2829 9477019002 E375 9477375002

E187 9477016002 E21 9477500002

E2425 9477015002 E625 9477625002, 9478625002

-Explanation of Part Numbers: Digits 1&2 = product class and 3&4 = material grade.



# Fair-Rite Products Corp.

## Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288  
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog  
Part Data Sheet, 9498103002  
Printed: 2013-02-27



RoHS  
Material Declaration

### Mechanical Specifications

| Dim | mm    | mm<br>tol  | nominal<br>inch | inch<br>misc. |
|-----|-------|------------|-----------------|---------------|
| A   | 19.00 | $\pm 0.4$  | 0.748           | -             |
| B   | 8.00  | $\pm 0.3$  | 0.315           | -             |
| C   | 4.80  | $\pm 0.3$  | 0.189           | -             |
| D   | 5.75  | $\pm 0.25$ | 0.226           | -             |
| E   | 13.80 | min        | 0.543           | min           |
| F   | 4.50  | $\pm 0.3$  | 0.177           | -             |
| G   | -     | -          | -               | -             |
| H   | -     | -          | -               | -             |
| J   | -     | -          | -               | -             |
| K   | -     | -          | -               | -             |

### Electrical Specifications

| Typical Impedance ( $\Omega$ ) |                 |
|--------------------------------|-----------------|
|                                |                 |
| Electrical Properties          |                 |
| $A_L$ (nH)                     | 1200 $\pm 25\%$ |
| $A_e$ (cm $^2$ )               | 0.22000         |
| $\sum I/A$ (cm $^{-1}$ )       | 18.10           |
| $l_e$ (cm)                     | 3.99            |
| $V_e$ (cm $^3$ )               | 0.87800         |
| $A_{min}$ (cm $^2$ )           | .216            |

### Land Patterns

| V | W<br>ref | X | Y | Z |
|---|----------|---|---|---|
| - | -        | - | - | - |
| - | -        | - | - | - |

### Winding Information

| Turns<br>Tested | Wire<br>Size | 1st Wire<br>Length | 2nd Wire<br>Length |
|-----------------|--------------|--------------------|--------------------|
| -               | -            | -                  | -                  |

### Reel Information

| Tape Width<br>mm | Pitch<br>mm | Parts 7 "<br>Reel | Parts 13 "<br>Reel | Parts 14 "<br>Reel |
|------------------|-------------|-------------------|--------------------|--------------------|
| -                | -           | -                 | -                  | -                  |

### Package Size

| Pkg Size |
|----------|
| -<br>(-) |

### Connector Plate

| # Holes | # Rows |
|---------|--------|
| -       | -      |

### Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A 1/2 turn is defined as a single pass through a hole.

$\sum I/A$  - Core Constant

$A_e$  - Effective Cross-Sectional Area

$A_L$  - Inductance Factor ( $\frac{L}{N^2}$ )

N/AWG - Number of Turns/Wire Size for Test Coil

$l_e$ : Effective Path Length

$V_e$ : Effective Core Volume

NI - Value of dc Ampere-turns



# Fair-Rite Products Corp. Your Signal Solution®

Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288  
Phone: (888) 324-7748 [www.fair-rite.com](http://www.fair-rite.com)

Fair-Rite Product's Catalog  
Part Data Sheet, 9498103002  
Printed: 2013-02-27



RoHS  
Material  
Declaration

## Ferrite Material Constants

|                                       |                                        |
|---------------------------------------|----------------------------------------|
| Specific Heat .....                   | 0.25 cal/g/°C                          |
| Thermal Conductivity .....            | 10x10 <sup>-3</sup> cal/sec/cm/°C      |
| Coefficient of Linear Expansion ..... | 8 - 10x10 <sup>-6</sup> /°C            |
| Tensile Strength .....                | 4.9 kgf/mm <sup>2</sup>                |
| Compressive Strength .....            | 42 kgf/mm <sup>2</sup>                 |
| Young's Modulus .....                 | 15x10 <sup>3</sup> kgf/mm <sup>2</sup> |
| Hardness (Knoop) .....                | 650                                    |
| Specific Gravity .....                | ≈ 4.7 g/cm <sup>3</sup>                |

*The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.*

See next page for further material specifications.



# Fair-Rite Products Corp.

## Your Signal Solution®

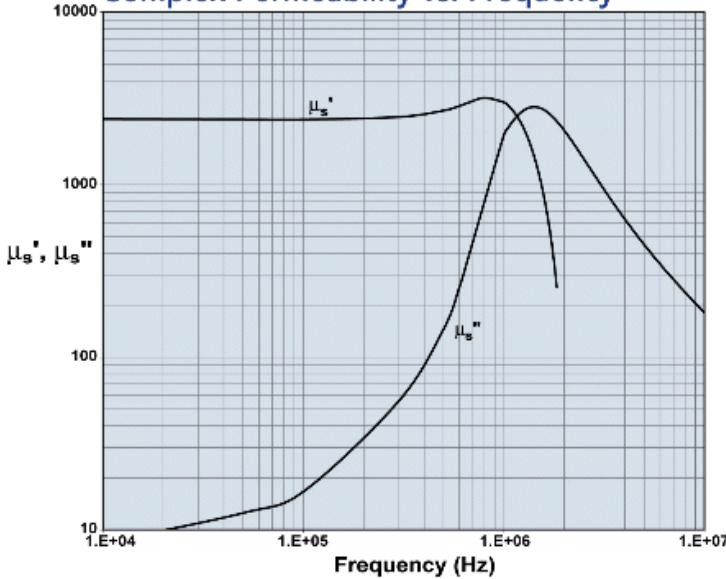
Ferrite Components for the Electronics Industry

Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288  
Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog  
Part Data Sheet, 9498103002  
Printed: 2013-02-27

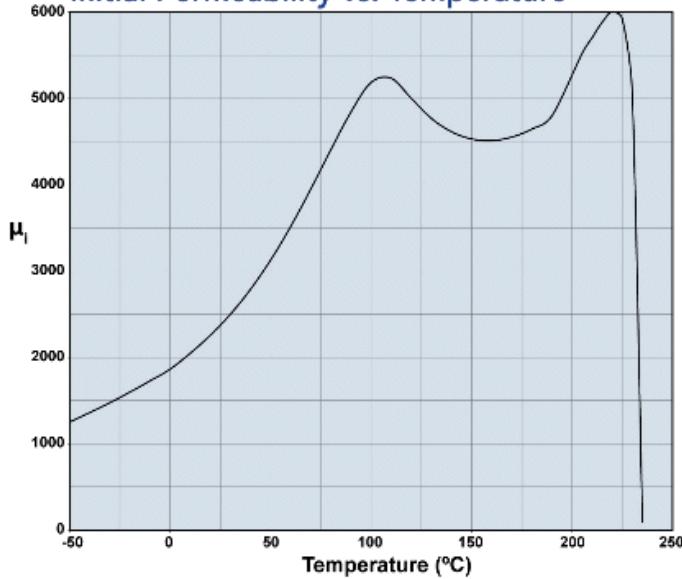


A low loss MnZn ferrite material for power applications up to 200kHz.


New type 98 Material is an improved version of Fair-Rite's 78 Material, this material supplies lower power loss at 100°C at moderate flux densities for operation below 200kHz.

Shapes available in 98 material are Toroids, U Cores, E&I Cores, Pot Cores, RM, PQ, ETD, EFD, EP, EER.

### 98 Material Characteristics


| Property                                                  | Unit                       | Symbol             | Value      |
|-----------------------------------------------------------|----------------------------|--------------------|------------|
| Initial Permeability<br>@ B < 10gauss                     |                            | $\mu_i$            | 2400       |
| Flux Density<br>@ Field Strength                          | gauss<br>oersted           | B<br>H             | 5000<br>5  |
| Residual Flux Density                                     | gauss                      | $B_r$              | 1800       |
| Coercive Force                                            | oersted                    | $H_c$              | 0.17       |
| Loss Factor<br>@ Frequency                                | $10^{-6}$<br>MHz           | $\tan\delta/\mu_i$ | 3.5<br>0.1 |
| Temperature Factor of<br>Initial Permeability (25 - 60°C) | $10^{-8} / ^\circ\text{C}$ |                    | 5.8        |
| Curie Temperature                                         | $^\circ\text{C}$           | $T_c$              | > 215      |
| Resistivity                                               | ohm-cm                     | $\rho$             | 200        |

Complex Permeability vs. Frequency



Measured on an 18/10/6mm toroid using  
HP 4284A and HP 4291A.

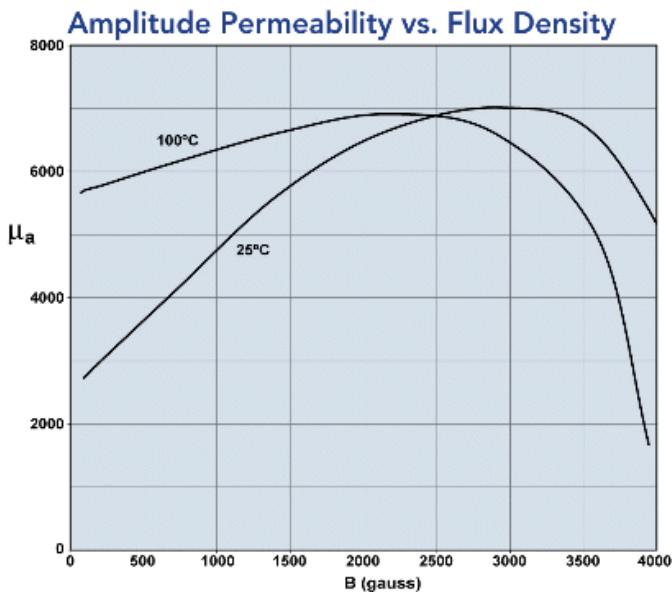
Initial Permeability vs. Temperature



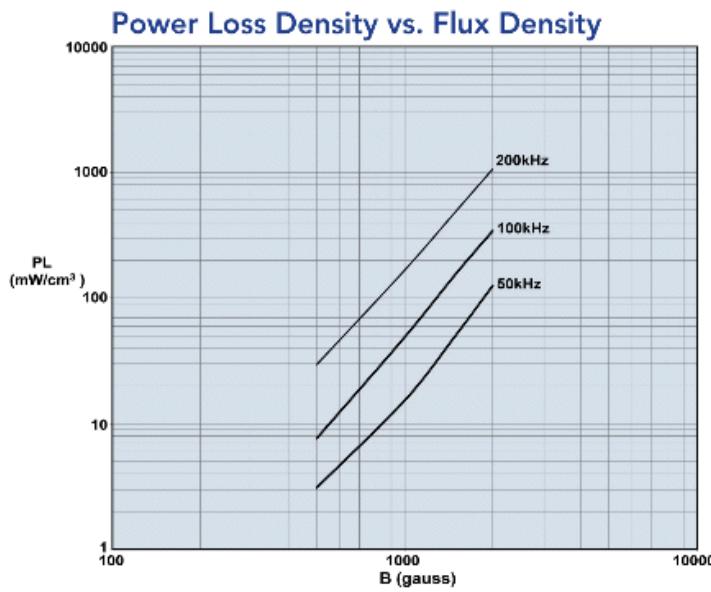
Measured on an 18/10/6mm toroid at 10kHz.



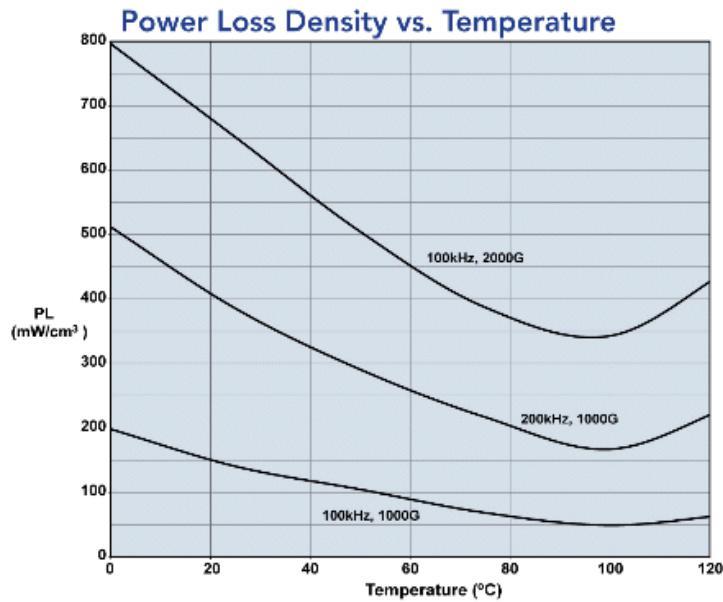
# Fair-Rite Products Corp. Your Signal Solution®


Ferrite Components for the Electronics Industry

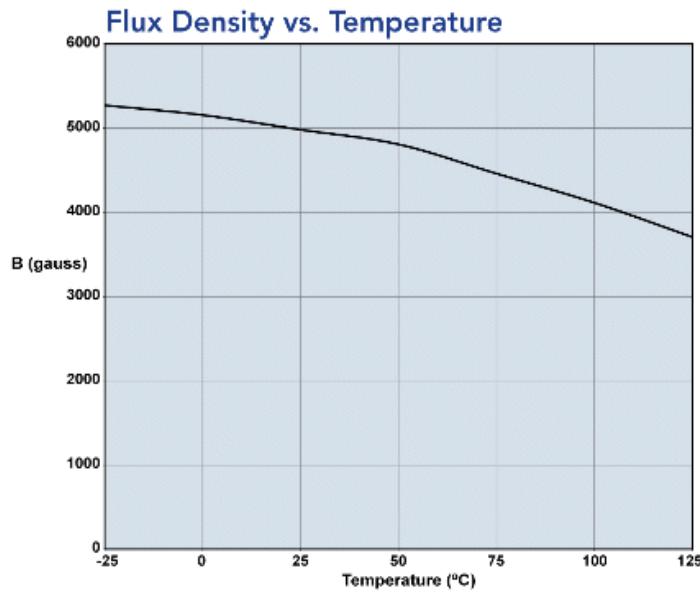
Fair-Rite Products Corp. PO Box J, One Commercial Row, Wallkill, NY 12589-0288  
Phone: (888) 324-7748 www.fair-rite.com


Fair-Rite Product's Catalog  
Part Data Sheet, 9498103002  
Printed: 2013-02-27




A low loss MnZn ferrite material for power applications up to 200kHz.




Measured on an 18/10/6mm toroid at 10kHz.



Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C.



Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.



Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.