

FEATURES:

- Typical $t_{sk(0)}$ (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C = 200\text{pF}$, $R = 0$)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to $+85^{\circ}\text{C}$
- $V_{CC} = 3.3\text{V} \pm 0.3\text{V}$, Normal Range
- $V_{CC} = 2.7\text{V}$ to 3.6V , Extended Range
- CMOS power levels ($0.4\mu\text{W}$ typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH16601A:

- High Output Drivers: $\pm 24\text{mA}$
- Reduced system switching noise

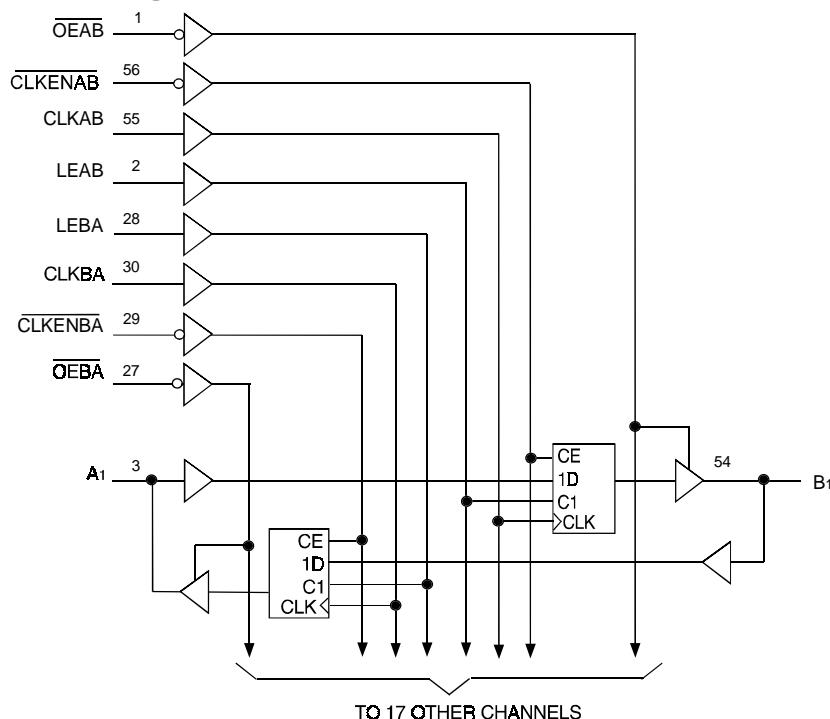
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION

The LVCH16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. The LVCH16601A combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

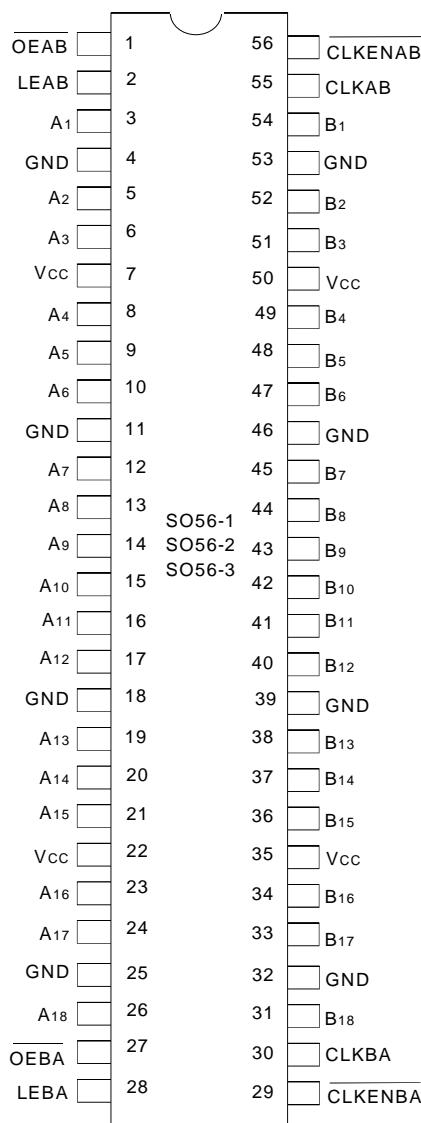
Data flow in each direction is controlled by output-enable (\overline{OEAB} and \overline{OEBA}), latched-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable ($\overline{CLKENAB}$ and $\overline{CLKENBA}$) inputs.


For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. Output enable \overline{OEAB} is active low. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses \overline{OEBA} , LEBA, CLKBA and $\overline{CLKENBA}$.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16601A has been designed with a $\pm 24\text{mA}$ output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16601A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/TSSOP/TVSOP
TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-B Output Enable Input (Active LOW)
OEBA	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA	B-to-A Clock Enable Input (Active LOW)

NOTE:

- These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
TSTG	Storage Temperature	- 65 to +150	°C
IOUT	DC Output Current	- 50 to +50	mA
I _{IK}	Continuous Clamp Current, V _I < 0 or V _O < 0	- 50	mA
I _{CC}	Continuous Current through each Vcc or GND	±100	mA
I _{SS}			

LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- Vcc terminals.
- All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Typ.	Max.	Unit
C _{IN}	Input Capacitance	V _{IN} = 0V	4.5	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	6.5	8	pF
C _{I/O}	I/O Port Capacitance	V _{IN} = 0V	6.5	8	pF

LVC Link

NOTE:

- As applicable to the device type.

FUNCTION TABLE (1, 2)

Inputs					Outputs	
CLKENAB	OEAB	LEAB	CLKAB	Ax	Bx	
X	H	X	X	X	Z	
X	L	H	X	L	L	
X	L	H	X	H	H	
H	L	L	X	X	B ₀ ⁽³⁾	
L	L	L	↑	L	L	
L	L	L	↑	H	H	
L	L	L	L	X	B ₀ ⁽³⁾	
L	L	L	H	X	B ₀ ⁽⁴⁾	

NOTES:

- H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
↑ = LOW-to-HIGH Transition
- A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA and CLKENBA.
- Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V_{IH}	Input HIGH Voltage Level	$V_{CC} = 2.3\text{V}$ to 2.7V		1.7	—	—	V
		$V_{CC} = 2.7\text{V}$ to 3.6V		2	—	—	
V_{IL}	Input LOW Voltage Level	$V_{CC} = 2.3\text{V}$ to 2.7V		—	—	0.7	V
		$V_{CC} = 2.7\text{V}$ to 3.6V		—	—	0.8	
I_{IH} I_{IL}	Input Leakage Current	$V_{CC} = 3.6\text{V}$	$V_I = 0$ to 5.5V	—	—	± 5	μA
I_{OZH} I_{OZL}	High Impedance Output Current (3-State Output pins)	$V_{CC} = 3.6\text{V}$	$V_O = 0$ to 5.5V	—	—	± 10	μA
I_{OFF}	Input/Output Power Off Leakage	$V_{CC} = 0\text{V}$, V_{IN} or $V_O \leq 5.5\text{V}$		—	—	± 50	μA
V_{IK}	Clamp Diode Voltage	$V_{CC} = 2.3\text{V}$, $I_{IN} = -18\text{mA}$		—	-0.7	-1.2	V
V_H	Input Hysteresis	$V_{CC} = 3.3\text{V}$		—	100	—	mV
I_{CCL} I_{CCH} I_{CCZ}	Quiescent Power Supply Current	$V_{CC} = 3.6\text{V}$	$V_{IN} = \text{GND}$ or V_{CC}	—	—	10	μA
		$3.6 \leq V_{IN} \leq 5.5\text{V}$ ⁽²⁾		—	—	10	
ΔI_{CC}	Quiescent Power Supply Current Variation	One input at $V_{CC} - 0.6\text{V}$ other inputs at V_{CC} or GND		—	—	500	μA

LVC Link

NOTES:

1. Typical values are at $V_{CC} = 3.3\text{V}$, $+25^{\circ}\text{C}$ ambient.
2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
I_{BHH} I_{BHL}	Bus-Hold Input Sustain Current	$V_{CC} = 3.0\text{V}$	$V_I = 2.0\text{V}$	-75	—	—	μA
			$V_I = 0.8\text{V}$	75	—	—	
I_{BHH} I_{BHL}	Bus-Hold Input Sustain Current	$V_{CC} = 2.3\text{V}$	$V_I = 1.7\text{V}$	—	—	—	μA
			$V_I = 0.7\text{V}$	—	—	—	
I_{BHHO} I_{BHL0}	Bus-Hold Input Overdrive Current	$V_{CC} = 3.6\text{V}$	$V_I = 0$ to 3.6V	—	—	± 500	μA

LVC Link

NOTES:

1. Pins with Bus-hold are identified in the pin description.
2. Typical values are at $V_{CC} = 3.3\text{V}$, $+25^{\circ}\text{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = 2.3V to 3.6V	I _{OH} = - 0.1mA	V _{CC} - 0.2	—	V
		V _{CC} = 2.3V	I _{OH} = - 6mA	2	—	
		V _{CC} = 2.3V	I _{OH} = - 12mA	1.7	—	
		V _{CC} = 2.7V		2.2	—	
		V _{CC} = 3.0V	I _{OH} = - 24mA	2.4	—	
		V _{CC} = 3.0V		2.2	—	
V _{OL}	Output LOW Voltage	V _{CC} = 2.3V to 3.6V	I _{OL} = 0.1mA	—	0.2	V
		V _{CC} = 2.3V	I _{OL} = 6mA	—	0.4	
			I _{OL} = 12mA	—	0.7	
		V _{CC} = 2.7V	I _{OL} = 12mA	—	0.4	
		V _{CC} = 3.0V	I _{OL} = 24mA	—	0.55	

NOTE:

1. V_{IH} and V_{IL} must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate V_{CC} range. T_A = - 40°C to +85°C.

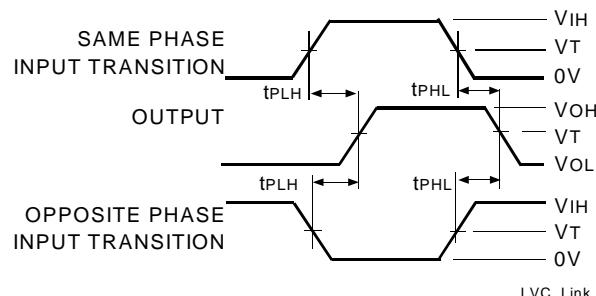
OPERATING CHARACTERISTICS, V_{CC} = 3.3V ± 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	C _L = 0pF, f = 10Mhz	—	pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled		—	pF

SWITCHING CHARACTERISTICS (1)

Symbol	Parameter	V _{CC} = 2.7V		V _{CC} = 3.3V±0.3V		Unit
		Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay Ax to Bx or Bx to Ax	—	5.4	—	4.6	ns
t _{PLH} t _{PHL}	Propagation Delay LEBA to Ax, LEAB to Bx	—	6.2	—	5.2	ns
t _{PLH} t _{PHL}	Propagation Delay CLKBA to Ax, CLKAB to Bx	—	6.3	—	5.3	ns
t _{PZH} t _{PZL}	Output Enable Time OEBA to Ax, OEAB to Bx	—	6.8	—	5.6	ns
t _{PHZ} t _{PLZ}	Output Disable Time OEBA to Ax, OEAB to Bx	—	6	—	5.2	ns
t _{su}	Set-up Time, HIGH or LOW Ax to CLKAB, Bx to CLKBA	1.5	—	1.5	—	ns
t _H	Hold Time HIGH or LOW Ax after CLKAB, Bx after CLKBA	0.8	—	0.8	—	ns
t _{su}	Set-up Time HIGH or LOW Ax to LEAB, Bx to LEBA	1	—	1	—	ns
	Clock LOW	1	—	1	—	ns
t _{su}	Set-up Time, CLKENAB to CLKAB	2.1	—	2.1	—	ns
t _{su}	Set-up Time, CLKENBA to CLKBA	2.1	—	2.1	—	ns
t _H	Hold Time, HIGH or LOW Ax after LEAB, Bx after LEBA	1.8	—	1.8	—	ns
t _H	Hold Time, CLKENAB after CLKAB	0.5	—	0.5	—	ns
t _H	Hold Time, CLKENBA after CLKBA	0.5	—	0.5	—	ns
t _w	LEAB or LEBA Pulse Width HIGH	3	—	3	—	ns
t _w	CLKAB or CLKBA Pulse Width HIGH or LOW	3	—	3	—	ns
t _{sk(o)}	Output Skew ⁽²⁾	—	—	—	500	ps

NOTES:


1. See test circuits and waveforms. TA = -40°C to +85°C.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$V_{CC(1)} = 3.3V \pm 0.3V$	$V_{CC(1)} = 2.7V$	$V_{CC(2)} = 2.5V \pm 0.2V$	Unit
V_{LOAD}	6	6	$2 \times V_{CC}$	V
V_{IH}	2.7	2.7	V_{CC}	V
V_T	1.5	1.5	$V_{CC} / 2$	V
V_{LZ}	300	300	150	mV
V_{HZ}	300	300	150	mV
C_L	50	50	30	pF

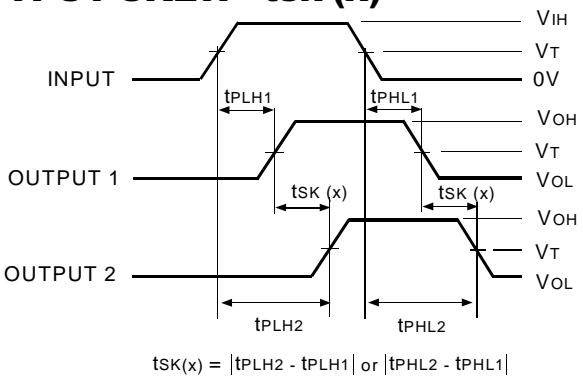
PROPAGATION DELAY

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.
 R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTE:


1. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2.5\text{ns}$; $t_r \leq 2.5\text{ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10\text{MHz}$; $t_f \leq 2\text{ns}$; $t_r \leq 2\text{ns}$.

SWITCH POSITION

Test	Switch
Open Drain	V_{LOAD}
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

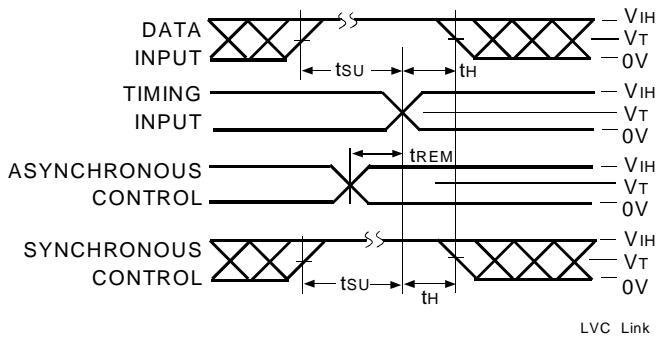
LVC Link

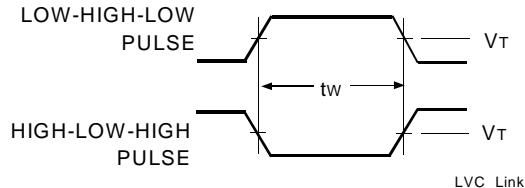
OUTPUT SKEW - $t_{SK}(x)$

LVC Link

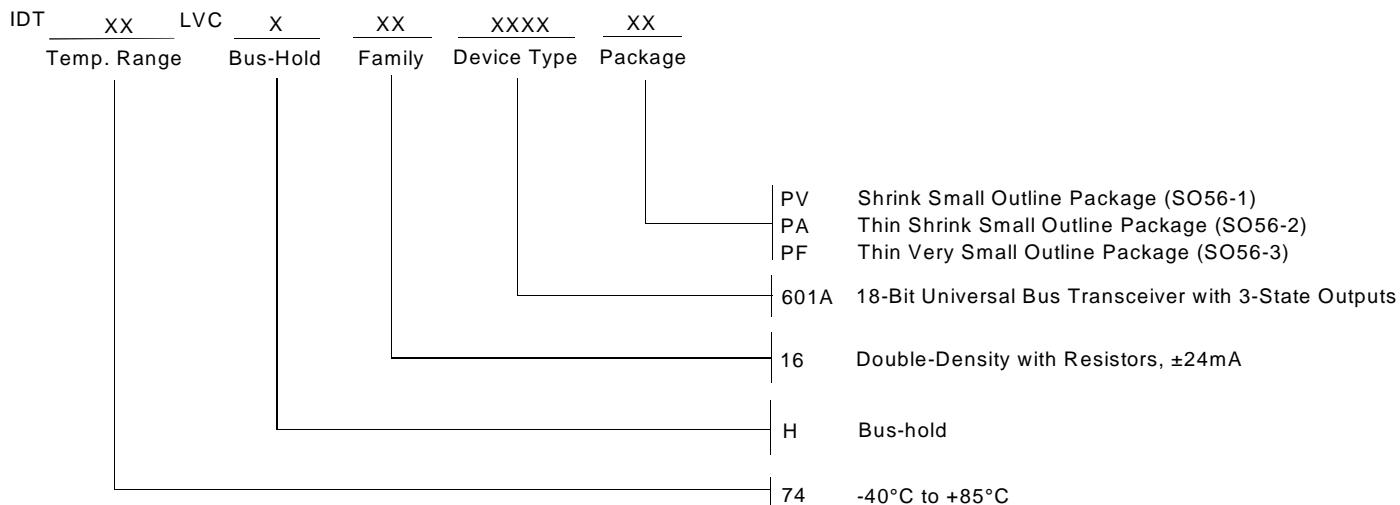
NOTES:

1. For $t_{SK}(o)$ OUTPUT1 and OUTPUT2 are any two outputs.
2. For $t_{SK}(b)$ OUTPUT1 and OUTPUT2 are in the same bank.


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.