

Fair-Rite Product's Catalog Part Data Sheet, 5677110721 Printed: 2010-11-09

ng).

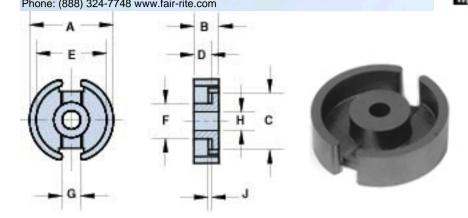


Figure 1

Part Number: 5677110721

Frequency Range: MnZn 77 material

Description: 77 POT CORE

Application: Inductive Components

Where Used: Closed Magnetic Circuit

Part Type: Pot Cores

Mechanical Specifications

Weight: .750 (g)

Part Type Information

The pot core has found wide application in all types of inductive components. The core configuration provides a high degree of self-shielding. It also facilitates gapping to enhance its utility for a variety of magnetic designs.

- -The part number is for a single core.
- -Pot cores can be supplied with the center post gapped to a mechanical dimension.
- -Pot cores can also be gapped to an Al value. These parts will be supplied as sets. Figure 1 pot core sets that have an airgap in one of the core halves will be marked with a white marking on the backwall. Pot core sets that are gapped symmetrically will not be marked.
- -AL value is measured at 10 kHz, at < 10 gauss.
- -The pot cores shown in Figure 1 are in conformance with IEC 60133.
- -For any pot core requirement not listed here or for gapped pot core designs feel free to contact our customer service.
- -Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade, 5&6 = core OD in mm's, 7&8 = height of assembled cores in mm's, 9&10 = 21 for ungapped core halves.

Fair-Rite Product's Catalog Part Data Sheet, 5677110721 Printed: 2010-11-09

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
Α	11.10	±0.20	0.437	-
В	3.30	-0.15	0.127	-
С	7.25	±0.25	0.285	-
D	2.20	+0.15	0.090	-
E	9.20	±0.20	0.362	-
F	4.60	±0.10	0.181	-
G	2.50	+0.35	0.105	-
Н	2.10	±0.10	0.083	-
J	-	-	-	-
K	-	-	-	-

Electrical Specifications

Typical Impedance (Ω)				
Electrical Properties				
A _L (nH)	1065 Min			
Ae(cm ²)	0.15900			
Σ I/A(cm ⁻¹)	10.00			
I _e (cm)	1.59			
V _e (cm ³)	0.25200			
A _{min} (cm ²)	.131			

Land Patterns

V	W ref	X	Υ	Z
-	-	-		

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A ½ turn is defined as a single pass through a hole.

∠I/A - Core Constant

A_e: Effective Cross-Sectional Area

 A_1 - Inductance Factor $\left(\frac{L}{N^2}\right)$

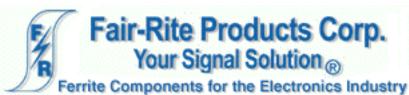
I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns

N/AWG - Number of Turns/Wire Size for Test Coil

Fair-Rite Product's Catalog Part Data Sheet, 5677110721 Printed: 2010-11-09



Ferrite Material Constants

0.25 cal/g/°C Specific Heat Thermal Conductivity 10x10⁻³ cal/sec/cm/°C Coefficient of Linear Expansion 8 - 10x10-6/°C Tensile Strength 4.9 kgf/mm² Compressive Strength 42 kgf/mm² 15x103 kgf/mm2 Young's Modulus Hardness (Knoop)..... 650 Specific Gravity $\approx 4.7 \text{ g/cm}^3$ The above quoted properties are typical for Fair-Rite MnZn and NiZn ferrites.

See next page for further material specifications.

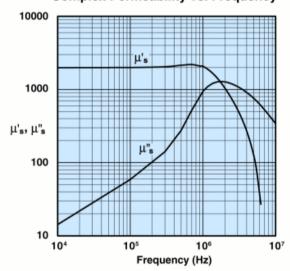
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

A MnZn ferrite for use in a wide range of high and low flux density inductive designs for frequencies up to 100 kHz.

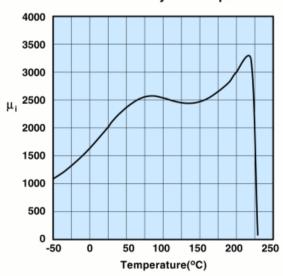
Pot cores, E&I cores, U cores, rods, toroids, and bobbins are all available in 77 material.

Fair-Rite Product's Catalog Part Data Sheet, 5677110721

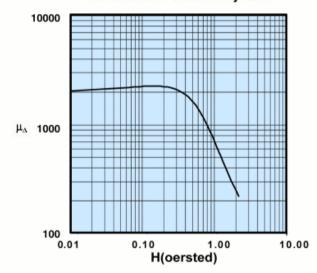
Printed: 2010-11-09



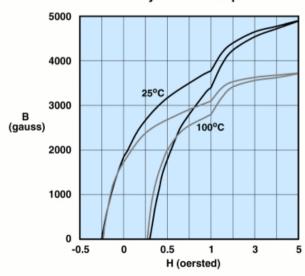
77 Material Characteristics:


Property	Unit	Symbol	Value
Initial Permeability @ B < 10 gauss		μ_{i}	2000
Flux Density	gauss	В	4900
@ Field Strength	oersted	н	5
Residual Flux Density	gauss	B,	1800
Coercive Force	oersted	H _c	0.30
Loss Factor	10-6	tan δ/μ	15
@ Frequency	MHz		0.1
Temperature Coefficient of Initial Permeability (20 -70°C)	%/°C		0.7
Curie Temperature	°C	T.	>200
Resistivity	Ωcm	ρ	1x10 ²

Complex Permeability vs. Frequency


Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

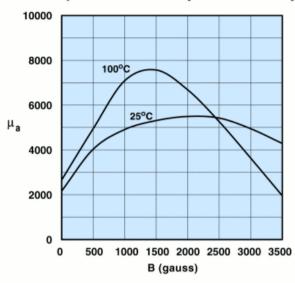
Initial Permeability vs. Temperature



Measured on an 18/10/6mm toroid at 100kHz.

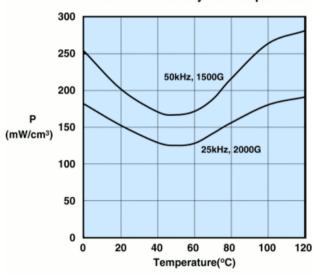
Incremental Permeability vs. H

Hysteresis Loop



Measured on an 18/10/6mm toroid at 10kHz.

Fair-Rite Products Corp. Your Signal Solution® Ferrite Components for the Electronics Industry


Fair-Rite Products Corp. PO Box J.One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

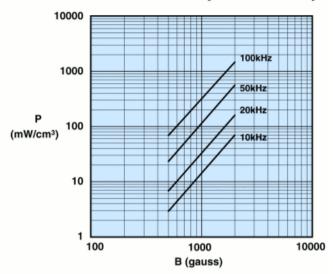
Amplitude Permeability vs. Flux Density

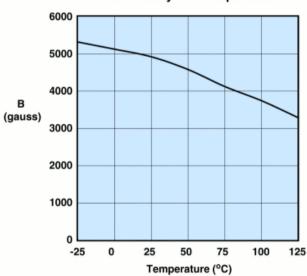
Measured on an 18/10/6mm toroid at 10kHz.

Power Loss Density vs. Temperature

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Fair-Rite Product's Catalog Part Data Sheet, 5677110721


Printed: 2010-11-09



Power Loss Density vs. Flux Density

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C

Flux Density vs. Temperature

Measured on an 18/10/6mm toroid at 10kHz and H=5 oersted.