

DESCRIPTION

The '92 is a 4-bit, ripple-type Divide-by-12 Counter. The device consists of four master-slave flip-flops internally connected to provide a divide-by-two section and a divide-by-six section. Each section has a separate Clock input to initiate state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

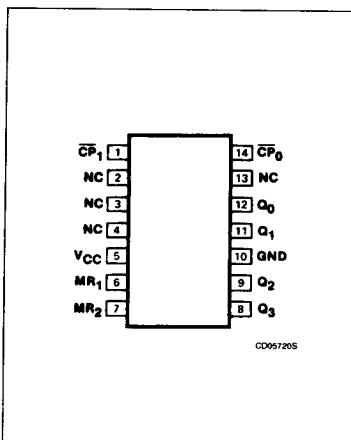
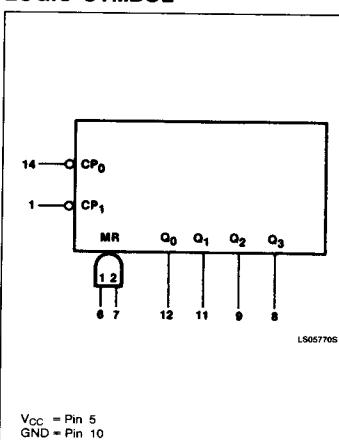
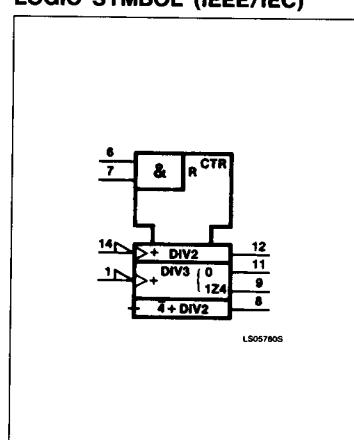
A gated AND asynchronous Master Reset (MR₁·MR₂) is provided which overrides both clocks and resets (clears) all the flip-flops.

TYPE	TYPICAL f_{MAX}	TYPICAL SUPPLY CURRENT
7492	28MHz	28mA
74LS92	42MHz	9mA

ORDERING CODE

PACKAGES	COMMERCIAL RANGE
	$V_{CC} = 5V \pm 5\%$; $T_A = 0^\circ C$ to $+70^\circ C$
Plastic DIP	N7492N, N74LS92N

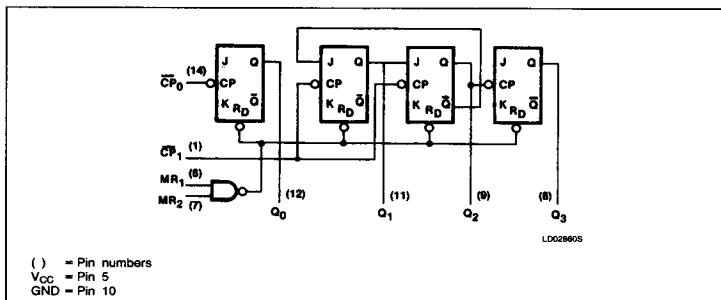
NOTE:




For information regarding devices processed to Military Specifications, see the Signetics Military Products Data Manual.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74	74LS
MR	Master reset inputs	1 <ul style="list-style-type: none">	1LS <ul style="list-style-type: none">
CP ₀	Input	2 <ul style="list-style-type: none">	6LS <ul style="list-style-type: none">
CP ₁	Input	4 <ul style="list-style-type: none">	8LS <ul style="list-style-type: none">
Q ₀ – Q ₃	Outputs	10 <ul style="list-style-type: none">	10LS <ul style="list-style-type: none">

NOTE:


Where a 74 unit load (ul) is understood to be 40 μA I_{IH} and -1.6mA I_{IL}, and a 74LS unit load (LSul) is 20 μA I_{IH} and -0.4mA I_{IL}.

PIN CONFIGURATION**LOGIC SYMBOL****LOGIC SYMBOL (IEEE/IEC)**

Counters

7492, LS92

LOGIC DIAGRAM

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the device may be operated in various counting modes. In a Modulo-12, Divide-by-12 Counter the \overline{CP}_1 input must be externally connected to the Q_0 output. The \overline{CP}_0 input receives the incoming count and Q_3 produces a symmetrical divide-by-12 square wave output. In a divide-by-six counter no external connections are required. The first flip-flop is used as a binary element for the divide-by-two function. The CP_1 input is used to obtain divide-by-three operation at the Q_1 and Q_2 outputs and divide-by-six operation at the Q_3 output.

FUNCTION TABLE

COUNT	OUTPUTS			
	Q_0	Q_1	Q_2	Q_3
0	L	L	L	L
1	H	L	L	L
2	L	H	L	L
3	H	H	L	L
4	L	L	H	L
5	H	L	H	L
6	L	L	L	H
7	H	L	L	H
8	L	H	L	H
9	H	H	L	H
10	L	L	H	H
11	H	L	H	H

NOTE:

Output Q_0 connected to input \overline{CP}_1 .

MODE SELECTION

RESET INPUTS		OUTPUTS			
MR ₁	MR ₂	Q_0	Q_1	Q_2	Q_3
H	H	L	L	L	L
L	H				Count
H	L				Count
L	L				Count

H = HIGH voltage level

L = LOW voltage level

X = Don't care

ABSOLUTE MAXIMUM RATINGS (Over operating free-air temperature range unless otherwise noted.)

PARAMETER	74	74LS	UNIT
	Min	Nom	
V_{CC} Supply voltage	7.0	7.0	V
V_{IN} Input voltage	-0.5 to +5.5	-0.5 to +7.0	V
I_{IN} Input current	-30 to +5	-30 to +1	mA
V_{OUT} Voltage applied to output in HIGH output state	-0.5 to + V_{CC}	-0.5 to + V_{CC}	V
T_A Operating free-air temperature range	0 to 70		°C

NOTE:

V_{IN} is limited to 5.5V on \overline{CP}_0 and \overline{CP}_1 inputs only on the 74LS92.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	74			74LS			UNIT
	Min	Nom	Max	Min	Nom	Max	
V_{CC} Supply voltage	4.75	5.0	5.25	4.75	5.0	5.25	V
V_{IH} HIGH-level input voltage	2.0			2.0			V
V_{IL} LOW-level input voltage			+0.8			+0.8	V
I_{IK} Input clamp current			-12			-18	mA
I_{OH} HIGH-level output current			-800			-400	μ A
I_{OL} LOW-level output current			16			8	mA
T_A Operating free-air temperature	0		70	0		70	°C

Counters

7492, LS92

DC ELECTRICAL CHARACTERISTICS (Over recommended operating free-air temperature range unless otherwise noted.)

PARAMETER	TEST CONDITIONS ¹	7492			74LS92			UNIT	
		Min	Typ ²	Max	Min	Typ ²	Max		
V_{OH} HIGH-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = \text{MIN}$, $V_{IL} = \text{MAX}$, $I_{OH} = \text{MAX}$	2.4	3.4		2.7	3.4		V	
V_{OL} LOW-level output voltage	$V_{CC} = \text{MIN}$, $V_{IH} = \text{MIN}$, $V_{IL} = \text{MAX}$	$I_{OL} = \text{MAX}$	0.2	0.4		0.35	0.5	V	
V_{IK} Input clamp voltage	$V_{CC} = \text{MIN}$, $I_I = I_{IK}$			-1.5			-1.5	V	
I_I Input current at maximum input voltage	$V_{CC} = \text{MAX}$	$V_I = 5.5V$	All inputs '92		1.0			mA	
		$V_I = 7.0V$	MR inputs				0.1	mA	
		$V_I = 5.5V$	\overline{CP}_0 input				0.2	mA	
			\overline{CP}_1 input				0.4	mA	
I_{IH} HIGH-level input current	$V_{CC} = \text{MAX}$	$V_I = 2.4V$	MR inputs		40			μA	
			\overline{CP}_0 input		80			μA	
			\overline{CP}_1 input		160			μA	
		$V_I = 2.7V$	MR inputs				20	μA	
			\overline{CP}_0 input ⁵				40	μA	
			\overline{CP}_1 input ⁵				80	μA	
I_{IL} LOW-level input current	$V_{CC} = \text{MAX}$	$V_I = 0.4V$	MR inputs		-1.6		-0.4	mA	
			\overline{CP}_0 input		-3.2		-2.4	mA	
			\overline{CP}_1 input		-6.4		-3.2	mA	
I_{OS} Short-circuit output current ³	$V_{CC} = \text{MAX}$		-18		-55	-20		-100	mA
I_{CC} Supply current ⁴ (total)	$V_{CC} = \text{MAX}$				51		9	15	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $V_{CC} = 5V$, $T_A = 25^\circ C$.
3. I_{OS} is tested with $V_{OUT} = +0.5V$ and $V_{CC} = \text{MAX} + 0.5V$. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
4. I_{CC} is measured with all outputs open, both MR inputs grounded following momentary connection to 4.5V, and all other inputs grounded.
5. The maximum limit for the 54LS92 only is 80 μA for \overline{CP}_0 and 160 μA for \overline{CP}_1 inputs.

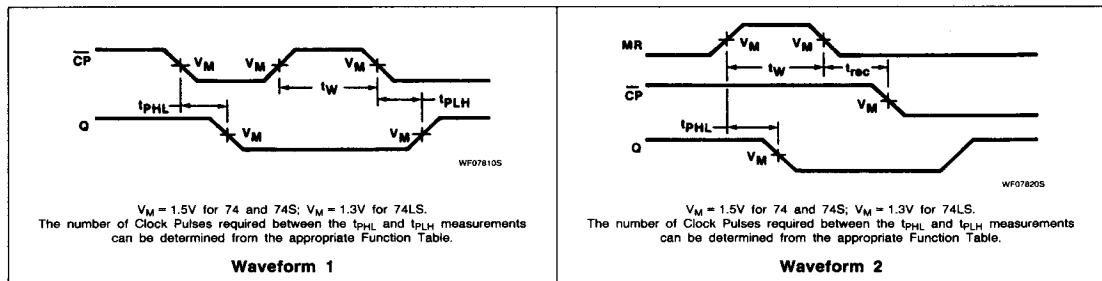
Counters

7492, LS92

AC ELECTRICAL CHARACTERISTICS $T_A = 25^\circ\text{C}$, $V_{CC} = 5.0\text{V}$

PARAMETER	TEST CONDITIONS	74		74LS		UNIT	
		$C_L = 15\text{pF}$, $R_L = 400\Omega$		$C_L = 15\text{pF}$, $R_L = 2\text{k}\Omega$			
		Min	Max	Min	Max		
f_{MAX}	\overline{CP}_0 input count frequency	Waveform 1	10		32	MHz	
f_{MAX}	\overline{CP}_1 input count frequency	Waveform 1	10		16		
t_{PLH}	Propagation delay \overline{CP}_0 input to Q_0 output	Waveform 1			16	ns	
t_{PHL}	Propagation delay CP_1 input to Q_1 output	Waveform 1			16	ns	
t_{PLH}	Propagation delay CP_1 input to Q_2 output	Waveform 1			16	ns	
t_{PHL}	Propagation delay CP_1 input to Q_3 output	Waveform 1			32	ns	
t_{PLH}	Propagation delay CP_0 input to Q_3 output	Waveform 1		100	48	ns	
t_{PHL}	MR input to any output	Waveform 2		100	50	ns	
					40	ns	

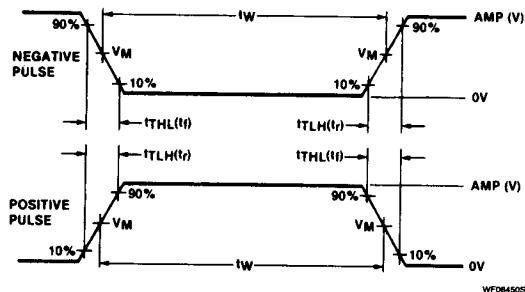
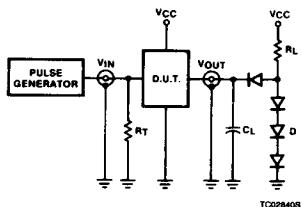
NOTE:


Per industry convention, f_{MAX} is the worst case value of the maximum device operating frequency with no constraints on t_r , t_f , pulse width or duty cycle.

5

AC SET-UP REQUIREMENTS $T_A = 25^\circ\text{C}$, $V_{CC} = 5.0\text{V}$

PARAMETER	TEST CONDITIONS	74		74LS		UNIT
		Min	Max	Min	Max	
t_W	\overline{CP}_0 pulse width	Waveform 1	50		15	ns
t_W	\overline{CP}_1 pulse width	Waveform 1	50		30	ns
t_W	MR pulse width	Waveform 2	50		15	ns
t_{rec}	Recovery time, MR to \overline{CP}	Waveform 2			25	ns



AC WAVEFORMS

Counters

7492, LS92

TEST CIRCUITS AND WAVEFORMS

VM = 1.3V for 74LS; VM = 1.5V for all other TTL families.

Test Circuit For 74 Totem-Pole Outputs

DEFINITIONS

R_L = Load resistor to V_{CC} ; see AC CHARACTERISTICS for value.
 C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

R_T = Termination resistance should be equal to Z_{OUT} of Pulse Generators.

D = Diodes are 1N916, 1N3064, or equivalent.

t_{TLH} , t_{THL} Values should be less than or equal to the table entries.

Input Pulse Definition

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	Pulse Width	t_{TLH}	t_{THL}
74	3.0V	1MHz	500ns	7ns	7ns
74LS	3.0V	1MHz	500ns	15ns	6ns
74S	3.0V	1MHz	500ns	2.5ns	2.5ns