Appendix A - ATtiny87/ATtiny167 Automotive Specification at 150°C

This document contains information specific to devices operating at temperatures up to 150°C. Only deviations are covered in this appendix, all other information can be found in the complete Automotive datasheet. The complete Automotive datasheet can be found on www.atmel.com

8-bit AVR®
Microcontroller
with 16K Bytes
In-System
Programmable
Flash

ATtiny87 ATtiny167 Automotive

1. Electrical Characteristics

1.1 Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Test Conditions	Unit
Operating Temperature	-55 to +150	°C
Storage Temperature	-65 to +175	°C
Voltage on any Pin except RESET with respect to Ground	-0.5 to V _{CC} +0.5	V
Voltage on RESET with respect to Ground	-0.5 to +13.0	V
Maximum Operating Voltage	6.0	V
DC Current per I/O Pin DC Current V _{CC} and GND	30 200.0	mA

1.2 DC Characteristics

2

 $T_A = -40$ °C to +150°C, $V_{CC} = 4.5$ V to 5.5V (unless otherwise noted)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Input Low Voltage, except XTAL1 and RESET pin	$V_{CC} = 4.5V - 5.5V$	V _{IL}	-0.5		+0.2V _{CC} ⁽¹⁾	V
Input High Voltage, except XTAL1 and RESET pins	$V_{CC} = 4.5V - 5.5V$	V _{IH}	0.6V _{CC} ⁽²⁾		V _{CC} + 0.5	V
Input Low Voltage, XTAL1 pin	$V_{CC} = 4.5V - 5.5V$	V _{IL1}	-0.5		+0.1V _{CC} ⁽¹⁾	V
Input High Voltage, XTAL1 pin	$V_{CC} = 4.5V - 5.5V$	V _{IH1}	0.7V _{CC} ⁽²⁾		V _{CC} + 0.5	V
Input Low Voltage, RESET pin	$V_{CC} = 4.5V - 5.5V$	V _{IL2}	-0.5		0.2V _{CC} ⁽¹⁾	V
Input High Voltage, RESET pin	$V_{CC} = 4.5V - 5.5V$	V _{IH2}	0.9V _{CC} ⁽²⁾		V _{CC} + 0.5	V
Input Low Voltage, RESET pin as I/O	$V_{CC} = 4.5V - 5.5V$	V _{IL3}	-0.5		0.2V _{CC} ⁽¹⁾	V
Input High Voltage, RESET pin as I/O	$V_{CC} = 4.5V - 5.5V$	V _{IH3}	0.8V _{CC} ⁽²⁾		V _{CC} + 0.5	V
Output Low Voltage ⁽³⁾ , I/O pin except RESET	I _{OL} = 10mA, V _{CC} = 5V	V _{OL}			0.8	V

Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low

- 2. "Min" means the lowest value where the pin is guaranteed to be read as high
- 3. Although each I/O port can sink more than the test conditions (20 mA at $V_{CC} = 5V$) under steady state conditions (non-transient), the following must be observed:
 - 1] The sum of all IOL, for all ports, should not exceed 400 mA.
 - 2] The sum of all IOL, for ports C0 C5, should not exceed 200 mA.
 - 3] The sum of all IOL, for ports C6, D0 D4, should not exceed 300 mA.
 - 4] The sum of all IOL, for ports B0 B7, D5 D7, should not exceed 300 mA.
 - If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
- 4. For temperature range +125°C to +150°C only. For -40°C to +125°C, refer to ATtiny167automotive datasheet.

ATtiny87/ATtiny167 Automotive

1.2 DC Characteristics (Continued)

 $T_A = -40$ °C to +150°C, $V_{CC} = 4.5$ V to 5.5V (unless otherwise noted) (Continued)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Output High Voltage ⁽⁴⁾ , I/O pin except RESET	$I_{OH} = -10 \text{ mA}, V_{CC} = 5V$	V _{OH}	4.0			V
Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin low (absolute value)	I _{IL}			1	μА
Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin high (absolute value)	I _{IH}			1	μА
Reset Pull-up Resistor		R _{RST}	35		65	kΩ
I/O Pin Pull-up Resistor		R _{PU}	20		50	kΩ
	16 MHz, Vcc = 5V	I _{CC}		10	15	mA
Power Supply Current	8 MHz, Vcc = 5V	I _{CC}		5.5	8.0	mA
Active mode	8 MHz, Vcc = 3V	I _{CC}		2.8	4.0	mA
	4 MHz, Vcc = 3V	I _{CC}		1.8	3.0	mA
	16 MHz, Vcc = 5V	I _{CC}		3.5	6.0	mA
Power Supply Current	8 MHz, Vcc = 5V	I _{CC}		1.8	3.0	mA
Idle mode	8 MHz, Vcc = 3V	I _{CC}		1.0	2.0	mA
	4 MHz, Vcc = 3V	I _{CC}		0.5	1.0	mA
	WDT enabled, Vcc = 5V	I _{CC}		7	150	μΑ
Power Supply Current	WDT disabled, Vcc = 5V	I _{CC}		0.18	150	μΑ
Power-down mode	WDT enabled, Vcc = 3V	I _{CC}		5	150	μΑ
	WDT disabled, Vcc = 3V	I _{CC}		0.15	100	μΑ
Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	I _{ACLK}	-50		+50	nA
Analog Comparator Propagation Delay	V _{CC} = 4.0V	t _{ACPD}		180		ns

Notes:

- 1. "Max" means the highest value where the pin is guaranteed to be read as low
- 2. "Min" means the lowest value where the pin is guaranteed to be read as high
- 3. Although each I/O port can sink more than the test conditions (20 mA at $V_{CC} = 5V$) under steady state conditions (non-transient), the following must be observed:
 - 1] The sum of all IOL, for all ports, should not exceed 400 mA.
 - 2] The sum of all IOL, for ports C0 C5, should not exceed 200 mA.
 - 3] The sum of all IOL, for ports C6, D0 D4, should not exceed 300 mA.
 - 4] The sum of all IOL, for ports B0 B7, D5 D7, should not exceed 300 mA.
 - If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
- For temperature range +125°C to +150°C only. For -40°C to +125°C, refer to ATtiny167automotive datasheet.

1.3 ADC Characteristics

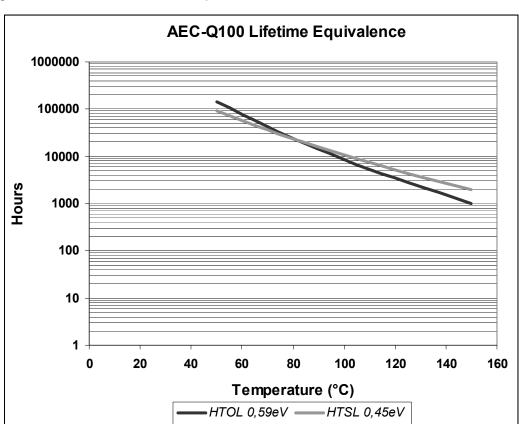
 $T_A = -40^{\circ}\text{C}$ to +150°C, $V_{CC} = 4.5\text{V}$ to 5.5V (unless otherwise noted)

Parameters	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Resolution	Single ended			10		Bit
Absolute accuracy	Vcc = 4V, VRef = 4V, ADC clock = 200 kHz	TUE		2.0	3.5	LSB
Integral non linearity	Vcc = 4V, VRef = 4V, ADC clock = 200 kHz	INL		0.6	2.0	LSB
Differential non linearity	Vcc = 4V, VRef = 4V, ADC clock = 200 kHz, Temp = -40°C to +150°C	DNL		0.4	1.5	LSB
Gain error	Vcc = 4V, VRef = 4V, ADC clock = 200 kHz, Temp = -40°C to +150°C		-6.0	-2.5	+2.0	LSB
Offset error	Vcc = 4V, VRef = 4V, ADC clock = 200 kHz, Temp = -40°C to +150°C		-3.5	+1.5	+3.5	LSB
Ref voltage		V _{REF}	2.56		AVCC	V

1.4 Memory Endurance

EEPROM endurance: 50,000 Write/Erase cycles.

Flash endurance: 10,000 Write/Erase cycles.


ATtiny87/ATtiny167 Automotive

2. Grade 0 Qualification

The ATtiny87/ATtiny167 has been developed and manufactured according to the most stringent quality assurance requirements of ISO-TS-16949 and verified during product qualification as per AEC-Q100 grade 0.

AEC-Q100 qualification relies on temperature accelerated stress testing. High temperature field usage however may result in less significant stress test acceleration. In order to prevent the risk that ATtiny87/ATtiny167 lifetime would not satisfy the application end-of-life reliability requirements, Atmel[®] has extended the testing, whenever applicable (High Temperature Operating Life Test, High Temperature Storage Life, Data Retention, Thermal Cycles), far beyond the AEC-Q100 requirements. Thereby, Atmel verified the ATtiny87/ATtiny167 has a long safe lifetime period after the grade 0 qualification acceptance limits.

The valid domain calculation depends on the activation energy of the potential failure mechanism that is considered. Therefore any temperature mission profile which could exceed the AEC-Q100 equivalence domain shall be submitted to Atmel for a thorough reliability analysis

Figure 2-1. AEC-Q100 Lifetime Equivalence

3. Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package ⁽¹⁾	Operation Range
16 ⁽²⁾	4.5V - 5.5V	ATtiny87-15MD PN E		Extended (-40°C to +150°C)
16 ⁽²⁾	4.5V - 5.5V	ATtiny87-15XD	ATtiny87-15XD 6G Ext	
16 ⁽²⁾	4.5V - 5.5V	ATtiny167-ESMD ⁽³⁾	PN	Engineering samples
16 ⁽²⁾	4.5V - 5.5V	ATtiny167-ESXD ⁽³⁾ 6G E		Engineering samples
16 ⁽²⁾	4.5V - 5.5V	ATtiny167-15MD	PN	Extended (-40°C to +150°C)
16 ⁽²⁾	4.5V - 5.5V	ATtiny167-15XD	6G	Extended (-40°C to +150°C)

Notes:

- 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 2. For Speed versus $\rm V_{\rm cc},$ see complete datasheet.
- 3. RevA engineering samples P/N given for reference. For RevB samples, order ATtiny167-15MD, ATtiny15XD.

4. Package Information

	Package Type				
PN	32-pad, $5 \times 5 \times 1.0$ mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF): E2/D2 3.1 ± 0.1 mm				
6G	20-leads, 4.4 × 6.5 mm body - 0.65 mmPitch - Lead Length: 0.6 mm, Thin Shrink Small Outline Package (TSSOP)				

Figure 4-1. PN

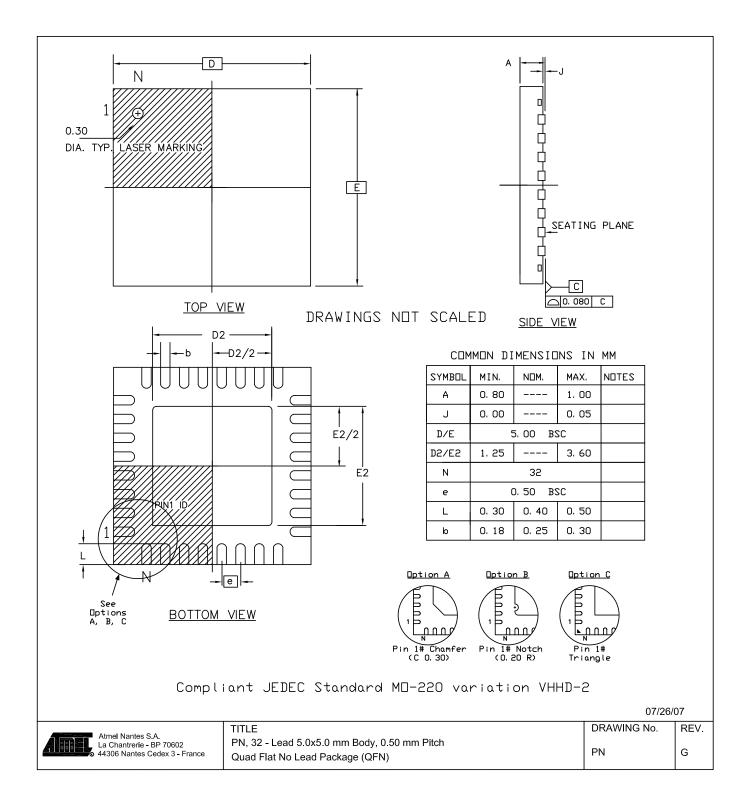
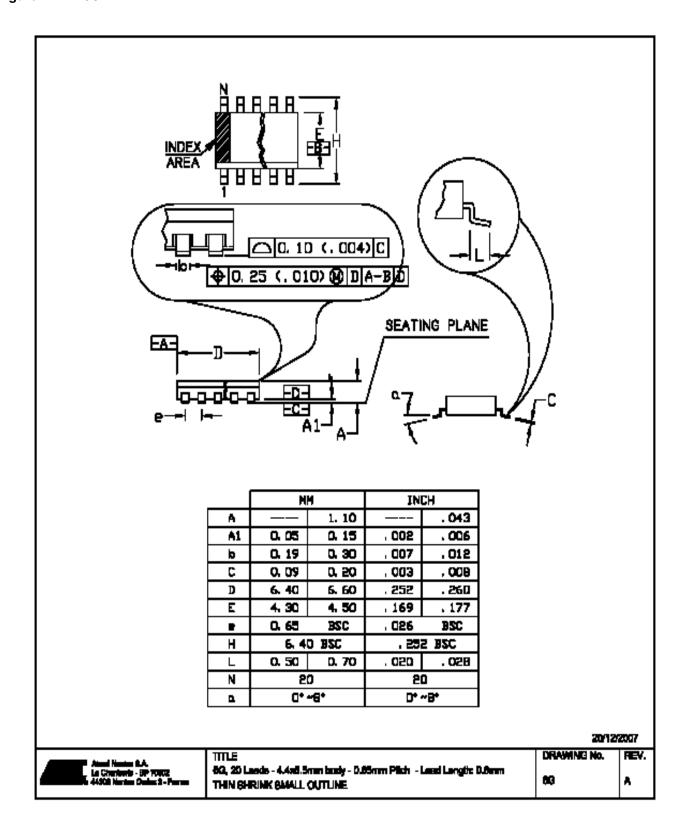



Figure 4-2. 6G

ATtiny87/ATtiny167 Automotive

5. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

5.1 7792A-AVR-05/08

Document creation

5.2 7792B-AVR-05/09

• Section 1 "Electrical Characteristics" on pages 2 to 4 updated

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100

Fax: (852) 2722-1369

Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054

Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.