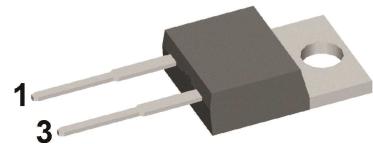


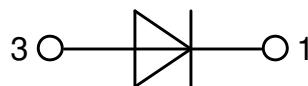
preliminary

Sonic Fast Recovery Diode

V_{RRM} = 600 V
 I_{FAV} = 30 A
 t_{rr} = 40 ns


High Performance Fast Recovery Diode

Low Loss and Soft Recovery


Single Diode

Part number

DHG30I600PA

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low I_{rm} -values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low I_{rm} reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-220

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

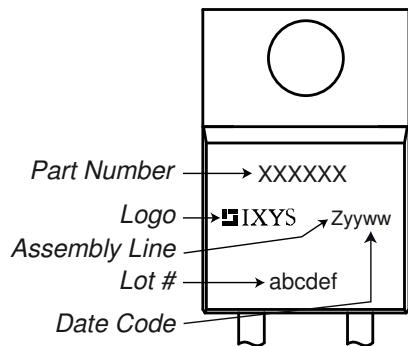
Terms & Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

- to perform joint risk and quality assessments;
- the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.


Fast Diode

Symbol	Definition	Conditions	Ratings			
			min.	typ.	max.	
V_{RSM}	max. non-repetitive reverse blocking voltage	$T_{VJ} = 25^\circ\text{C}$			600	V
V_{RRM}	max. repetitive reverse blocking voltage	$T_{VJ} = 25^\circ\text{C}$			600	V
I_R	reverse current, drain current	$V_R = 600 \text{ V}$ $V_R = 600 \text{ V}$	$T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$		50 2	μA mA
V_F	forward voltage drop	$I_F = 30 \text{ A}$ $I_F = 60 \text{ A}$ $I_F = 30 \text{ A}$ $I_F = 60 \text{ A}$	$T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$		2.27 3.14 2.24 3.23	V V V V
I_{FAV}	average forward current	$T_C = 85^\circ\text{C}$ rectangular $d = 0.5$	$T_{VJ} = 150^\circ\text{C}$		30	A
V_{F0} r_F	threshold voltage slope resistance } for power loss calculation only		$T_{VJ} = 150^\circ\text{C}$		1.17 32	V $\text{m}\Omega$
R_{thJC}	thermal resistance junction to case				0.7	K/W
R_{thCH}	thermal resistance case to heatsink			0.50		K/W
P_{tot}	total power dissipation		$T_C = 25^\circ\text{C}$		180	W
I_{FSM}	max. forward surge current	$t = 10 \text{ ms}; (50 \text{ Hz}), \text{sine}; V_R = 0 \text{ V}$	$T_{VJ} = 45^\circ\text{C}$		200	A
C_J	junction capacitance	$V_R = 400 \text{ V}$ $f = 1 \text{ MHz}$	$T_{VJ} = 25^\circ\text{C}$		16	pF
I_{RM}	max. reverse recovery current		$T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$		13 17	A A
t_{rr}	reverse recovery time	$I_F = 30 \text{ A}; V_R = 300 \text{ V}$ $-di_F/dt = 600 \text{ A}/\mu\text{s}$	$T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = 125^\circ\text{C}$		40 60	ns ns

Package TO-220

Symbol	Definition	Conditions	min.	typ.	max.	Unit
I_{RMS}	RMS current	per terminal			35	A
T_{VJ}	virtual junction temperature		-55		150	°C
T_{op}	operation temperature		-55		125	°C
T_{stg}	storage temperature		-55		150	°C
Weight				2		g
M_d	mounting torque		0.4		0.6	Nm
F_c	mounting force with clip		20		60	N

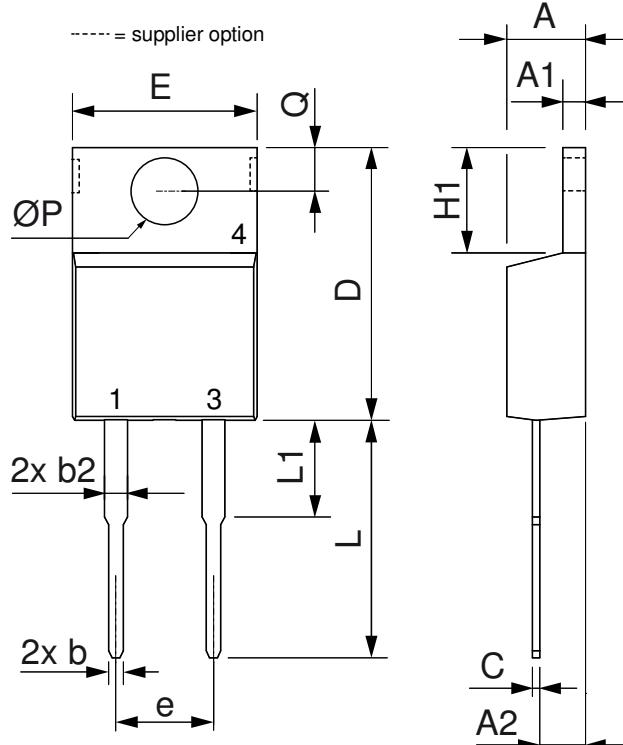
Product Marking

Part description

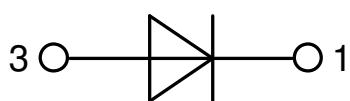
D = Diode
 H = Sonic Fast Recovery Diode
 G = extreme fast
 30 = Current Rating [A]
 I = Single Diode
 600 = Reverse Voltage [V]
 PA = TO-220AC (2)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG30I600PA	DHG30I600PA	Tube	50	504019

Similar Part	Package	Voltage class
DHG30I600HA	TO-247AD (2)	600
DHG30IM600PC	TO-263AB (D2Pak) (2)	600


Equivalent Circuits for Simulation

* on die level


 $T_{VJ} = 150$ °C

	Fast Diode	
$V_{0\max}$	threshold voltage	1.17
$R_{0\max}$	slope resistance *	29

Outlines TO-220

Dim.	Millimeter		Inches	
	Min.	Max.	Min.	Max.
A	4.32	4.82	0.170	0.190
A1	1.14	1.39	0.045	0.055
A2	2.29	2.79	0.090	0.110
b	0.64	1.01	0.025	0.040
b2	1.15	1.65	0.045	0.065
C	0.35	0.56	0.014	0.022
D	14.73	16.00	0.580	0.630
E	9.91	10.66	0.390	0.420
e	5.08	BSC	0.200	BSC
H1	5.85	6.85	0.230	0.270
L	12.70	13.97	0.500	0.550
L1	2.79	5.84	0.110	0.230
ØP	3.54	4.08	0.139	0.161
Q	2.54	3.18	0.100	0.125

Fast Diode

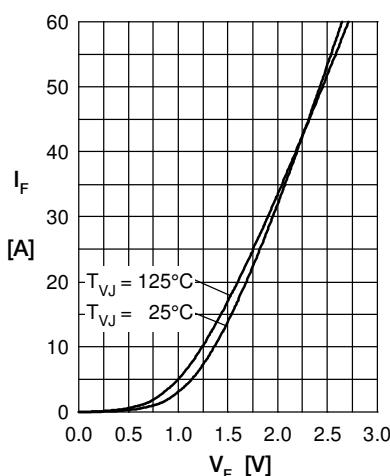
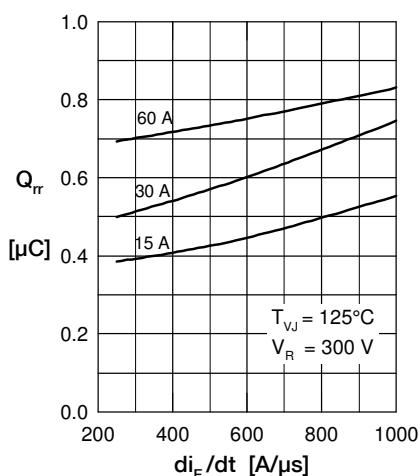
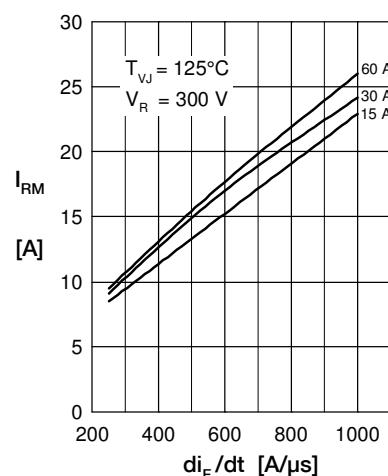
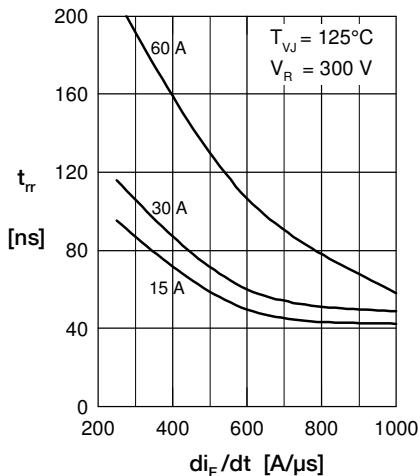
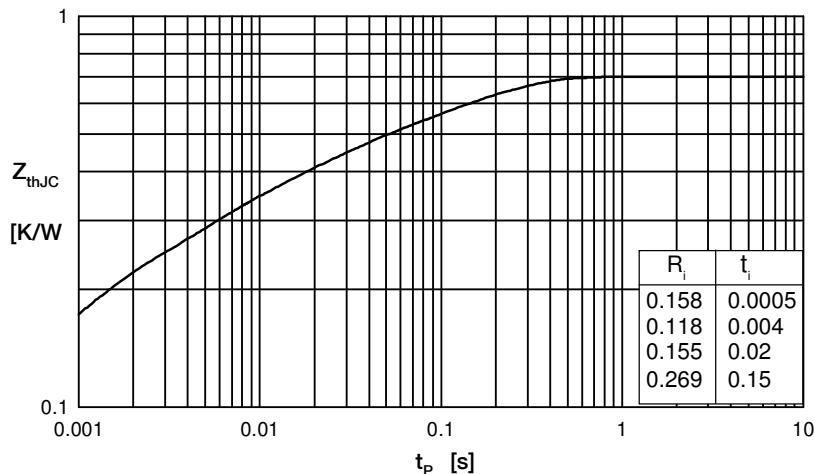





Fig. 1 Typ. Forward current versus V_F Fig. 2 Typ. reverse recov. charge Q_{rr} versus di/dt Fig. 3 Typ. peak reverse current I_{RM} versus di/dt Fig. 4 Dynamic parameters Q_{rr} , I_{RM} versus T_{VJ} Fig. 5 Typ. recovery time t_{rr} versus di/dt Fig. 6 Typ. recovery energy E_{rec} versus di/dt

Fig. 7 Typ. transient thermal impedance junction to case