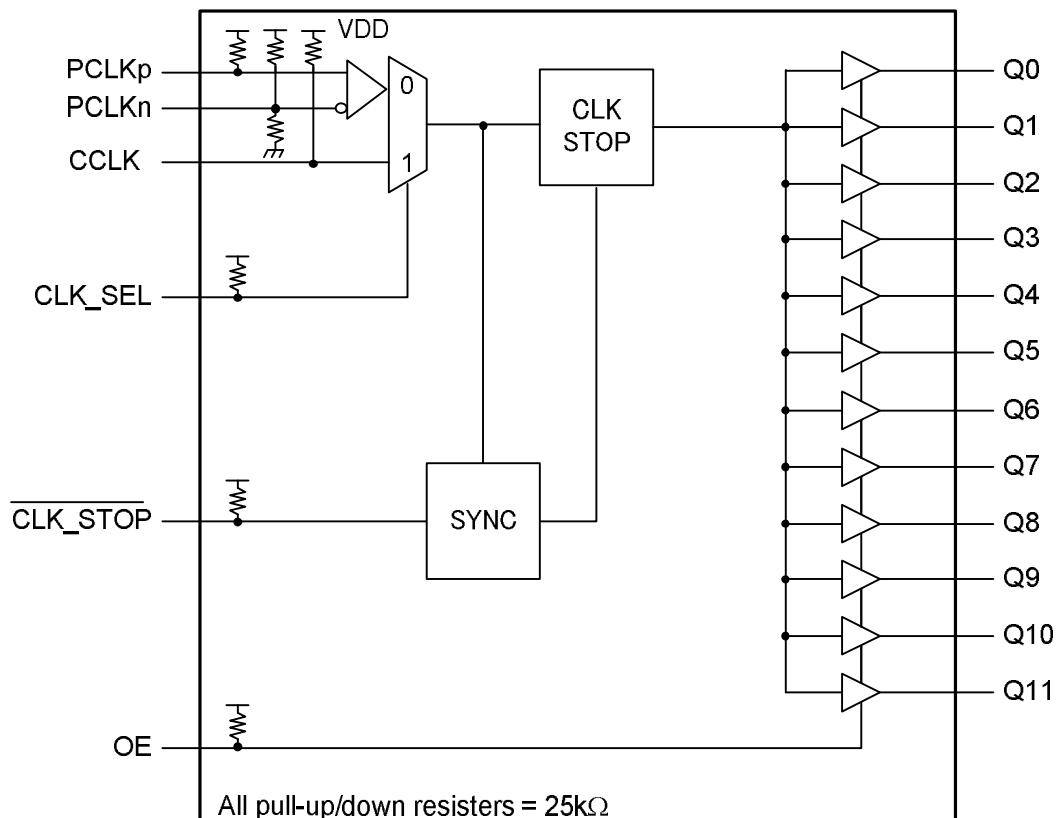


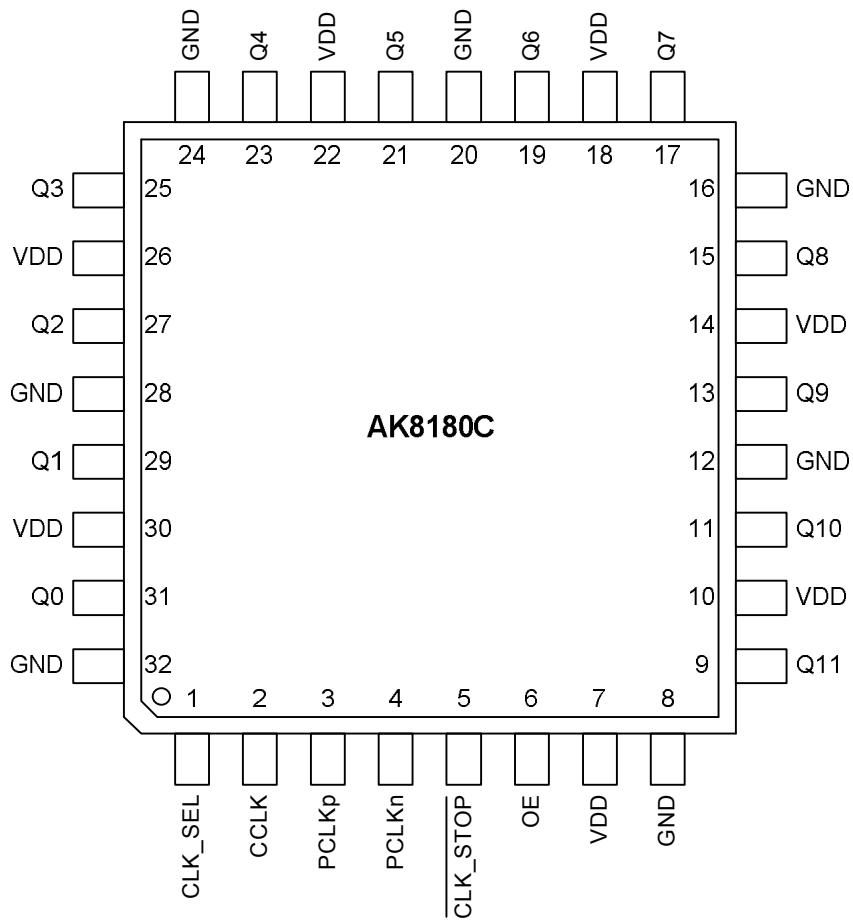
2.5V, 3.3V LVC MOS 1:12 Clock Fanout Buffer

AK8180C

Features


- 12 LVC MOS outputs
- Selectable LVC MOS and LVPECL inputs
- 2.5V or 3.3V power supply
- Clock frequency up to 350MHz
- Output-to-output skew : 150ps max
- Synchronous output stop in logic state
- High-impedance output control
- Drive up to 24 series terminated clock lines
- Operating Temperature Range: -40 to +85°C
- Package: 32-pin LQFP (Pb free)
- Pin compatible with MPC9448

Description


The AK8180C is a member of AKM's LVC MOS clock fanout buffer family designed for telecom, networking and computer applications, requiring a range of clocks with high performance and low skew. The AK8180C distributes 12 buffered clocks up to 350MHz. The 12 outputs can drive terminated $50\ \Omega$ clock lines. The CLK_STOP control allows the output signal to start and stop only in a logic low state. The OE control sets the outputs to high-impedance mode.

AK8180C are derived from AKM's long-term-experienced clock device technology, and enable clock output to perform low skew. The AK8180C is available in a 7mm x 7mm 32-pin LQFP package.

Block Diagram

Pin Descriptions

Package: 32-Pin LQFP(Top View)

Pin No.	Pin Name	Pin Type	Pullup /down	Description
1	CLK_SEL	IN	--	Clock Input Select
2	CCLK	IN	PU	Clock Input (LVC MOS)
3	PCLKp	IN	PU	Clock Input (LVPECL)
4	PCLKn	IN	PU/PD	Clock Input (LVPECL)
5	CLK_STOP	IN	PU	Clock Output Disable (Active low)
6	OE	IN	PU	Clock Output Enable (Disable=High impedance)
7	VDD	--	--	Power supply
8	GND	--	--	Ground
9	Q11	OUT	--	Clock output
10	VDD	--	--	Power supply
11	Q10	OUT	--	Clock output
12	GND	--	--	Ground

PU: Pull up PD: Pull down

(continued on next page)

Pin No.	Pin Name	Pin Type	Pullup /down	Description
13	Q9	OUT	--	Clock output
14	VDD	--	--	Power supply
15	Q8	OUT	--	Clock output
16	GND	--	--	Ground
17	Q7	OUT	--	Clock output
18	VDD	--	--	Power supply
19	Q6	OUT	--	Clock output
20	GND	--	--	Ground
21	Q5	OUT	--	Clock output
22	VDD	--	--	Power supply
23	Q4	OUT	--	Clock output
24	GND	--	--	Ground
25	Q3	OUT	--	Clock output
26	VDD	--	--	Power supply
27	Q2	OUT	--	Clock output
28	GND	--	--	Ground
29	Q1	OUT	--	Clock output
30	VDD	--	--	Power supply
31	Q0	OUT	--	Clock output
32	GND	--	--	Ground

Ordering Information

Part Number	Marking	Shipping Packaging	Package	Temperature Range
AK8180C	AK8180C	Tape and Reel	32-pin LQFP	-40 to 85 °C

Absolute Maximum Rating

Over operating free-air temperature range unless otherwise noted ⁽¹⁾

Items	Symbol	Ratings	Unit
Supply voltage	VDD	-0.3 to 4.6	V
Input voltage	Vin	GND-0.3 to VDD+0.3	V
Input current (any pins except supplies)	I _{IN}	±10	mA
Storage temperature	T _{Stg}	-55 to 130	°C

Note

(1) Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rating conditions for extended periods may affect device reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

ESD Sensitive Device

This device is manufactured on a CMOS process, therefore, generically susceptible to damage by excessive static voltage. Failure to observe proper handling and installation procedures can cause damage. AKM recommends that this device is handled with appropriate precautions.

Recommended Operation Conditions

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Operating temperature	T _a		-40		85	°C
Supply voltage ⁽¹⁾	VDD	VDD±5%	2.375	2.5	2.625	V
			3.135	3.3	3.465	

(1) Power of 2.5V or 3.3V requires to be supplied from a single source. A decoupling capacitor of 0.01μF for power supply line should be located close to each VDD pin.

General Specification

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Output Termination Voltage	V _{TT}			VDD/2		V
ESD Protection 1	MM	Machine model	200			V
ESD Protection 2	HBM	Human Body Model	2000			V
Latch-Up Immunity	LU		200			mA
Power Dissipation Capacitance		Per output		10		pF
Input Capacitance				4.0		pF

Power Supply Current <3.3V>

VDD= 3.3V±5%, Ta: -40 to +85°C

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Full operation ⁽¹⁾	IDD1	CCLK0=350MHz CLK_SEL=L		155	175	mA
Quiescent state ⁽¹⁾⁽²⁾	IDD2			1.0	2.0	mA

(1) The outputs have no loads. (2) All inputs are in default state by the internal pull up/down resistors.

DC Characteristics <3.3V>

All specifications at VDD= 3.3V±5%, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
High Level Input Voltage	V _{IH}	LVCMOS	2.0		VDD+0.3	V
Low Level Input Voltage	V _{IL}	LVCMOS	-0.3		0.8	V
Peak-to-Peak Input Voltage	V _{pp}	LVPECL	250			mV
Common Mode Range ⁽¹⁾	V _{cmr}	LCPECL	1.1		VDD-0.6	V
Input Current ⁽²⁾	I _{L1}	Vin=GND or VDD	-300		+300	µA
High Level Output Voltage	V _{OH}	I _{OH} = -24mA ⁽³⁾	2.4			V
		I _{OL} = +24mA ⁽³⁾			0.55	V
		I _{OL} = +12mA			0.30	
Low Level Output Voltage	V _{OL}					
Output Impedance				17		Ω

(1) V_{cmr}(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{cmr} range and the input swing lies within the V_{pp}(DC) specification.

(2) Input pull-up / pull down resistors influence input current.

(3) The AK8180C is capable of driving 50 Ω transmission lines of the incident edge. Each output drives one 50 Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives up to two 50 Ω series terminated transmission lines(for VDD=3.3V) or one 50 Ω series terminated transmission line(for VDD=2.5V).**AC Characteristics <3.3V> ⁽¹⁾**

All specifications at VDD= 3.3V±5%, Ta: -40 to +85°C, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Input Frequency	f _{IN}	Pin: CCLK, PCLKp/n	0		350	MHz
Input Pulse Width	t _{pwIN}	Pin: CCLK, PCLKp/n	1.4			ns
Peak-to-Peak Input Voltage	V _{pp}	Pin: PCLKp/n	400		1000	mV
Common Mode Range ⁽²⁾	V _{cmr}	Pin: PCLKp/n	1.3		VDD-0.8	
Input Rise/Fall time ⁽³⁾	t _{rIN} , t _{fOUT}	Pin: CCLK 0.8 to 2.0V			1.0	ns
Output Frequency	f _{OUT}	Pin: Q0-11	0		350	MHz
Propagation Delay	t _{PLH} t _{PHL}	PCLK to any Q CCLK to any Q	1.0 0.8	1.8 1.6	3.0 2.8	ns
Output Disable Time	t _{PLZ} , t _{PHZ}				11	ns
Output Enable Time	t _{PZL} , t _{PZH}				11	ns
Setup Time	t _S	CCLK to CLK_STOP PCLK to CLK_STOP	0.0 0.0			ns
Hold Time	t _H	CCLK to CLK_STOP PCLK to CLK_STOP	1.0 1.5			ns
Output-to-Output Skew	t _{sk(O)}				150	ps
Device-to-Device Skew	t _{skPP}				2.0	ns
Output Pulse Skew ⁽⁴⁾	t _{sk(P)}	CCLK PCLK			300 400	ps
Output Duty Cycle	DC _{OUT}	f _{OUT} < 170MHz DC _{REF} =50%	45	50	55	%
Output Rise/Fall Time	t _r , t _f	0.55 to 2.4V	0.1		1.0	ns

- (1) AC characteristics apply for parallel output termination of $50\ \Omega$ to VTT.
- (2) $V_{cmr}(AC)$ is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{cmr} range and the input swing lies within the $V_{pp}(AC)$ specification. Violation of V_{cmr} or V_{pp} impacts $t_{PLH/PHL}$ and t_{skD} .
- (3) Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, input pulse width, output duty cycle and maximum frequency specifications.
- (4) Output pulse skew t_{skO} is the absolute difference of the propagation delay times: $| t_{PLH} - t_{PHL} |$.

Power Supply Current <2.5V>

$VDD = 2.5V \pm 5\%$, $Ta: -40$ to $+85^\circ C$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Full operation ⁽¹⁾	IDD2.5-1	$2.5V \pm 5\%$, $CCLK0=350MHz$ $CLK_SEL=L$		115	134	mA
Quiescent state ⁽¹⁾⁽²⁾	IDD2.5-2			0.7	1.3	mA

(1) The outputs have no loads. (2) All inputs are in default state by the internal pull up/down resistors.

DC Characteristics <2.5V>

All specifications at $VDD = 2.5V \pm 5\%$, $Ta: -40$ to $+85^\circ C$, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
High Level Input Voltage	V_{IH}	LVCMOS	1.7		$VDD + 0.3$	V
Low Level Input Voltage	V_{IL}	LVCMOS	-0.3		0.7	V
Peak-to-Peak Input Voltage	V_{pp}	LVPECL	250			mV
Common Mode Range ⁽¹⁾	V_{cmr}	LVPECL	1.0		$VDD - 0.7$	V
Input Current ⁽²⁾	I_{L1}	$Vin=GND$ or VDD	-300		+300	μA
High Level Output Voltage	V_{OH}	$I_{OH} = -15mA$ ⁽³⁾	1.8			V
Low Level Output Voltage	V_{OL}	$I_{OL} = +15mA$ ⁽³⁾			0.6	V
Output Impedance				19		Ω

- (1) $V_{cmr}(DC)$ is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{cmr} range and the input swing lies within the $V_{pp}(DC)$ specification.
- (2) Input pull-up / pull down resistors influence input current.
- (3) The AK8180C is capable of driving $50\ \Omega$ transmission lines of the incident edge. Each output drives one $50\ \Omega$ parallel terminated transmission line to a termination voltage of VTT. Alternatively, the device drives up to two $50\ \Omega$ series terminated transmission lines(for $VDD=3.3V$) or one $50\ \Omega$ series terminated transmission lines(for $VDD=2.5V$).

AC Characteristics <2.5V> ⁽¹⁾

All specifications at $VDD = 2.5V \pm 5\%$, $Ta: -40$ to $+85^\circ C$, unless otherwise noted

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Input Frequency	f_{IN}	Pin: CCLK, PCLKp/n	0		350	MHz
Input Pulse Width	t_{pwIN}	Pin: CCLK, PCLKp/n	1.4			ns
Peak-to-Peak Input Voltage	V_{pp}	Pin: PCLKp/n	400		1000	mV
Common Mode Range ⁽²⁾	V_{cmr}	Pin: PCLKp/n	1.2		$VDD - 0.8$	
Input Rise/Fall time ⁽³⁾	t_{rIN}, t_{fOUT}	Pin: CCLK 0.8 to 2.0V			1.0	ns
Output Frequency	f_{OUT}	Pin: Q0-11	0		350	MHz
Propagation Delay	t_{PLH} t_{PHL}	PCLK to any Q CCLK to any Q	1.0 0.9	1.9 1.8	3.7 3.6	ns
Output Disable Time	t_{PLZ}, t_{PHZ}				11	ns
Output Enable Time	t_{PZL}, t_{PZH}				11	ns

(continued on next page)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Setup Time	t_s	CCLK to <u>CLK_STOP</u> PCLK to <u>CLK_STOP</u>	0.0			ns
Hold Time	t_H	CCLK to <u>CLK_STOP</u> PCLK to <u>CLK_STOP</u>	1.0			ns
Output-to-Output Skew	$t_{sk(O)}$				150	ps
Device-to-Device Skew	t_{skPP}				2.7	ns
Output Pulse Skew ⁽⁴⁾	$t_{sk(P)}$	CCLK PCLK			200 300	ps
Output Duty Cycle	DC_{OUT}	$DC_{REF} = 50\%$	45	50	55	%
Output Rise/Fall Time	t_r, t_f	0.6 to 1.8V	0.1		1.0	ns

- (1) AC characteristics apply for parallel output termination of 50Ω to VTT.
- (2) $V_{cmr}(AC)$ is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{cmr} range and the input swing lies within the $V_{pp}(AC)$ specification. Violation of V_{cmr} or V_{pp} impacts $t_{PLH/PHL}$ and t_{skD} .
- (3) Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, input pulse width, output duty cycle and maximum frequency specifications.
- (4) Output pulse skew t_{skO} is the absolute difference of the propagation delay times: $| t_{PLH} - t_{PHL} |$.

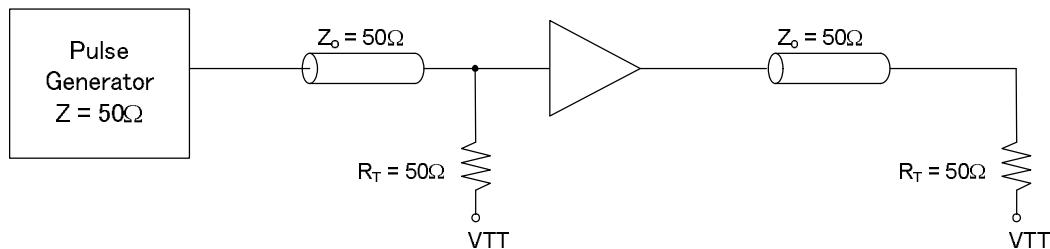


Figure 1 CCLK AC Test Reference

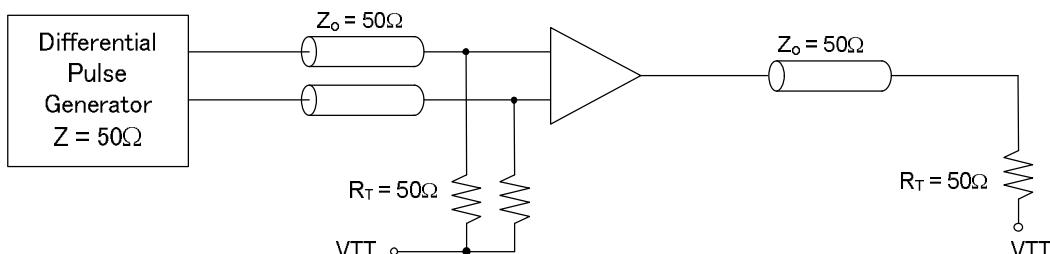


Figure 2 PCLK AC Test Reference

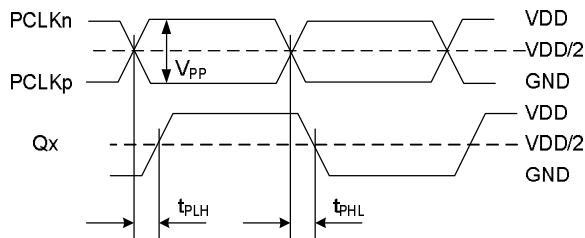


Figure 3 Propagation Delay Test Reference

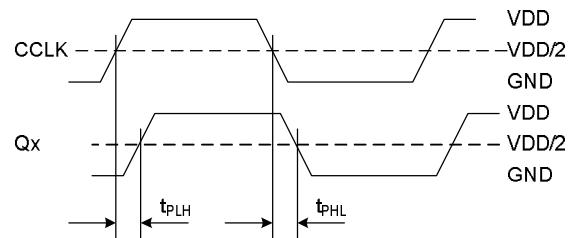
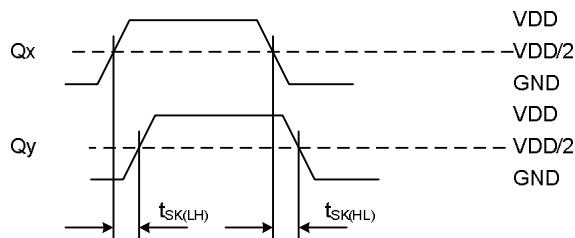
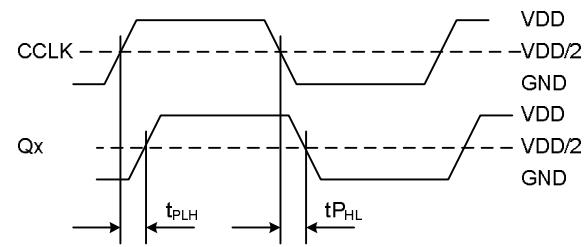




Figure 4 Propagation Delay Test Reference

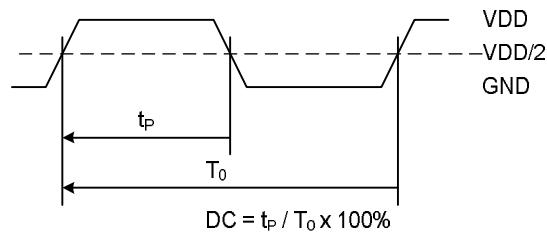

The pin-to-pin skew is defined as the worst case difference in propagation delay between any two similar delay paths within a single device.

Figure 5 Output-to-Output Skew

$$t_{skP} = | t_{PLH} - t_{PHL} |$$

Figure 6 Output Pulse Skew Test Reference

The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage.

Figure 7 Output Duty Cycle

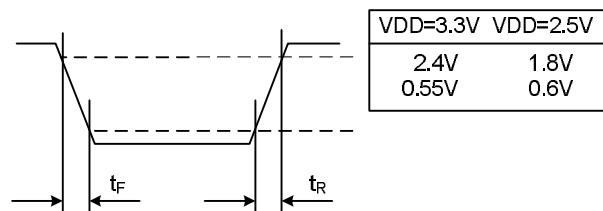


Figure 8 Output Translation Test Reference

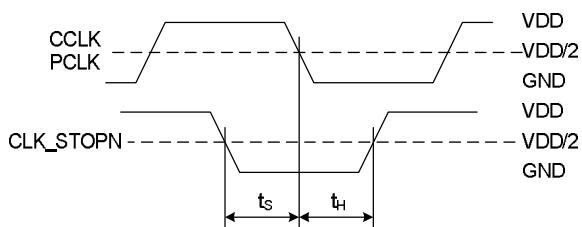
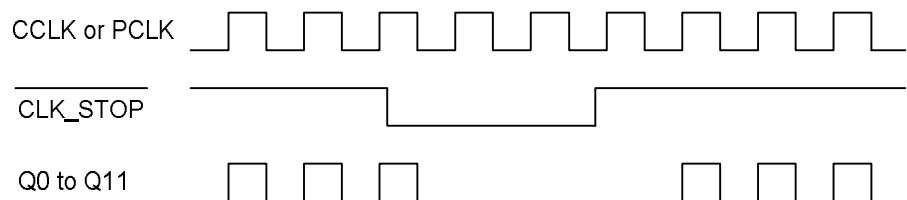
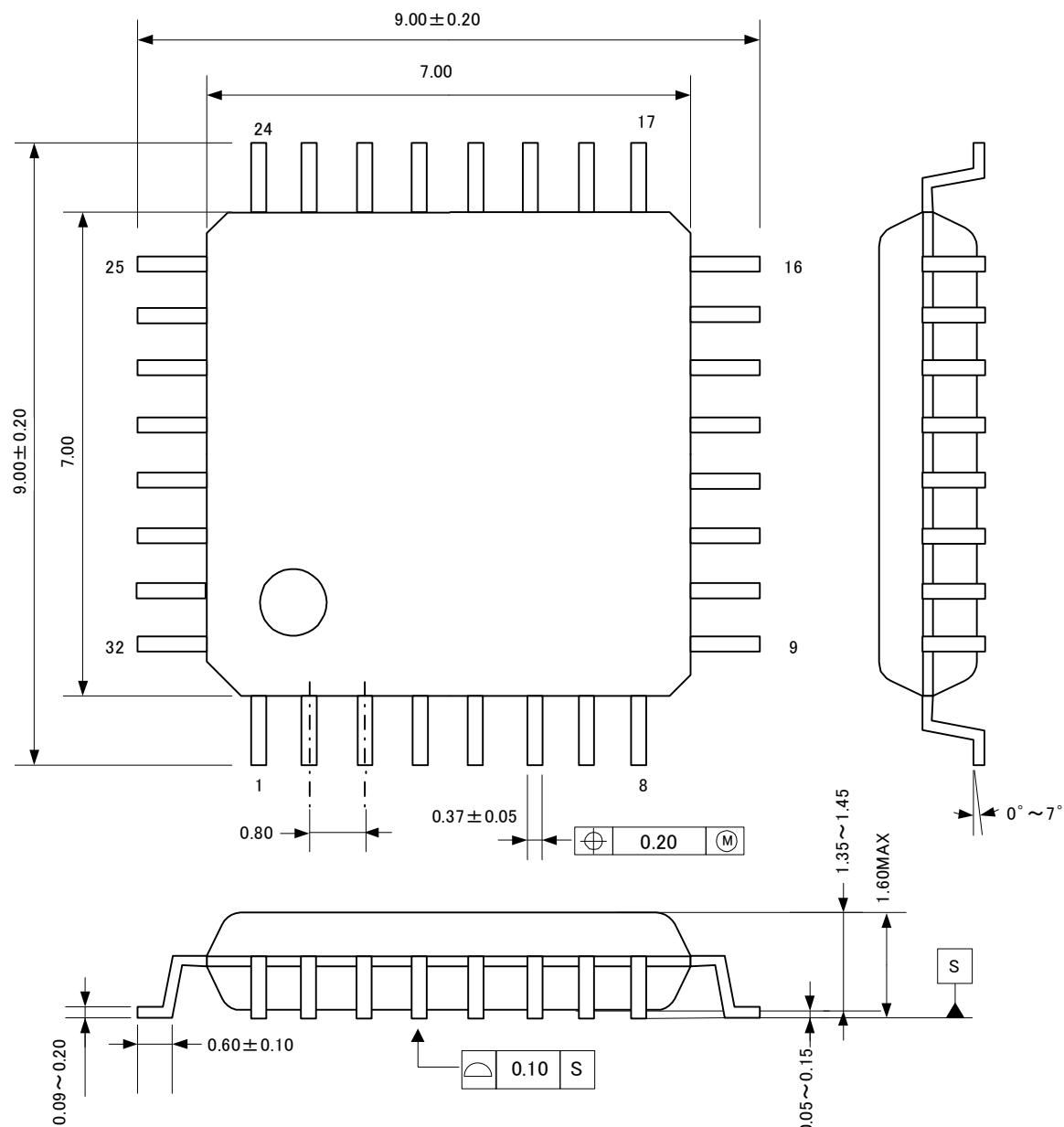


Figure 9 Setup and Hold Time Test Reference

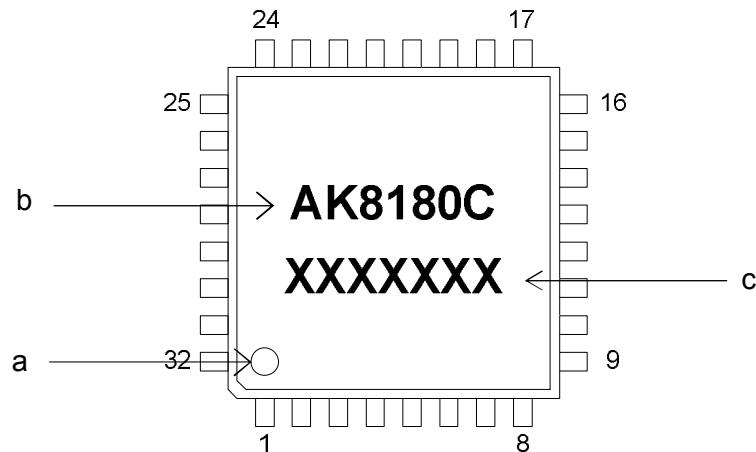

Function Table

The following table shows the inputs/outputs clock state configured through the control pins.

Table 1: Control-Pin-Setting Function Table

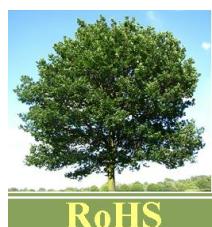

Control Pin	Default	0	1
CLK_SEL	1	PCLK differential input selected	CCLK input selected
OE	1	Outputs disabled.(High impedance)	Outputs enabled
<u>CLK_STOP</u>	1	Outputs synchronously stopped in logic low state.	Outputs active

Application example of CLK_STOP


Package Information

• Mechanical data

- **Marking**


- a: #1 Pin Index
- b: Part number
- c: Date code (7 digits)

(1) AKM is the brand name of AKM's IC's.

AKM and the logo - are the brand of AKM's IC's and identify that AKM continues to offer the best choice for high performance mixed-signal solution under this brand.

- **RoHS Compliance**

All integrated circuits from Asahi Kasei Microdevices Corporation (AKM) assembled in "lead-free" packages* are fully compliant with RoHS.

(*) RoHS compliant products from AKM are identified with "Pb free" letter indication on product label posted on the anti-shield bag and boxes.

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
- Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components_{Note1)} in any safety, life support, or other hazard related device or system_{Note2)}, and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here:
 - Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
 - Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
- It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.