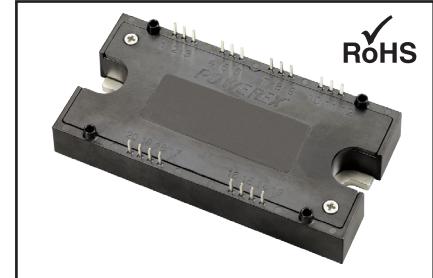


**Split Dual SiC
MOSFET Module
100 Amperes/1200 Volts**



Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
A	4.32	109.8
B	2.21	56.1
C	0.71	18.0
D	3.70±0.02	94.0±0.5
E	2.026	51.46
F	3.17	80.5
G	1.96	49.8
H	1.00	25.5
K	0.87	22.0
L	0.266	6.75
M	0.26	6.5
N	0.59	15.0
P	0.586	14.89

Dimensions	Inches	Millimeters
Q	0.449	11.40
R	0.885	22.49
S	1.047	26.6
T	0.15	3.80
U	0.16	4.0
V	0.30	7.5
W	0.045	1.15
X	0.03	0.8
Y	0.16	4.0
Z	0.47	12.1
AA	0.17 Dia.	4.3 Dia.
AB	0.10 Dia.	2.5 Dia.
AC	0.08 Dia.	2.1 Dia.

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice.
The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.

Description:

Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of two MOSFET Silicon Carbide Transistors with each transistor having a reverse connected fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- Junction Temperature: 175°C
- Silicon Carbide Chips
- Low Internal Inductance
- Industry Leading RDS(on)
- High Speed Switching
- Low Switching Losses
- Low Capacitance
- Low Drive Requirement
- Fast 100A Free Wheeling Schottky Diode
- High Power Density
- Isolated Baseplate
- Aluminum Nitride Isolation
- 2 Individual Switches per Module
- Copper Baseplate
- RoHS Compliant

Applications:

- Energy Saving Power Systems such as:
Fans; Pumps; Consumer Appliances
- High Frequency Type Power Systems such as:
UPS; High Speed Motor Drives; Induction Heating; Welder; Robotics
- High Temperature Power Systems such as:
Power Electronics in Electric Vehicle and Aviation Systems

QJD1210010
Split Dual SiC MOSFET Module
100 Amperes/1200 Volts

Absolute Maximum Ratings, $T_j = 25^\circ\text{C}$ unless otherwise specified

Ratings	Symbol	QJD1210010	Units
Drain-Source Voltage (G-S Short)	V_{DSS}	1200	Volts
Gate-Source Voltage	V_{GSS}	-5 / +25	Volts
Drain Current (Continuous) at $T_C = 150^\circ\text{C}$	I_D	100	Amperes
Drain Current (Pulsed)*	$I_{D(\text{pulse})}$	250	Amperes
Maximum Power Dissipation ($T_C = 25^\circ\text{C}$, $T_j < 175^\circ\text{C}$)	P_D	1080	Watts
Junction Temperature	T_j	-40 to 175	$^\circ\text{C}$
Storage Temperature	T_{stg}	-40 to 150	$^\circ\text{C}$
Mounting Torque, M6 Mounting Screws	—	40	in-lb
Module Weight (Typical)	—	270	Grams
V Isolation Voltage	V_{RMS}	3000	Volts

* Pulse width and repetition rate should be such that device junction temperature (T_j) does not exceed $T_{j(\text{max})}$ rating.

QJD1210010
Split Dual SiC MOSFET Module
 100 Amperes/1200 Volts

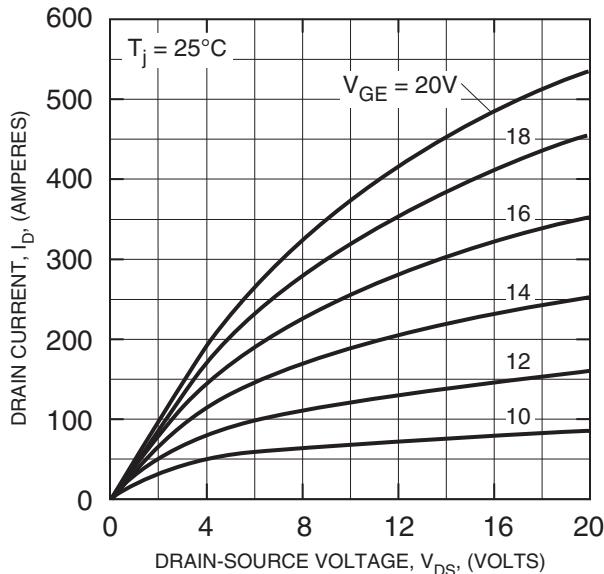
MOSFET Characteristics, $T_j = 25^\circ\text{C}$ unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Drain-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$I_D = 50\mu\text{A}, V_{GS} = 0$	1200	—	—	Volts
Zero Gate Voltage Drain Current**	I_{DSS}	$V_{GS} = 0, V_{DS} = 1200\text{V}$	—	0.35	2.6	mA
Zero Gate Voltage Drain Current**	I_{DSS}	$V_{GS} = 0, V_{DS} = 1200\text{V}, T_j = 175^\circ\text{C}$	—	0.40	4.0	mA
Gate Leakage Current	I_{GSS}	$V_{DS} = 0, V_{GS} = 20\text{V}$	—	—	1.5	μA
Gate Threshold Voltage	$V_{GS(\text{th})}$	$V_{DS} = V_{GS}, I_D = 10\text{mA}$	1.5	2.5	5.0	Volts
		$V_{DS} = V_{GS}, I_D = 10\text{mA}, T_j = 175^\circ\text{C}$	1.0	1.7	5.0	Volts
Drain-Source On Resistance	$R_{DS(\text{on})}$	$I_D = 100\text{A}, V_{GS} = 20\text{V}$	—	15	25	$\text{m}\Omega$
		$I_D = 100\text{A}, V_{GS} = 20\text{V}, T_j = 175^\circ\text{C}$	—	20	32	$\text{m}\Omega$
Gate to Source Charge	Q_{gs}	$V_{DD} = 800\text{V}, I_D = 100\text{A}$	—	140	—	nC
Gate to Drain Charge	Q_{gd}	$V_{DD} = 800\text{V}, I_D = 100\text{A}$	—	220	—	nC
Total Gate Charge	Q_G	$V_{CC} = 800\text{V}, I_C = 100\text{A}, V_{GS} = -5/20\text{V}$	—	500	—	nC
Body Diode Forward Voltage	V_{SD}	$I_F = 50\text{A}, V_{GS} = -5\text{V}$	—	4.0	—	Volts
Input Capacitance	C_{iss}		—	10.2	—	nF
Output Capacitance	C_{oss}	$V_{GS} = 0, V_{DS} = 800\text{V}, f = 1\text{MHz}$	—	1.0	—	nF
Reverse Transfer Capacitance	C_{rss}		—	0.1	—	nF
Turn-on Delay Time	$t_{d(\text{on})}$	$V_{DD} = 800\text{V}, I_D = 100\text{A},$	—	17.2	—	ns
Rise Time	t_r	$V_{GS} = -2/20\text{V},$	—	13.6	—	ns
Turn-off Delay Time	$t_{d(\text{off})}$	$R_G = 6.8\Omega$	—	62	—	ns
Fall Time	t_f	Inductive Load	—	35.6	—	ns

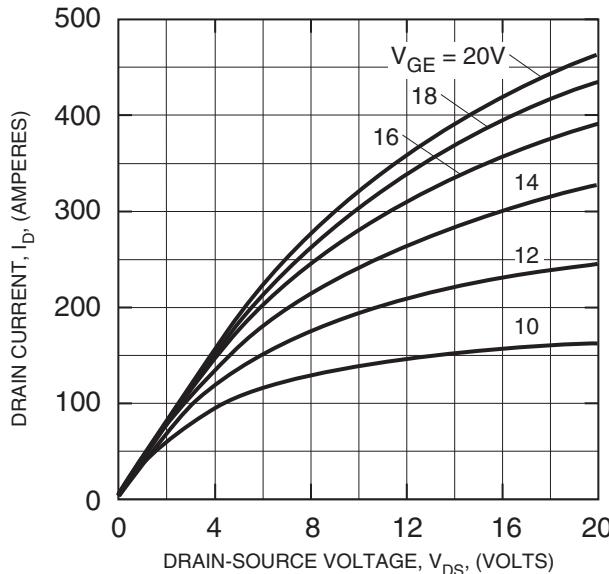
**Total module leakage includes MOSFET leakage plus reverse Schottky diode leakage.

QJD1210010
Split Dual SiC MOSFET Module
 100 Amperes/1200 Volts

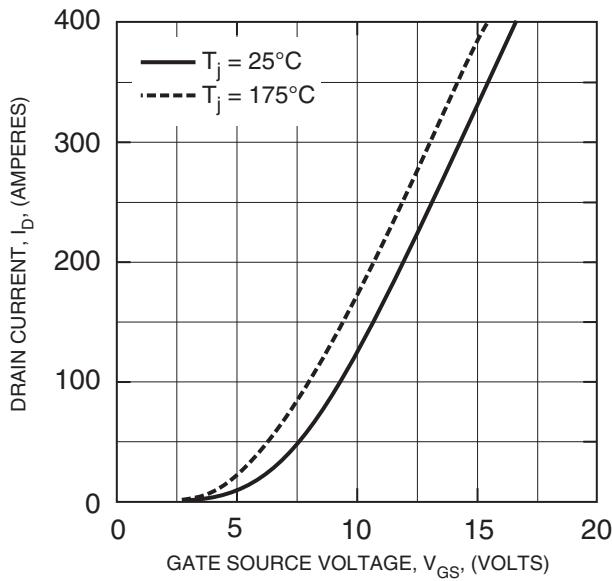
Reverse Schottky Diode Characteristics, $T_j = 25^\circ\text{C}$ unless otherwise specified

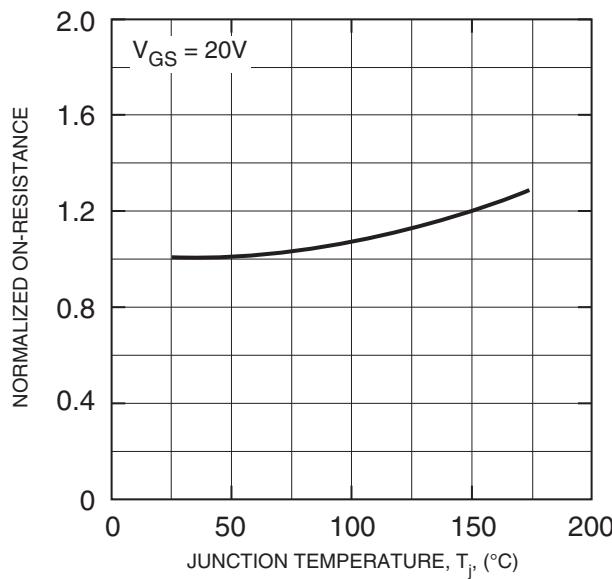

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Diode Forward Voltage	V _{FM}	$I_F = 100\text{A}, V_{GS} = -5\text{V}$	—	1.6	2.0	Volts
		$I_F = 100\text{A}, V_{GS} = -5\text{V}, T_j = 175^\circ\text{C}$	—	2.5	3.2	Volts
Diode Capacitive Charge	Q _C	$V_R = 1200\text{V}, I_F = 100\text{A}, dI/dt = 4000\text{A}/\mu\text{s}$	—	550	—	nC

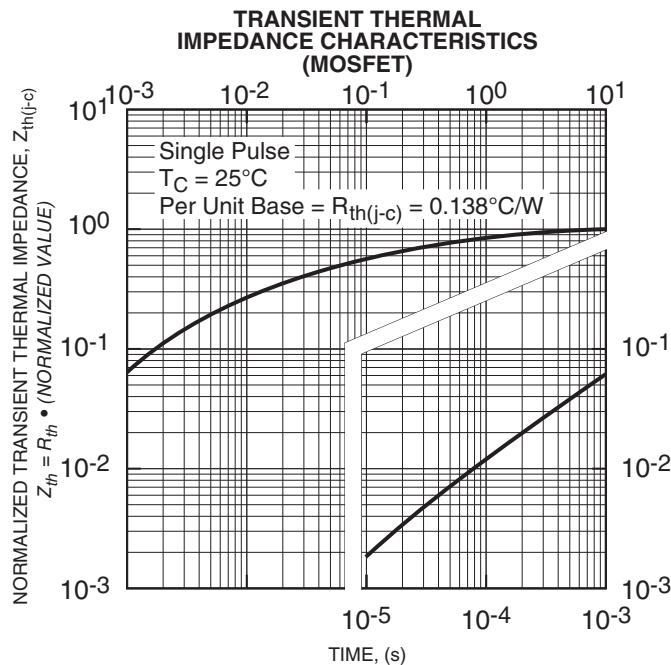
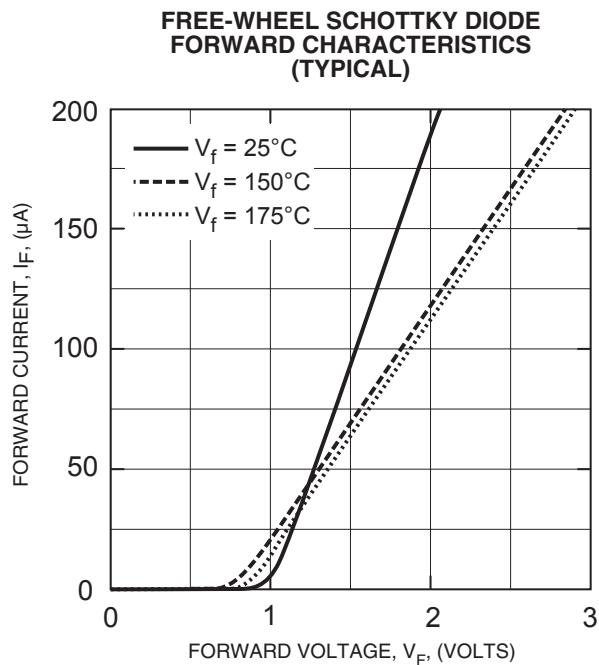
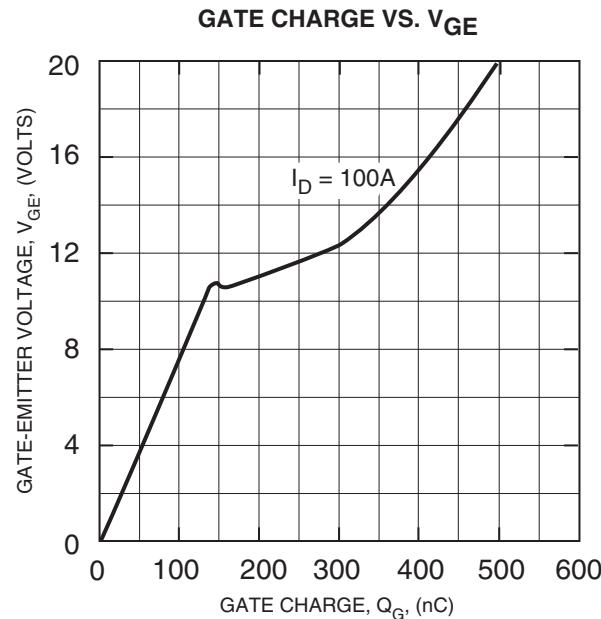
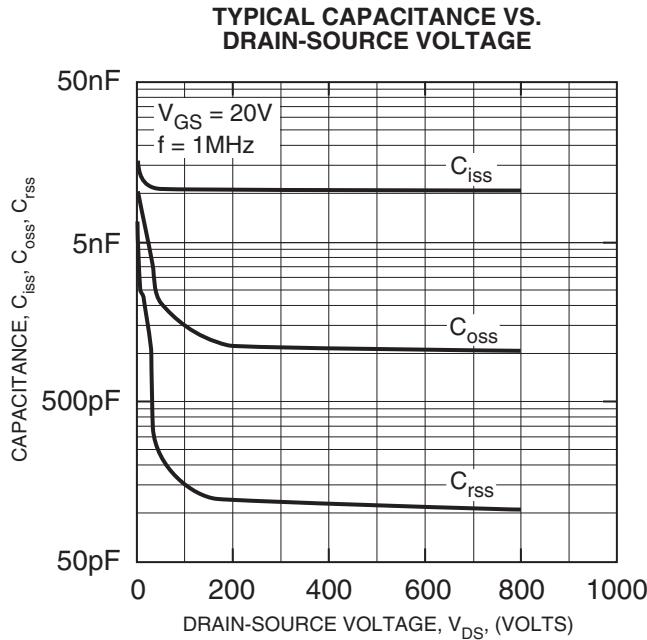
Thermal and Mechanical Characteristics, $T_j = 25^\circ\text{C}$ unless otherwise specified

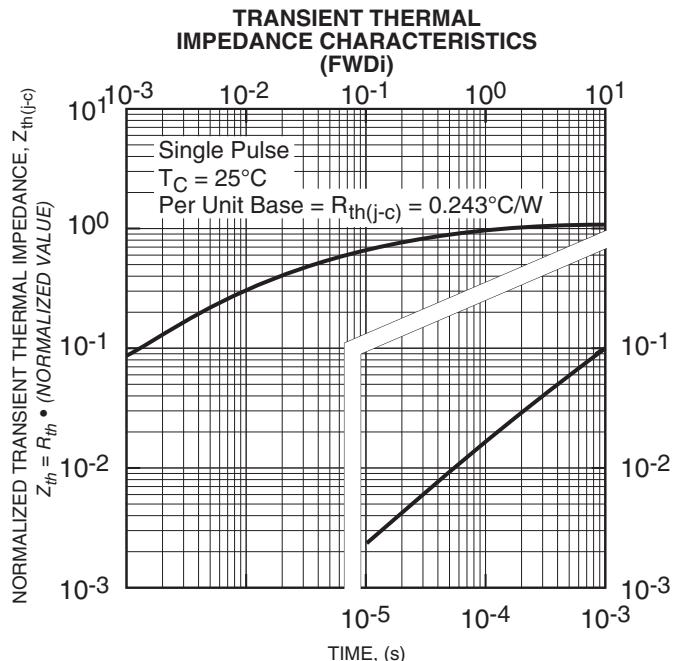

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Thermal Resistance, Junction-to-Case	R _{th(j-c)}	MOSFET Part	—	—	0.138	°C/W
Thermal Resistance, Junction-to-Case	R _{th(j-c)}	Diode Part	—	—	0.243	°C/W
Contact Thermal Resistance	R _{th(c-s)}	Per 1/2 Module, Thermal Grease Applied	—	0.04	—	°C/W
Internal Inductance	L _{int}	MOSFET Part	—	10	—	nH

QJD1210010
Split Dual SiC MOSFET Module
 100 Amperes/1200 Volts


TYPICAL OUTPUT CHARACTERISTICS
 $(T_j = 25^\circ\text{C})$


TYPICAL OUTPUT CHARACTERISTICS
 $(T_j = 175^\circ\text{C})$





TRANSFER CHARACTERISTICS
(TYPICAL)


NORMALIZED ON-RESISTANCE
VS. TEMPERATURE

QJD1210010
Split Dual SiC MOSFET Module
 100 Amperes/1200 Volts

QJD1210010
Split Dual SiC MOSFET Module
 100 Amperes/1200 Volts

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice.
 The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product.