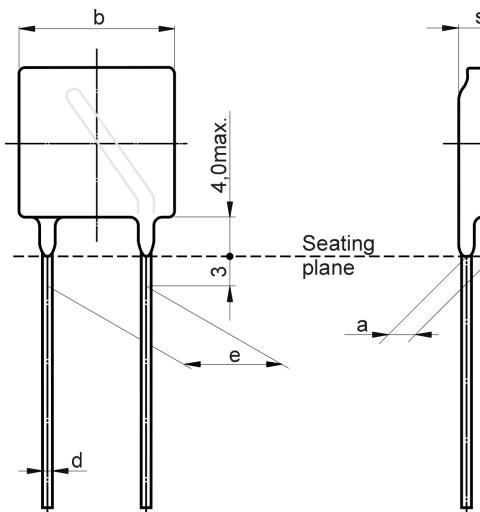


Metal Oxide Varistor	Disc type
SIOV-Q14K625	Ordering code: B72214Q0621K101
Data sheet	

Form: FBLE3K/b

File name: Q14K625_a

MODIFICATIONS: New data sheet


REMARKS:

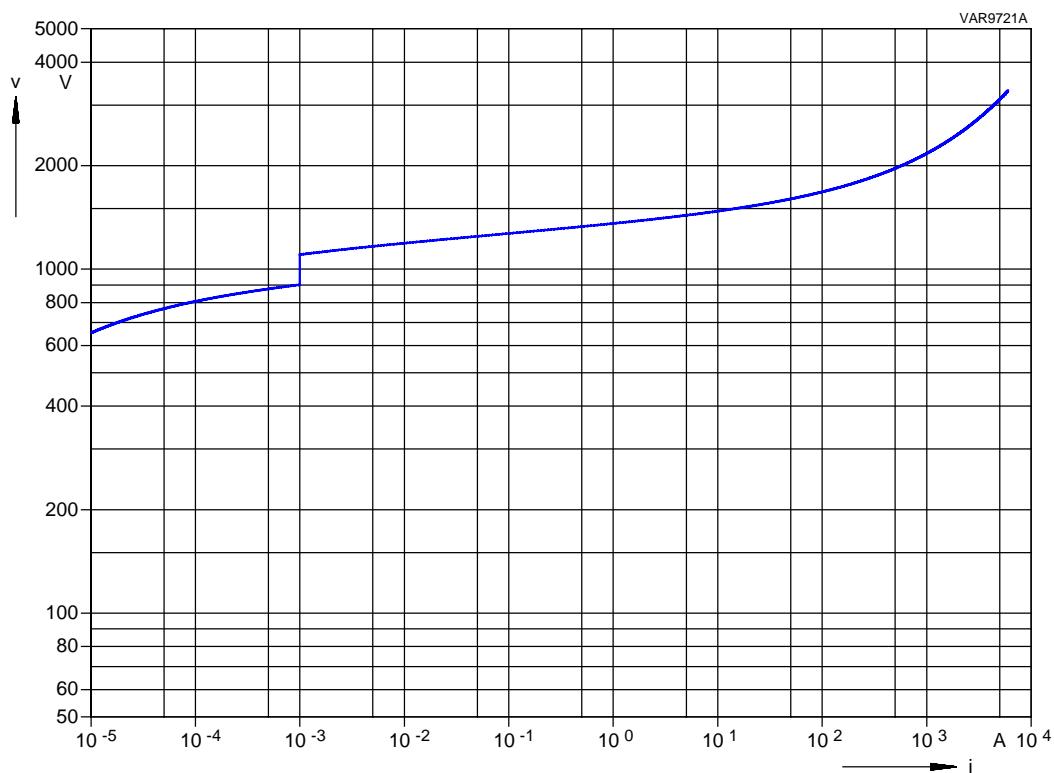
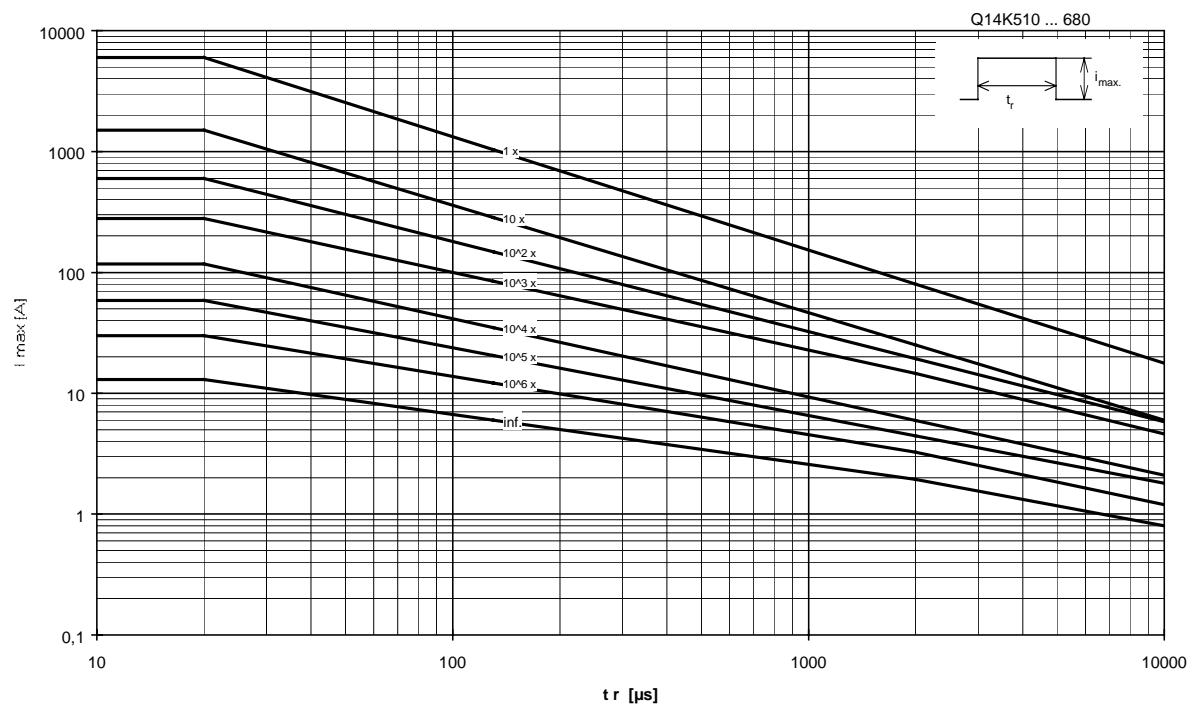
Prepared by	Hotwagner	Release	signed: PE / Hotwagner		signed: QS / Zödl	
			signed:		signed:	
ISSUE DATE	22.05.02	ISSUE	a	PUBLISHER	KH PE VAR	PAGE
						0/6

Metal Oxide Varistor
SIOV-Q14K625
Disc type
Ordering code: B72214Q0621K101
Data sheet
SIOV nomenclature

Q = EnergetiQ™ Series
14 = Rated disk diameter
K = Tolerance of V_V at 1mA : $\pm 10\%$
625 = Max. AC voltage

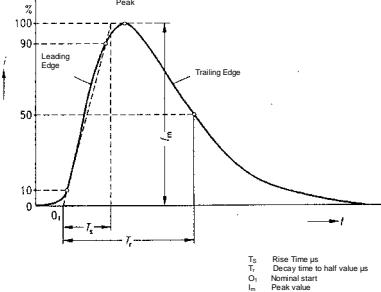
Figure: Dimensions given in Millimeters (mm)

b_{\max} = 16,5
 h_{\max} = 19,5
 s_{\max} = 9,4
 e = $10,0 \pm 1,0$
 a = $5,3 \pm 1,0$
 l_{\min} = 30,0
 $\varnothing d$ = $1,0 \pm 0,05$



Electrical data:
Maximum Ratings (85°C):

Max. operating AC voltage	V_{RMS}	=	625V
Max. operating DC voltage	V_{DC}	=	825V
Surge current (8/20 μ s) 1 time	I_{\max}	=	6000A
Energy absorption (2ms) 1 time	W_{\max}	=	290J
Average power dissipation	P_{\max}	=	0,80W

Characteristics (25°C):


Varistor voltage at 1mA	V_V	=	$1000V \pm 10\%$
Clamping voltage at 65A (8/20 μ s)	$V_{C,\max}$	=	1650V
Typ. capacitance at 1 kHz	C	=	220pF

ISSUE DATE	22.05.02	ISSUE	a	PUBLISHER	KH PE VAR	PAGE	1/6
------------	----------	-------	---	-----------	-----------	------	-----

Metal Oxide Varistor
SIOV-Q14K625
Disc type
Ordering code: B72214Q0621K101
Data sheet
V/I Characteristic:

Derating:

ISSUE DATE	22.05.02	ISSUE	a	PUBLISHER	KH PE VAR	PAGE	2/6
------------	----------	-------	---	-----------	-----------	------	-----

Reliability Data:

	Characteristics	Test Methods/Description	Specifications
E	Varistor Voltage	The voltage between two terminals with the specified measuring current applied is called V_v (1 mA _{DC} @ 0.2 - 2 s).	To meet the specified value.
L	Clamping Voltage	The maximum voltage between two terminals with the specified standard impulse current (8/20μs) illustrated below applied.	To meet the specified value.
E		<p>Graph illustrating the 8/20 μs current pulse waveform. The y-axis represents current percentage (%) and the x-axis represents time (μs). The pulse starts at 0% at time t_0, rises to a peak of 100% at time t_1, and then decays to 50% at time t_2. The time interval between t_1 and t_2 is labeled T_{1-2}. The peak value is labeled i_p. The graph also shows the 'Leading Edge' and 'Trailing Edge' of the pulse.</p> <p> T_p: Rise Time μs T_{1-2}: Decay time to half value μs t_0: Nominal start i_p: Peak value </p>	
C	Surge current derating, 8/20 μs	100 surge currents (8/20 μs), unipolar, interval 30 s, amplitude corresponding to derating curve for 20 μs	$ \Delta V/V (1 \text{ mA}) \leq 10\% \text{ (measured in direction of surge current)}$ No visible damage
A	Surge current derating, 2 ms	100 surge currents (2ms), unipolar, interval 120s, amplitude corresponding to derating curve for 2ms	$ \Delta V/V (1 \text{ mA}) \leq 10\% \text{ (measured in direction of surge current)}$ No visible damage
L			

	Characteristics	Test Methods/Description	Specifications										
M	Tensile strength	<p>After gradually applying the force specified below and keeping the unit fixed for 10 seconds, the terminal shall be visually examined for any damage.</p> <table> <thead> <tr> <th>Terminal diameter</th> <th>Force</th> </tr> </thead> <tbody> <tr> <td>0.5 mm</td> <td>5 N</td> </tr> <tr> <td>0.6 mm</td> <td>10 N</td> </tr> <tr> <td>0.8 mm</td> <td>10 N</td> </tr> <tr> <td>1.0 mm</td> <td>20 N</td> </tr> </tbody> </table>	Terminal diameter	Force	0.5 mm	5 N	0.6 mm	10 N	0.8 mm	10 N	1.0 mm	20 N	$ \Delta V/V (1 \text{ mA}) \leq 5 \%$ No break of solder joint, no wire break
Terminal diameter	Force												
0.5 mm	5 N												
0.6 mm	10 N												
0.8 mm	10 N												
1.0 mm	20 N												
E	Vibration	<p>After repeatedly applying a single harmonic vibration according to the table below. Thereafter, the unit shall be visually examined.</p> <p>frequency range: 10 55 Hz amplitude: 0.75 mm or 98 m/s² duration: 6 h (3 x 2 h) pulse: sine wave</p>	$ \Delta V/V (1 \text{ mA}) \leq 5 \%$ No visible damage										
A N I C A L	Solderability	<p>After dipping the terminals to a depth of approximately 3 mm from the body in a soldering bath of 235°C for 5 seconds, the terminals shall be visually examined.</p>	The inspection shall be carried out under adequate light with normal eyesight or with the assistance of a magnifier capable of giving a magnification of 4 times to 10 times. The dipped surface shall be covered with a smooth and bright solder coating with no more than small amounts of scattered imperfections such as pinholes or un-wetted or de-wetted areas. These imperfections shall not be concentrated in one area.										

Metal Oxide Varistor
Disc type
SIOV-Q14K625
Ordering code: B72214Q0621K101
Data sheet

	Characteristics	Test Methods/Description	Specifications
M E C H A	Resistance to soldering heat	Each lead shall be dipped into a solder bath having a temperature of $260 \pm 5^\circ\text{C}$ to a point 2.0 to 2.5 mm from the body of the unit, be held there for 10 ± 1 s and then be stored at room temperature and normal humidity for 1 to 2 hours. The change of V_v and mechanical damages shall be examined.	$ \Delta V/V (1 \text{ mA}) \leq 5 \%$ No visible damage
N I C A L	Electric strength	2500 V _{RMS} , 10 s The varistor is placed in a container holding 1.6 ± 0.2 mm diameter metal balls such that only the terminations of the varistor are protruding. The specified voltage shall be applied between both terminals of the specimen connected together and the electrode inserted between the metal balls.	No breakdown

ISSUE DATE	22.05.02	ISSUE	a	PUBLISHER	KH PE VAR	PAGE	5/6
------------	----------	-------	---	-----------	-----------	------	-----

Metal Oxide Varistor
Disc type
SIOV-Q14K625
Ordering code: B72214Q0621K101
Data sheet

	Characteristics	Test Methods/Description	Specifications												
E N	Max. AC operating voltage	After being continuously applied the maximum allowable voltage at $85 \pm 2^\circ\text{C}$ for 1000 hours, the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V_v shall be measured.	$ \Delta V/V (1 \text{ mA}) \leq 10 \%$												
V I	Damp heat, steady state	The specimen shall be subjected to $40 \pm 2^\circ\text{C}$, 90 to 95 % r.H. for 56 days without load and then stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V_v shall be measured.	$ \Delta V/V (1 \text{ mA}) \leq 10 \%$												
R O N M	Climatic sequence	The specimen shall be subjected to: a) dry heat at $+85^\circ\text{C}$, 16 h b) damp heat, 1st cycle: 55°C , 93 % r.H., 24 h c) cold, -40°C , 2 h d) damp heat, additional 5 cycles: 55°C , 93 % r.H., 24 h/cycle Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V_v shall be measured.	$ \Delta V/V (1 \text{ mA}) \leq 10 \%$												
E N T A L	Fast temperature cycling	The temperature cycle shown below shall be repeated 5 times. Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. The change of V_v and mechanical damage shall be examined. <table> <thead> <tr> <th>Step</th> <th>Temperature ($^\circ\text{C}$)</th> <th>Period (min.)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>-40 ± 3</td> <td>30 ± 3</td> </tr> <tr> <td>2</td> <td>transition time</td> <td>$< 10 \text{ s}$</td> </tr> <tr> <td>3</td> <td>85 ± 2</td> <td>30 ± 3</td> </tr> </tbody> </table>	Step	Temperature ($^\circ\text{C}$)	Period (min.)	1	-40 ± 3	30 ± 3	2	transition time	$< 10 \text{ s}$	3	85 ± 2	30 ± 3	$ \Delta V/V (1 \text{ mA}) \leq 5 \%$ No visible damage
Step	Temperature ($^\circ\text{C}$)	Period (min.)													
1	-40 ± 3	30 ± 3													
2	transition time	$< 10 \text{ s}$													
3	85 ± 2	30 ± 3													

Note: More details can be found in the data book 'SIOV Metal Oxide Varistors', Ordering No. EPC: 62002-7600

© EPCOS AG 2002. Reproduction, publication and dissemination of this data sheet, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

ISSUE DATE	22.05.02	ISSUE	a	PUBLISHER	KH PE VAR	PAGE	6/6
------------	----------	-------	---	-----------	-----------	------	-----

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

EPCOS:

[B72214Q0681K101](#)