

LM79XX Series

3-Terminal Negative Regulators

General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of –5V, –12V, and –15V. These devices need only one external component—a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.

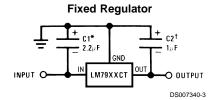
These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.

Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a

resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For applications requiring other voltages, see LM137 datasheet.

Features


- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% tolerance on preset output voltage

Connection Diagrams

TO-220 Package INPUT OUTPUT INPUT GROUND DS007340-14

Front View
Order Number LM7905CT, LM7912CT or LM7915CT
See NS Package Number TO3B

Typical Applications

*Required if regulator is separated from filter capacitor by more than 3". For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted.

†Required for stability. For value given, capacitor must be solid tantalum. 25µF aluminum electrolytic may be substituted. Values given may be increased without limit.

For output capacitance in excess of $100\mu F$, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage $(V_o = -5V)$

 $(V_o = -12V \text{ and } -15V)$ -35V

Input-Output Differential $(V_o = -5V)$ 25V $(V_o = -12V \text{ and } -15V)$ 30V Power Dissipation (Note 2) Internally Limited Operating Junction Temperature Range 0°C to +125°C Storage Temperature Range -65°C to +150°C

230°C

Lead Temperature (Soldering, 10 sec.)

Electrical Characteristics

Conditions unless otherwise noted: $I_{OUT} = 500 \text{mA}$, $C_{IN} = 2.2 \mu \text{F}$, $C_{OUT} = 1 \mu \text{F}$, $0^{\circ} \text{C} \le T_{J} \le +125^{\circ} \text{C}$, Power Dissipation $\le 1.5 \text{W}$.

-25V

Part Number				Units			
Output Voltage Input Voltage (unless otherwise specified)							
				-10V			
Symbol	Parameter	Conditions	Min	Тур	Max	1	
Vo	Output Voltage	$T_J = 25^{\circ}C$	-4.8	-5.0	-5.2	V	
		$5mA \le I_{OUT} \le 1A$,	-4.75		-5.25	V	
		P ≤ 15W		$(-20 \le V_{IN} \le -7)$		V	
ΔV_{O}	Line Regulation	T _J = 25°C, (Note 3)		8	50	mV	
				$(-25 \le V_{IN} \le -7)$			
				2	15	mV	
				$(-12 \le V_{IN} \le -8)$			
ΔV_{O}	Load Regulation	T _J = 25°C, (Note 3)					
		5mA ≤ I _{OUT} ≤ 1.5A		15	100	mV	
		250mA ≤ I _{OUT} ≤ 750mA		5	50	mV	
I _Q	Quiescent Current	$T_J = 25^{\circ}C$		1	2	mA	
ΔI_Q	Quiescent Current	With Line			0.5	mA	
	Change			$(-25 \le V_{IN} \le -7)$		V	
		With Load, 5mA ≤ I _{OUT} ≤ 1A			0.5	mA	
V _n	Output Noise Voltage	$T_A = 25^{\circ}C, 10Hz \le f \le 100Hz$		125		μV	
	Ripple Rejection	f = 120Hz	54	66		dB	
				$(-18 \le V_{IN} \le -8)$		V	
	Dropout Voltage	$T_J = 25^{\circ}C$, $I_{OUT} = 1A$		1.1		V	
I _{OMAX}	Peak Output Current	$T_J = 25^{\circ}C$		2.2		А	
	Average Temperature	I _{OUT} = 5mA,		0.4		mV/°C	
	Coefficient of	0 C ≤ T _J ≤ 100°C					
	Output Voltage						

Electrical Characteristics

 $Conditions \ unless \ otherwise \ noted: \ I_{OUT} = 500mA, \ C_{IN} = 2.2 \mu F, \ C_{OUT} = 1 \mu F, \ 0^{\circ}C \leq T_{J} \leq +125^{\circ}C, \ Power \ Dissipation \leq 1.5W.$

Part Number			LM7912C			LM7915C		
Output Voltage			-12V			-15V		
Input Voltage (unless of	otherwise specified)		-19V			-23V		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	
Output Voltage	$T_J = 25^{\circ}C$	-11.5	-12.0	-12.5	-14.4	-15.0	-15.6	V
	$5mA \le I_{OUT} \le 1A$,	-11.4		-12.6	-14.25		-15.75	V
	P ≤ 15W	(-27	≤ V _{IN} ≤	-14.5)	(-30	≤ V _{IN} ≤	–17.5)	V
Line Regulation	T _J = 25°C, (Note 3)		5	80		5	100	mV
		(-30	≤ V _{IN} ≤	-14.5)	(-30	≤ V _{IN} ≤ -	-17.5)	V
			3	30		3	50	mV
		(-22	≤ V _{IN} ≤	-16)	(-26	$5 \le V_{IN} \le$	⊆–20)	V
Load Regulation	T _J = 25°C, (Note 3)							
	Output Voltage (unless of Parameter Output Voltage Line Regulation	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Electrical Characteristics (Continued)

Conditions unless otherwise noted: $I_{OUT} = 500 \text{mA}$, $C_{IN} = 2.2 \mu\text{F}$, $C_{OUT} = 1 \mu\text{F}$, $0^{\circ}\text{C} \le T_{J} \le +125^{\circ}\text{C}$, Power Dissipation $\le 1.5 \text{W}$.

Part Number		LM7912C -12V -19V			LM7915C -15V -23V			Units	
Output Voltage Input Voltage (unless otherwise specified)									
									Symbol
		5mA ≤ I _{OUT} ≤ 1.5A		15	200		15	200	mV
		250mA ≤ I _{OUT} ≤ 750mA		5	75		5	75	mV
IQ	Quiescent Current	$T_J = 25^{\circ}C$		1.5	3		1.5	3	mA
ΔI_Q	Quiescent Current	With Line			0.5			0.5	mA
	Change		(-30 ≤	≤ V _{IN} ≤	–14.5)	(-30	$\leq V_{IN} \leq -$	-17.5)	V
		With Load, 5mA ≤ I _{OUT} ≤ 1A			0.5			0.5	mA
V _n	Output Noise Voltage	$T_A = 25^{\circ}C, 10Hz \le f \le 100Hz$		300			375		μV
	Ripple Rejection	f = 120 Hz	54	70		54	70		dB
			(-25	≤ V _{IN} ≤	-15)	(-30	$\leq V_{IN} \leq -$	-17.5)	V
	Dropout Voltage	$T_{J} = 25^{\circ}C, I_{OUT} = 1A$		1.1			1.1		V
I _{OMAX}	Peak Output Current	$T_J = 25^{\circ}C$		2.2			2.2		А
	Average Temperature	$I_{OUT} = 5mA,$		-0.8			-1.0		mV/°C
	Coefficient of	$0 \text{ C} \leq \text{T}_{\text{J}} \leq 100^{\circ}\text{C}$							
	Output Voltage								

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee Specific Performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Refer to Typical Performance Characteristics and Design Considerations for details.

Note 3: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Design Considerations

The LM79XX fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

	Тур	Max	Тур	Max		
Package	θ _{JC}			θ _{JA}		
	°C/W	°C/W	°C/W	°C/W		
TO-220	3.0	5.0	60	40		

$$P_{D MAX} = \frac{T_{J Max} - T_{A}}{\theta_{JC} + \theta_{CA}} \text{ or } \frac{T_{J Max} T_{A}}{\theta_{JA}}$$

$$\theta_{CA} = \theta_{CS} + \theta_{SA}$$
 (without heat sink)

Solving for T_{.1}:

$$T_J = T_A + P_D (\theta_{JC} + \theta_{CA})$$
 or
= $T_A + P_D \theta_{JA}$ (without heat sink)

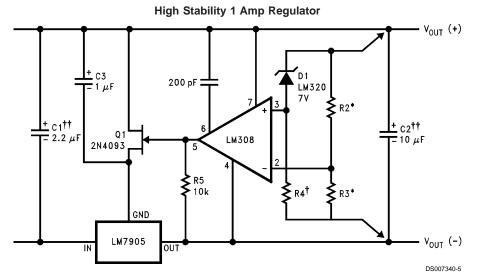
Where:

 T_J = Junction Temperature T_A = Ambient Temperature P_D = Power Dissipation θ_{JA} = Junction-to-Ambient Thermal Resistance

 θ_{JC} = Junction-to-Case Thermal Resistance

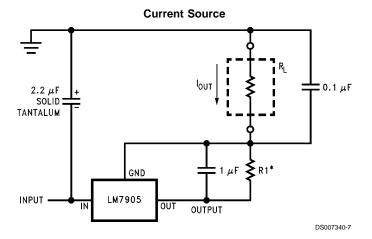
 θ_{CA} = Case-to-Ambient Thermal Resistance

 θ_{CS} = Case-to-Heat Sink Thermal Resistance


 θ_{SA} = Heat Sink-to-Ambient Thermal Resistance

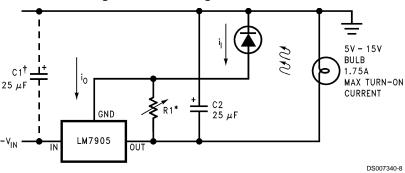
Typical Applications

Bypass capacitors are necessary for stable operation of the LM79XX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator.


The bypass capacitors, (2.2 μ F on the input, 1.0 μ F on the output) should be ceramic or solid tantalum which have good

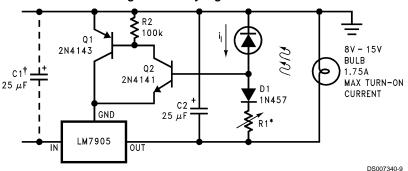
high frequency characteristics. If aluminum electrolytics are used, their values should be $10\mu F$ or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Load and line regulation < 0.01% temperature stability \leq 0.2%

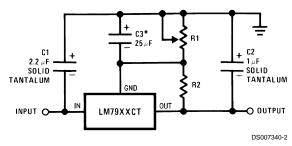

- †Determine Zener current
- ††Solid tantalum
- *Select resistors to set output voltage. 2 ppm/°C tracking suggested

*
$$I_{OUT} = 1 \text{ mA} + \frac{5V}{R1}$$

Typical Applications (Continued)


Light Controller Using Silicon Photo Cell

*Lamp brightness increase until i_I= i_Q (≈ 1 mA) + 5V/R1.

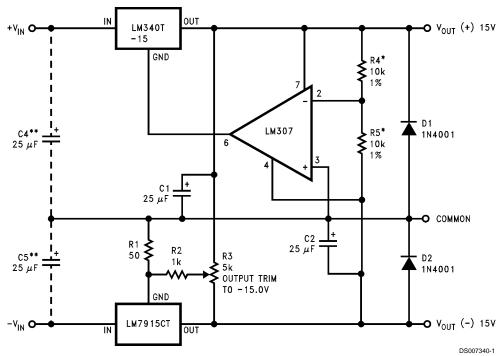

†Necessary only if raw supply filter capacitor is more that 2" from LM7905CT

High-Sensitivity Light Controller

*Lamp brightness increases until i_i = 5V/R1 (I_i can be set as low as 1 μ A) †Necessary only if raw supply filter capacitor is more that 2" from LM7905

Variable Output

*Improves transient response and ripple rejection. Do not increase beyond 50 μF .

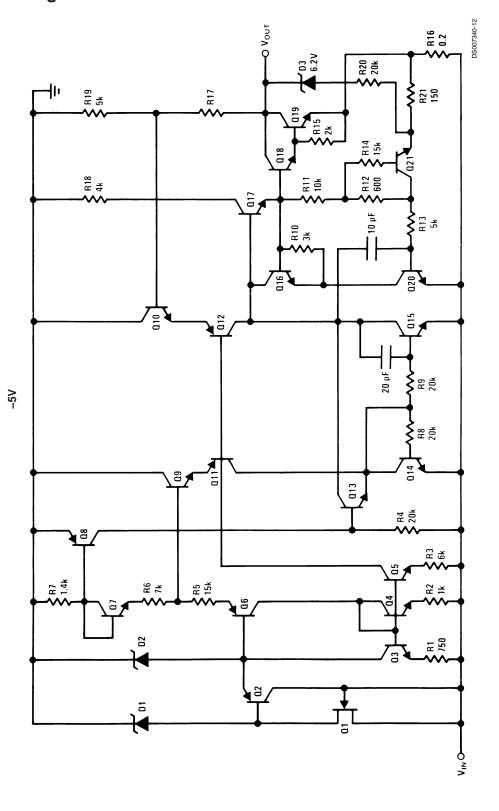

$$V_{OUT} = V_{SET} \left(\frac{R1 + R2}{R2} \right)$$

Select R2 as follows:

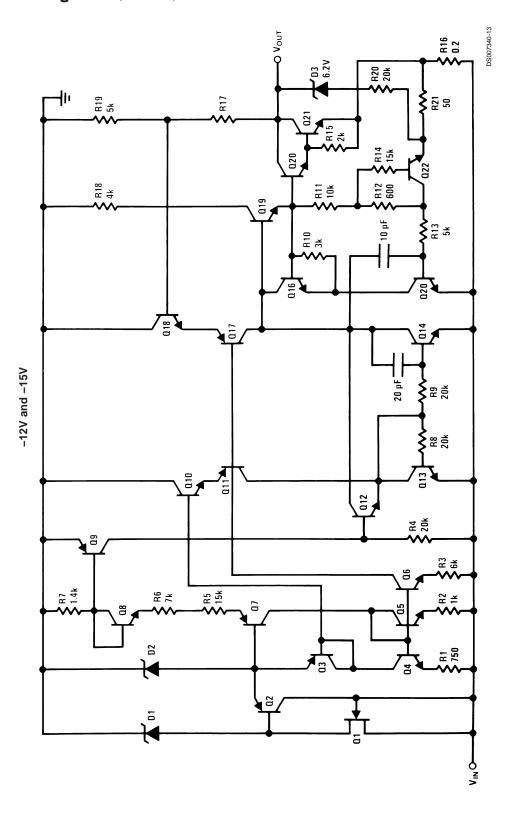
 $\begin{array}{ll} \text{LM7905CT} & 300\Omega \\ \text{LM7912CT} & 750\Omega \\ \text{LM7915CT} & 1\text{k} \end{array}$

Typical Applications (Continued)

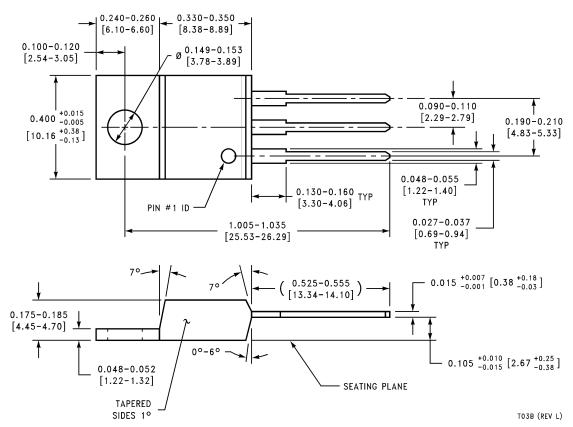
±15V, 1 Amp Tracking Regulators


	(-15)	(+15)
Load Regulation at $\Delta I_L = 1A$	40mV	2mV
Output Ripple, $C_{IN} = 3000 \mu F$, $I_L = 1A$	100 μVms	100 μVms
Temperature Stability	50mV	50mV
Output Noise $10Hz \le f \le 10kHz$	150 μVms	150 μVms

^{*}Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.


Dual Trimmed Supply +INPUT O-LM340-5 **O** +5.0V GND 240 $0.22 \, \mu F$: 1N4001 **≨** 33 • сом 0-D2 $2.2 \mu F$: 470 1N4001 GND LM7905 O-5.0V OUT DS007340-4

^{**}Necessary only if raw supply filter capacitors are more than 3" from regulators.


Schematic Diagrams

Schematic Diagrams (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted

TO-220 Outline Package (T) Order Number LM7905CT, LM7912CT or LM7915CT **NS Package Number T03B**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com

National Semiconductor Tel: 81-3-5639-7560 Fax: 81-3-5639-7507