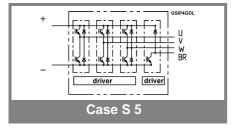
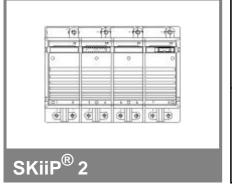
SKiiP 132GDL120-4DU

7-pack - integrated intelligent Power System


Power section - 3 phase bridge SKiiP 132GDL120-4DU

Power section features

- SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT	•					
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	150 (112,5)	Α			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	150 (112,5)	Α			
I _{FSM}	$T_{j} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}.$	1440	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 15 0 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

	· L							
Characteristics T _s = 25 °C unless otherwise specified								
Symbol	Conditions				min.	typ.	max.	Units
IGBT						-7		
	I _C = 125 A,	T; = 25 (1	25) °C			2,6 (3,1)	3,1	V
V _{CEO}	T _i = 25 (125		,			1,2 (1,3)	1,5 (1,6)	V
r _{CE}	T _i = 25 (125) °C					10,5 (14)	12,6 (16,1)	$m\Omega$
I _{CES}	V _{GE} = 0 V, \	V _{CE} = V _{CE}	ES,			(10)	0,4	mA
	$T_i = 25 (125)$) °C						
E _{on} + E _{off}	I _C = 125 A,	V _{CC} = 60	0 V				38	mJ
	T _j = 125 °C,	V _{CC} = 90	00 V				66	mJ
R _{CC' + EE'}	terminal chi	p, T _i = 12	5 °C			0,5		mΩ
L _{CE}	top, bottom	,				15		nΗ
C _{CHC}	per phase, A	AC-side				1,4		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 150 A,		25) °C			2,1 (1,9)	2,6	V
V_{TO}	$T_j = 25 (125)$					1,3 (1)	,	V
r _T	$T_j = 25 (125)$					5 (6)	6,8 (7,8)	mΩ
E _{rr}	$I_C = 125 A,$						6	mJ
	T _j = 125 °C,	V _{CC} = 90	00 V				8	mJ
Mechani	cal data				_			
M _{dc}	DC terminal	-			6		8	Nm
M _{ac}	AC terminals, SI Units				13	0.5	15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
W	heat sink				3	8,5		kg
Thermal	character	istics (P16 hea	t sink; 27	75 m³/h)	; " _r " refe	rence to	
	ture senso	or			İ		0.40	12001
R _{th(j-s)I}	per IGBT per diode						0,18 0,375	K/W K/W
R _{th(j-s)D}	'						0,036	K/W
R _{th(s-a)}	per module				tau _i (s)			
Z_{th}	R _i (mK/W) (max. values) 1 2 3 4				l 1	1at	ı _i (s) 3	4
$Z_{\text{th(j-r)I}}$	20	139	22	0		0,13	0,001	1
$Z_{th(j-r)D}$	41	289	45	0	1	0,13	0,001	1
$Z_{th(r-a)}$	1,7	24	7,6	2,6	494	165	20	0,03

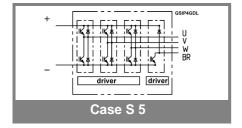
^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

SKiiP 132GDL120-4DU

Absolute	Maximum Ratings T _a	_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

7-pack - integrated intelligent Power System

7-pack integrated gate driver - 3 phase bridge SKiiP 132GDL120-4DU


Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56

Characteristics (T					= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	410+280	410+280*f/f _{max} +3,6*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	300+200	300+200*f/f _{max} +2,6*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time	9		1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t_TD	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		150		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 13/20/22/24/26			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		188		Α
I _{TRIPLG}	ground fault protection		43		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

