

MECHANICAL DATA

Dimensions in mm (inches)

TO-3 Package (TO-204AA)

Pin 1 – Emitter

Pin 2 – Base

Pin 3 – Collector

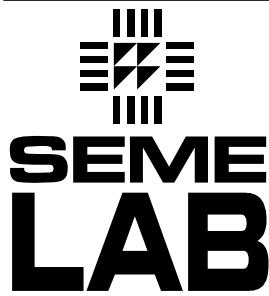
HIGH POWER PNP SILICON TRANSISTORS

DESCRIPTION

Designed for use in Industrial - Military Power Amplifier and Switching Circuit Applications

ABSOLUTE MAXIMUM RATINGS ($T_{CASE} = 25^\circ\text{C}$ unless otherwise stated)

		2N6436	2N6437	2N6438
V_{CB}	Collector – Base Voltage	100	120	140
V_{CEO}	Collector – Emitter Voltage	80	100	120
V_{EB}	Emitter – Base Voltage		6.0V	
I_C	Collector Current Continuous		25A	
	Peak		50A	
I_B	Base Current		10A	
P_D	Total Device Dissipation at $T_{case} = 25^\circ\text{C}$		200W	
	Derate above 25°C		1.14W/ $^\circ\text{C}$	
T_{stg}, T_j	Operating and Storage Temperature Range		–65 to +200 $^\circ\text{C}$	


Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: <http://www.semelab.co.uk>

Document Number 3252

Issue 1

2N6436
2N6437
2N6438

THERMAL DATA

$R_{thj-case}$	Thermal Resistance Junction-case	Max	0.875	$^{\circ}\text{C/W}$
----------------	----------------------------------	-----	-------	----------------------

ELECTRICAL CHARACTERISTICS FOR ($T_{case} = 25^{\circ}\text{C}$ unless otherwise stated)

Parameter		Test Conditions	Min.	Typ.	Max.	Unit
I_{CBO}	Collector Cut Off Current	$V_{CB} = 100\text{V}$ $I_E = 0$ 2N6436			10	
		$V_{CB} = 120\text{V}$ $I_E = 0$ 2N6437			10	
		$V_{CB} = 140\text{V}$ $I_E = 0$ 2N6438			10	
I_{EBO}	Emitter Cut Off Current	$V_{EB} = 6\text{V}$ $I_C = 0$			100	μA
		$V_{CE} = 90\text{V}$ 2N6436			10	μA
		$V_{BE(\text{off})} = -1.5\text{V}$ $T_C = 150^{\circ}\text{C}$			1.0	mA
I_{CEX}	Collector Cut Off Current	$V_{CE} = 110\text{V}$ 2N6437			10	μA
		$V_{BE(\text{off})} = -1.5\text{V}$ $T_C = 150^{\circ}\text{C}$			1.0	mA
		$V_{CE} = 130\text{V}$ 2N6436			10	μA
I_{CEO}	Collector Cut off Current	$V_{BE(\text{off})} = -1.5\text{V}$ $T_C = 150^{\circ}\text{C}$			1.0	mA
		$V_{CE} = 40\text{V}$ $I_B = 0$ 2N6436			50	
		$V_{CE} = 50\text{V}$ $I_B = 0$ 2N6437			50	
		$V_{CE} = 60\text{V}$ $I_B = 0$ 2N6438			50	
		$I_C = 50\text{mA}$ $I_B = 0$	2N6436	80		
			2N6437	100		
			2N6438	120		
h_{FE}^*	DC Current Gain	$V_{CE} = 2.0\text{V}$ $I_C = 0.5\text{A}$	30			
		$V_{CE} = 2.0\text{V}$ $I_C = 10\text{A}$	20		120	
		$V_{CE} = 2.0\text{V}$ $I_C = 25\text{A}$	12			
$V_{CE(\text{sat})}$	Collector - Emitter Saturation Voltage	$I_C = 10\text{A}$ $I_B = 1.0\text{A}$			1.0	
		$I_C = 25\text{A}$ $I_B = 2.5\text{A}$			1.8	
$V_{BE(\text{sat})}$	Base Emitter Saturation Voltage	$I_C = 10\text{A}$ $I_B = 1.0\text{AV}$			1.8	
		$I_C = 25\text{A}$ $I_B = 2.5\text{A}$			2.5	
f_T	Current Gain - Bandwidth Product	$I_C = 1.0\text{A}$ $V_{CE} = 10\text{V}$ $f_{\text{test}} = 10\text{MHz}$	40			MHz
C_{ob}	Output Capacitance	$I_E = 0\text{A}$ $V_{CE} = 10\text{V}$ $f = 100\text{kHz}$			700	pF
t_r	Rise Time	$V_{CC} = 80\text{V}$ $I_C = 10\text{A}$			0.3	
		$V_{BE(\text{off})} = 6.0\text{V}$ $I_{B1} = 1.0\text{A}$				
t_s	Storage	$V_{CC} = 80\text{V}$ $I_C = 10\text{A}$			1.0	
		$V_{BE(\text{off})} = 6.0\text{V}$ $I_{B1} = I_{B2} = 1.0\text{A}$			0.25	

* Pulse test: Pulse Width $\leq 300\mu\text{s}$, Duty Cycle $\leq 2.0\%$

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.