

Structure : Silicon Monolithic Integrated Circuit

Product Series : Audio Sound Processor for mini compo, micro compo, TV, radio cassette recorder

Type : BD3490FV

Package : SSOP - B28

●Feature

1. Low noise (5 μ Vrms(TYP.)) and low distortion(0.002% (TYP.)).

- 2.Built-in simple surround. Furthermore, it can constitute good surround of sound image normal position with an external part.
- 3.It can constitute a bass boost or output gain with an external part.
- 4. When the volume setting exchanging, it can use a volume terminal as a microphone input terminal because there is not an impedance change of a volume terminal.
- 5. Bi-CMOS process is suitable for the design of low current and low energy. And it provides more quality for small scale regulator and heat in a set.
- 6. The package of this IC is SSOP-B28. It gathers a sound input terminals, sound output terminals respectively and it arranges them, to be arranging facilitates the laying-out of PCB pattern and reduces PCB area to one-way in the flow of the signal.

● Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limit	Unit		
Power supply voltage	VCC	10.0	V		
Intput voltage	VIN	VCC+0.3 \sim GND-0.3	V		
Power dissipation	Pd	1060 *1	mW		
Storage temperature range	Tastg	-55 ∼ +150	°C		

At Ta=25°C or higher, this value is decreaced to 8.5mW/°C.

When Rohm standard board is mounted.

Rohm standard board: size: $70 \times 70 \times 1.6 \text{ (mm}^3\text{)}$

material: FR4 glass-epoxy substrate (copper foil area: not more than 3%).

Operating Range

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VCC	4.75	-	9.5	V
Temperture	Topr	-40	-	+85	°C

Design against radiation-proof isn't made.

Function

Function	Specifications			
Input selector	Stereo 4 input + MUTE + Input short			
Input gain	0~8dB (2dB step)、12, 16, 20dB			
Volume	0dB~-87dB (1dB step), -∞dB Possible to control independently			
Bass	Gain=-14~+14dB (2dB step)			
Treble	Gain=-14~+14dB (2dB step)	*		
Surround	Gain=OFF, Low, Middle, High			

Electrical Characteristics

(Unless specified particularly, Ta=25°C, VCC=9V, f=1kHz, Vin=1Vrms, Rg=600 Ω, RL=10k Ω, A input, Input gain 0dB,

Volume 0dB, Bass 0dB, Treble 0dB, Surround=OFF)

Volume OdB, Bass OdB, Trebi			Limit		1.114	0	
ltem .	Symbol	Min.	Тур.	Max.	Unit	Condition	
Current upon no signal	ΙQ	-	7	15	mA	No signal	
Voltage gain	Gv	-1.5	0	1.5	dB	Gv=20log(VOUT/VIN)	
Channel balance	СВ	-1.5	0	1.5	dB	CB=Gv1-Gv2	
Total harmonic distortion	THD+N	_	0.002	0.1	%	VOUT=1Vrms BW=400-30kHz	
Output noise voltage	Vno	-	5	20	μVrms	Rg=0Ω BW=IHF-A	
Residual output noise voltage	Vnor	-	5	20	μVrms	Fader=-∞dB Rg=0Ω BW=IHF-A	
Cross-talk between channels	стс	_	-100	-80	dB	Rg=0Ω CTC=20log(VOUT/VIN) BW=IHF-A	
Input impedance	R _{IN}	35	50	65	kΩ		
Maximum input voltage	V _{IM}	2.1	2.4	_	Vrms	VIM at THD+N(VOUT)=1% BW=400 – 30KHz	
Cross-talk between selectors	стѕ	_	-100	-80	dB	Rg=0 Ω CTS=20log (VOUT/VOUT) BW=IHF – A	
Control range	G _{V MAX}	-90	-87	-84	dB	VIN=2Vrms Gv=20log (VOUT/VIN)	
Maximum attenuation	GVMIN	_	-100	-80	dB	Volume=-∞dB G _V =20log(VOUT/VIN)	
Bass maximum boost gain	G _{B BST}	11.5	14	16.5	dB	Gain=14dB, f=100Hz VIN=100mVrms GB=20log (VOUT/VIN)	
Bass maximum cut gain	G _{в сит}	- 16.5	-14	-11.5	dB	Gain=-14dB, f=100Hz VIN=2Vrms GB=20log (VOUT/VIN)	
Treble maximum boost gain	GTBST	11.5	1.4	16.5	dB	Gain=+14dB, f=10KHz VIN=100mVrms GT=20log (VOUT/VIN)	
Treble maximum cut gain	G _{т сит}	-16.5	-14	- 11.5	dB	Gain= – 14dB, f=10KHz VIN=2Vrms GT=20log (VOUT/VIN)	

Block diagram

Dimensional outline drawing

●Terminal No. / Terminal Name

Terminal	Terminal			
No.	name			
1	A1			
	A2			
3	B1			
4	B1 B2 C1			
5	C1			
6	C2			
7	C2 D1			
8	D2			
9	SEL2			
10	SEL1			
11	VOL1			
11 12	VOL2			
13	VOL2 TC2			
14	TC1			
15	BCB2			
16	BCA2			
17	BCA1			
18	BCB1			
19	OUT2			
20	SB2			
21	SR			
22	SB1			
23	OUT1			
24	VCC			
25	SCL			
26	SDA			
27	GND			
28	FIL			

Caution on use

(1) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.

(2) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.

(3) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.

(4) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.

(5) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/