
GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz

Typical Applications

The HMC907LP5E is ideal for:

- Test Instrumentation
- Microwave Radio & VSAT
- Military & Space
- Telecom Infrastructure
- Fiber Optics

Functional Diagram

Features

High P1dB Output Power: +26 dBm

High Gain: 12 dB

High Output IP3: +36 dBm

Single Supply: +10 V @ 350 mA

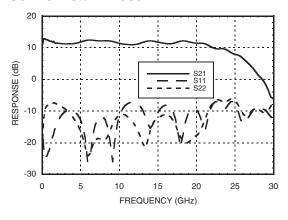
50 Ohm Matched Input/Output

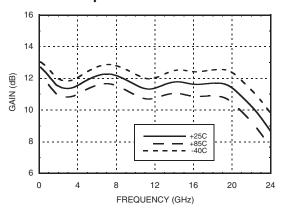
32 Lead 5x5 mm SMT Package: 25 mm²

General Description

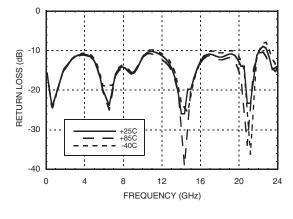
The HMC907LP5E is a GaAs MMIC pHEMT Distributed Power Amplifier which operates between 0.2 and 22 GHz. This self-biased power amplifier provides 12 dB of gain, +36 dBm output IP3 and +26 dBm of output power at 1 dB gain compression while requiring only 350 mA from a +10 V supply. Gain flatness is excellent at ±0.7 dB from 0.2 to 22 GHz making the HMC907LP5E ideal for EW, ECM, Radar and test equipment applications. The HMC907LP5E amplifier I/Os are internally matched to 50 Ohms facilitating integration into Mutli-Chip-Modules (MCMs) and is packaged in a leadless QFN 5x5 mm surface mount package, and requires no external matching components.

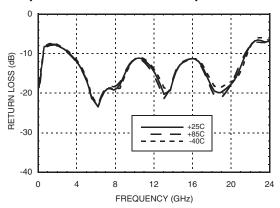
Electrical Specifications, $T_{\Delta} = +25$ °C, Vdd = +10 V, Idd = 350 mA


Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	0.2 - 10		10 - 18		18 - 22			GHz		
Gain	10	12		10	11.5		10	11.5		dB
Gain Flatness		±0.7			±0.6			±0.7		dB
Gain Variation Over Temperature		0.01			0.013			0.014		dB/ °C
Input Return Loss		15			9			8		dB
Output Return Loss		13			12			8		dB
Output Power for 1 dB Compression (P1dB)	23	26		21	25		19.5	21.5		dBm
Saturated Output Power (Psat)		28.5			27			24.5		dBm
Output Third Order Intercept (IP3)		36			34			31		dBm
Noise Figure		3.5			3.5			4		dB
Supply Current (Idd) (Vdd= 10V)		350	400		350	400		350	400	mA

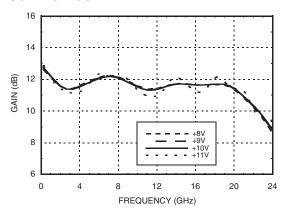


GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz


Gain & Return Loss

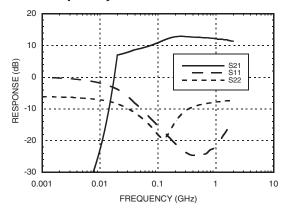

Gain vs. Temperature

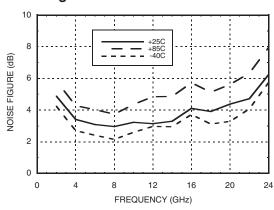

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

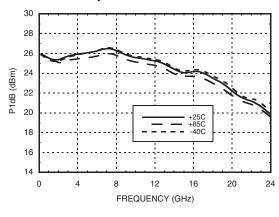
Reverse Isolation vs. Temperature

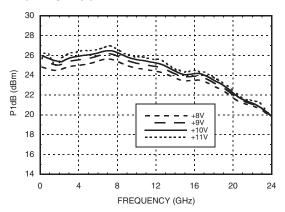
Gain vs. Vdd

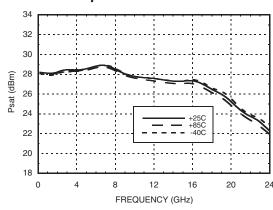


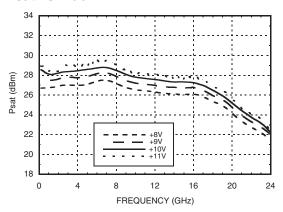


GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz


Low Frequency Gain & Return Loss

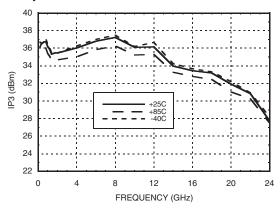

Noise Figure


P1dB vs. Temperature

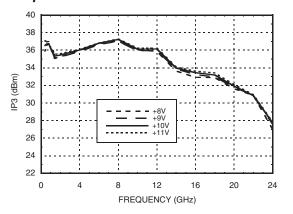

P1dB vs. Vdd

Psat vs. Temperature

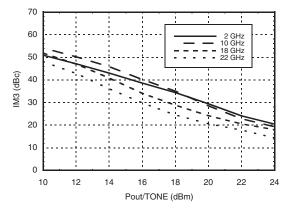
Psat vs. Vdd


GaAs pHEMT MMIC

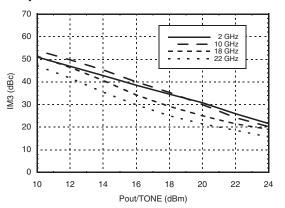
v00.0510

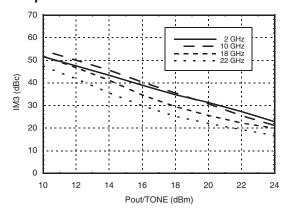


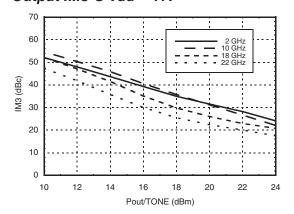
Output IP3 vs. Temperature @ Pout = 16 dBm / Tone



Output IP3 vs. Vdd @ Pout = 16 dBm / Tone

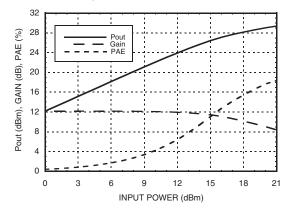

POWER AMPLIFIER, 0.2 - 22 GHz

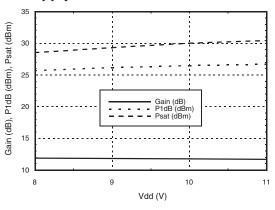

Output IM3 @ Vdd = 8V


Output IM3 @ Vdd = 9V

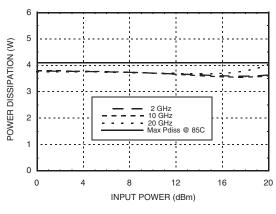
Output IM3 @ Vdd = 10V

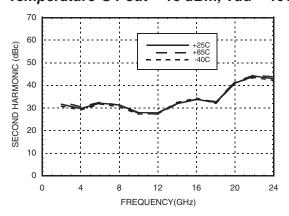
Output IM3 @ Vdd = 11V

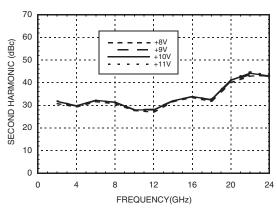


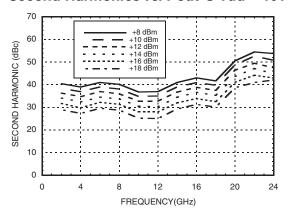


GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz


Power Compression @ 10 GHz


Gain & Power Supply vs. Supply Current @ 10 GHz


Power Dissipation


Second Harmonics vs. Temperature @ Pout = 16 dBm, Vdd = 10V

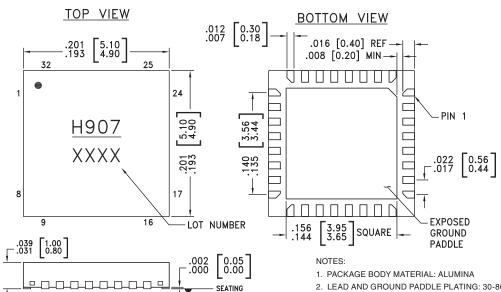
Second Harmonics vs. Vdd @ Pout = 16 dBm

Second Harmonics vs. Pout @ Vdd = 10V

GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz

Absolute Maximum Ratings

Drain Bias Voltage (Vdd)	+11 Vdc
RF Input Power (RFIN)(Vdd = +11V)	+20 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 63 mW/°C above 85 °C)	4.1 W
Thermal Resistance (channel to ground paddle)	15.9 °C/W
Storage Temperature	-65 to 150°C
Operating Temperature	-55 to 85 °C
ESD Sensitivity (HBM)	Class 1A


Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+8	335
+9	343
+10	350
+11	357

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

- 2. LEAD AND GROUND PADDLE PLATING: 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL.
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. CLASSIFIED AS MOISTURE SENSITIVITY LEVEL (MSL) 1.

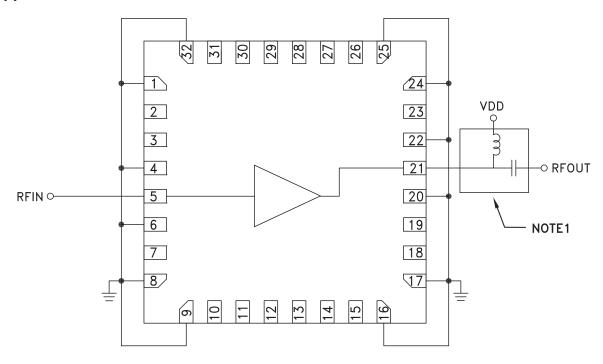
Package Information

△ .003[0.08] C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]	
HMC907LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	H907 XXXX	

^{[1] 4-}Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

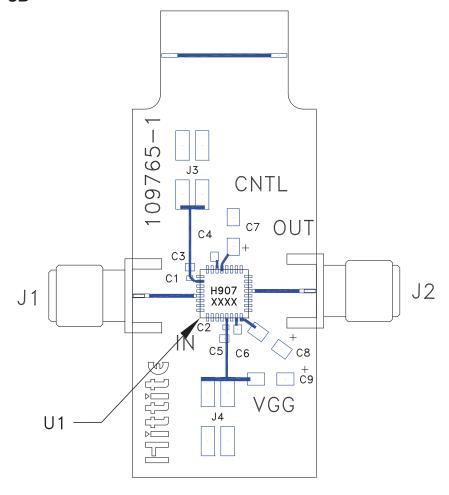


GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 6, 8, 9, 16, 17, 20, 22, 24, 25, 32	GND	Package bottom has exposed metal paddle that must be connected to RF/DC ground.	⊖ GND — —
2, 3, 7, 10 - 15, 18, 19, 23, 26 - 31	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5	RFIN	This pin is DC coupled and matched to 50 Ohms. Blocking capacitor is required.	RFIN
21	RFOUT & Vdd	RF output for amplifier. Connect DC bias (Vdd) network to provide drain current (Idd). See application circuit herein.	RFOUT Vdd

Application Circuit


NOTE 1: Drain Bias (Vdd) must be applied through a broadband bias tee or external bias network.

GaAs pHEMT MMIC POWER AMPLIFIER, 0.2 - 22 GHz

Evaluation PCB

List of Materials for Evaluation PCB 130812 [1]

Item	Description
J1, J2	SMA Connector
U1	HMC907LP5E Power Amplifier
PCB [2]	109765 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon FR4