

Advanced Multi-Protocol Communications Controller

Datasheet

The CD2431 is a 4-channel synchronous/asynchronous communications controller specifically designed to reduce host-system processing overhead and increase efficiency in a wide variety of communications applications. The CD2431 is packaged in a 100-pin MQFP, and offers eight clock/modem pins per channel. The device has four fully independent serial channels that support asynchronous, asynchronous-HDLC, and bit-synchronous (HDLC/SDLC) protocols.

The CD2431 is based on a proprietary on-chip RISC processor that performs all time-critical, low-level tasks that are otherwise performed by the host system.

The CD2431 boosts system efficiency with on-chip DMA, on-chip FIFOs, intelligent vectored interrupts, and intelligent protocol processing. The on-chip DMA controller provides 'fire-and-forget' transmit support — the host need only inform the CD2431 of the location of the packet to be sent. Similarly, on receive, the CD2431 automatically receives a complete packet with no host intervention or assistance required. The DMA controller also has an 'Append mode' for use in asynchronous applications.

The DMA controller uses a dual-buffer scheme that easily implements simple or complex buffer schemes. Each channel and direction has two active buffers.

The CD2431 can be programmed to interrupt the host at the completion of a frame or buffer. In applications where buffers are of a small, fixed size, the dual-buffer scheme allows large frames to be divided into multiple buffers.

For applications where a DMA interface is not desired, the device can be operated as an interrupt-driven or polled device. This choice is available individually for each channel and each direction. For example, a channel can be programmed for DMA transmit and interrupt-driven receive.

In either case, 16-byte FIFOs on each channel and in each direction reduce latency time requirements, making both software and hardware designs less time-critical. Threshold levels on FIFOs are user-programmable.

Efficient vectored interrupts are another way the CD2431 help system efficiency. Separate interrupts are generated for transmit, receive, and modem-signal change, with unique user-defined vectors for each type and channel. This allows very flexible interfacing and fast, efficient interrupt coding. For example, the Good Data™ interrupt allows the host to vector directly to a routine that transfers the data — no status or error checking is required.

Information in this document is provided in connection with Intel[®] products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The CD2431 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

*Third-party brands and names are the property of their respective owners.

1.0	Feat	ures		9
	1.1 1.2		-amily Compatibility	
2.0				
2.0	Con	ventions		13
3.0	Pin l	nformatio	n	15
	3.1	Pin Diagra	nm — CD2431	15
	3.2		ons — CD2431	
	3.3	Pin Descri	ptions	16
4.0	Reg	ster Table)	20
	4.1	Memory M	lap	20
		4.1.1 GI	lobal Registers	20
		4.1.2 O _l	ption Registers	20
		4.1.3 Bi	t Rate and Clock Option Registers	21
		4.1.4 Cl	nannel Command and Status Registers	22
			terrupt Registers	
			MA Registers	
			mer Registers	
	4.2	-	Definitions	
			lobal Registers	
			ption Registers	
			t Rate and Clock Option Registers	
			nannel Command and Status Registers	
			terrupt Registers	
			MA Registers	
5 0	-		mer Registers	
5.0	Fun		scription	
	5.1		ace	
			ost Read and Write Cycles	
		•	te and Word Transfers	
	5.2			
			ontexts and Channels	
			terrupt Registers	
		5.2.3 G	roups and Types	38
			ardware Signals and IACK Cycles	
	5 0		ulti–CD2431 Systems	
	5.3		Timer Operations	
			eceive FIFO Operation	
			ansmit FIFO Operation mers	
			mers in Synchronous Protocols	
			mers in Asynchronous Protocols	
			ansmit Timer	
	5.4		ration	
	0	· Opo		

		5.4.1 Bus Acquisition Cycle	43
		5.4.2 DMA Data Transfer	44
		5.4.3 Bus Error Handling	45
		5.4.4 A and B Buffers and Chaining	45
		5.4.5 Transmit DMA Transfer	46
		5.4.6 Synchronous Transmitter Examples	48
		5.4.7 Receive DMA Transfer	50
		5.4.8 Transmit DMA Transfer	53
		5.4.9 Receive Buffer Interrupts	55
	5.5	Bit Rate Generation and Data Encoding	57
		5.5.1 BRG and DPLL Operation	57
	5.6	Hardware Configurations	64
		5.6.1 Interface to a 32-Bit Data Bus	65
		5.6.2 DMA Connections for the CD2431	65
		5.6.3 Recommended CD2431 as a DTE and DCE Interface	
6.0	Drot	and Procesing	67
0.0	FIOL	ocol Processing	
	6.1	HDLC Processing	
		6.1.1 FCS (Frame Check Sequence)	
		6.1.2 HDLC Transmit Mode	67
		6.1.3 HDLC Receive Mode	
	6.2	PPP (Point-to-Point Protocol) Mode	
		6.2.1 Character Format	
		6.2.2 Frame Format	
		6.2.3 FCS (Frame Check Sequence)	
		6.2.4 Transparency	
		6.2.5 Definition of a Valid Frame	
		6.2.6 Transmitter	
		6.2.7 Receiver	72
	6.3	SLIP Processing	73
		6.3.1 Framing	73
		6.3.2 Debugging Aids	74
	6.4	MNP 4,/ARAP Protocol Processing	
		6.4.1 Framing	
		6.4.2 MNP, 4/ARAP FCS (Frame Check Sequence) Calculation	75
	6.5	Async Processing	
		6.5.1 Transmitter In-Band Flow Control	75
		6.5.2 Out-of-Band Flow Control	77
		6.5.3 Line Break Detection and Generation	78
		6.5.4 Special Character Transmission	
		6.5.5 Special Character Recognition and Special Character Range	79
		6.5.6 Special Character Range	
		6.5.7 UNIX Support Features	80
	6.6	Non-8-Bit Data Transfers	80
7.0	Prog	gramming Examples	84
	7.1	Global Initialization	85
	7.2	Async Interrupt Setup Example	
	7.3	HDLC DMA Channel Setup Example	
	7.4	Receive DMA Interrupt Service Routine	

	7.5	Transmit Interrupt Service Routine	88
8.0	Deta	illed Register Descriptions	89
	8.1	Global Registers	
		8.1.1 Global Firmware Revision Code Register (GFRCR)	
		8.1.2 Channel Access Register (CAR)	
	8.2	Option Registers	
		8.2.1 Channel Mode Register (CMR)	
		8.2.2 Channel Option Register 1 (COR1)	
		8.2.3 Channel Option Register 2 (COR2)	93
		8.2.4 Channel Option Register 3 (COR3)	96
		8.2.5 Channel Option Register 4 (COR4)	100
		8.2.6 Channel Option Register 5 (COR5)	101
		8.2.7 Channel Option Register 6 (COR6) — Async Mode Only	102
		8.2.8 Channel Option Register 7 (COR7) — Async Mode Only	103
		8.2.9 Special Character Registers — Async Modes Only	104
		8.2.10 Special Character Range Register — Async Mode Only	
		8.2.11 LNext Character (LNXT) — Async Mode Only	107
		8.2.12 Receive Frame Address Registers — HDLC Sync Mode Only	
		8.2.13 CRC Polynomial Select Register (CPSR)	
		8.2.14 Transmit Special Mapped Characters — PPP Mode only	109
		8.2.15 Transmit Async Control Character Maps — PPP Mode Only	
		8.2.16 Receive Async Control Character Maps — PPP Mode Only	
	8.3	Bit Rate and Clock Option Registers	
		8.3.1 Receive Bit Rate Generator Registers	
		8.3.2 Transmit Bit Rate Generator Registers	
	8.4	Channel Command and Status Registers	
		8.4.1 Channel Command Register (CCR)	
		8.4.2 Special Transmit Command Register (STCR)	
		8.4.3 Channel Status Register (CSR)	
		8.4.4 Modem Signal Value Registers (MSVR)	
	8.5	Interrupt Registers	
		8.5.1 General Interrupt Registers	
		8.5.2 Receive Interrupt Registers	
		8.5.3 Transmit Interrupt Registers	
	0.0	8.5.4 Modem Interrupt Registers	
	8.6	DMA Registers	
		8.6.1 DMA Mode Register (DMR)	
		8.6.2 DMA Receive Registers	
	0.7	8.6.3 DMA Transmit Registers	
	8.7	Timer Registers	
		8.7.1 Timer Period Register (TPR)	
		, , , , , , , , , , , , , , , , , , , ,	
		8.7.3 General Timer 1 (GT1) Sync Modes Only	
		8.7.4 General Timer 2 (GT2) Sync Modes Only	
0.0	- 1.		
9.0	Flec	trical Specifications	
	9.1	Absolute Maximum Ratings	
	9.2	DC Electrical Characteristics	164

CD2431 — Advanced Multi-Protocol Communications Controller

	9.3 AC Electrical Characteristics	165
10.0	Package Specifications	174
11.0	Ordering Information	175
Index		177
Bit Index		183

Figures

1	Functional Block Diagram	11
2	Host Read Cycle	35
3	Host Write Cycle	
4	Interrupt Acknowledge Cycle	
5	Bus Acquisition Cycle	
6	Data Transfer Timing	
7	Transmitter A and B Buffers	
8	Receiver A and B Buffers	
9	DMA Transmit Buffer Selection	
10	BRG and DPLL	
11	Data Encoding	
12	Transmit Data With External Clock In	
13	Transmit Data With External Clock Ou	
14	DMA Connections for the CD2431	65
15	Character Format	
16	Point-to-Point Protocol Frame	69
17	ARAP 1.0 Frame	
18	ARAP 2.0 Frame	75
19	CD2431 Receive Character Processing	81
20	Initialization Sequence for the CD2431	
21	CLK / BUSCLK / RESET* TIming Relationship	166
22	Slave Read Cycle Timing	167
23	Slave Write Cycle Timing	168
24	Interrupt Acknowledge Cycle Timing	169
25	Bus Arbitration Cycle Timing	170
26	Bus Release Timing	171
27	DMA Read Cycle Timing	172
28	DMA Write Cycle Timing	173
1	Dia Deceriptions	17
1	Pin Descriptions	
2	Transmit and Receive Interrupt Service Requests	
4 5	Clock Source Select	
	Bit Rate Constants, CLK = 20 MHz	
6	Bit Rate Constants, CLK = 25 MHz	
7	Bit Rate Constants, CLK = 30 MHz	
8	Bit Rate Constants, CLK = 35 MHz	
9	Data Clock Selection Using External Clock	
10	Special Character Definition	
11	Recommended Signal Connection	
12	BREAK Sequencing	
13	SSPC[x] Settings	
14	SCdet[x] Settings	80

Tables

Revision History

Revision	Date	Description	
1.0	May 2001	Initial release.	

1.0 Features

- Four full-duplex multi-protocol channels, each running up to 134.4 kbits/second (with CLK = 35 MHz)
- Supports async, async-HDLC (high-level data link control), and HDLC/SDLC (synchronous data link control; non-multidrop) on all channels
- 32-bit address, 16-bit data, double-buffered DMA controller for each transmitter and receiver; two independent bit-rate generators per channel for transmit and receive
- On-chip NRZ (nonreturn-to-zero), NRZI (nonreturn-to-zero inverted), and Manchester data encoding and decoding
- DPLL (digital phase locked loop) on each receiver
- Two independent timers per channel

PPP (Point-to-Point Protocol) Features

- Supports data link level RFC-1661
- Supports dual async control character maps (32 control characters) RFC-1662

Async-HDLC Features

- Compatible with ISO 3309/4335 Addendum 1
- Automatic insertion and deletion of control/ escape characters and bit complements
- Automatic generation and detection of 16-bit FCS (frame check sequence)

MNP® 4 V.42 Features

• AppleTalk[®] Remote Access Protocol 1.0/2.0

SLIP Features

• Supports data link level — RFC-1055

HDLC/SDLC (Non-multidrop) Features

- Four 8-bit or two 16-bit frame address matching
- FCS generation and validation
- CRC (cyclic redundancy check) optionally readable
- Programmable leading-pad character transmission
- · Supports shared flags on receive frames
- Programmable number of leading flags

Asynchronous Features

• User-programmable and automatic flow control modes

CD2431 — Advanced Multi-Protocol Communications Controller

- In-band (software) via XON/XOFF
- Out-of-band (hardware flow control) via RTS/CTS and DTR/DSR
- Line break detection and generation
- Special-character and character-range recognition and transmission
- Transmit delay
- 5- to 8-bit character plus optional parity
- Enhanced features for UNIX[®] environment
 - Character expansion in transmit (for example, sending <LF> will be expanded to <CR> <LF> automatically)
 - Programmable translation of receiving character with error to different pattern (for example, character with parity error can be translated into FFh, 00h, character on the system side)
 - Flow-control transparency, LNext
- Programmable timer closely coupled with character reception, especially for asynchronous receive DMA operation

DMA Controller Features

- DMA or interrupt selectable per channel and per direction
- Dual Configuration register sets to reduce realtime constraints
- Append and Block mode DMA
- Chain/unchain of long frames into multiple buffers
- 32-bit address and 8- or 16-bit data transfer
- Programmable gap in buffers following a receive character exception

Other Features

- Improved interrupt schemes
 - Vectored interrupts per channel allow direct jump into proper service routines
 - Good Data[™] interrupts eliminate need for status checks
- Easily cascadable for multiple-device configurations
- 16-byte receive and transmit FIFOs
- Local and remote maintenance loopback modes
- Byte-endian-orientation selection pin allows easy interface to 80X86 and 680X0 processors
- Eight clock/modem control signals per channel (in addition to TxD and RxD)

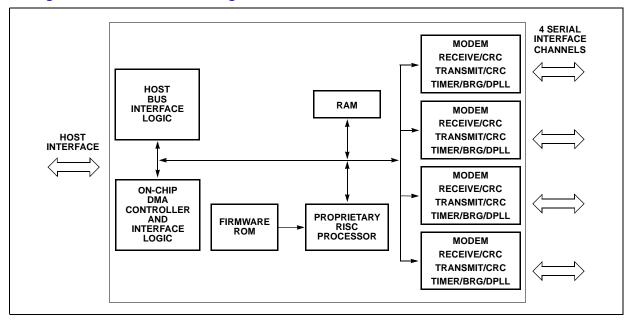


Figure 1. Functional Block Diagram

1.1 Benefits

- Substantially reduced host CPU overhead means more channels and faster overall throughput.
- No time-critical host software enables faster, easier software development.
- Smallest possible footprint for multi-channel device.

1.2 CD2XXX Family Compatibility

Features	CD2231	CD2401	CD2431
Number of serial channels	2	4	4
Interrupt on-chip DMA mechanism	$\sqrt{1}$	V	V
FIFO depth (per channel and per direction)	16	16	16
Data size (bits)	V	V	V
ASYNC	V	V	V
SDLC/HDLC	V	V	V
X.21, BISYNC	-	V	-
Async-HDLC, PPP	V	-	V
SLIP	•2	_	•
MNP® 4	•	-	•

CD2431 — Advanced Multi-Protocol Communications Controller

Features	CD2231	CD2401	CD2431
Serial data rate (kbits/second)	256/230.4 ^{3,4}	128/134.4 ³	128/134.4 ³
Number of modem leads (per channel, including RxD and TxD)	10	10	10
On-chip timers	√	√	√
UNIX [®] character processing ⁵	√	√	√
In-band Rx flow control	•	-	(Revision B)
Special character Tx and recognition	√	√	√
Package	100-pin MQFP	100-pin MQFP	100-pin MQFP
System interface	√	√	√
Pin compatibility	CD2401/CD2431	CD2431/CD2231	CD2401/CD2231

- 1. $\sqrt{}$ indicates identical operation and register setting.
- indicates available in production revision (Revision B) and later.
 A clock frequency of 35 MHz is required to obtain maximum bit rates.
- 4. 134.4 kbps/230.4 kbps in all async modes, 128 kbps/256 kbps in sync modes: applies to Revision M or later CD2401, Revision D and later CD2431, Revision D or later CD2231.
- 5. UNIX character processing is available in ASYNC only.

2.0 Conventions

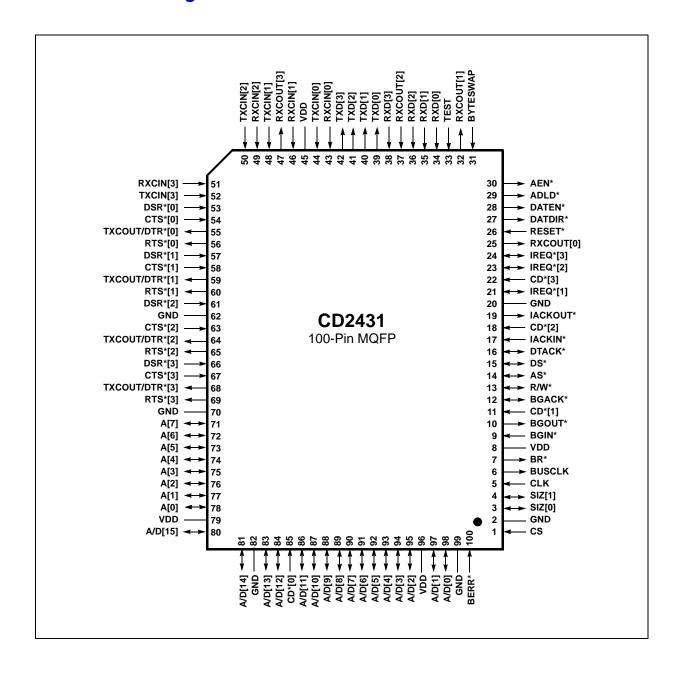
This section lists abbreviations and acronyms used in this datasheet.

Abbreviations

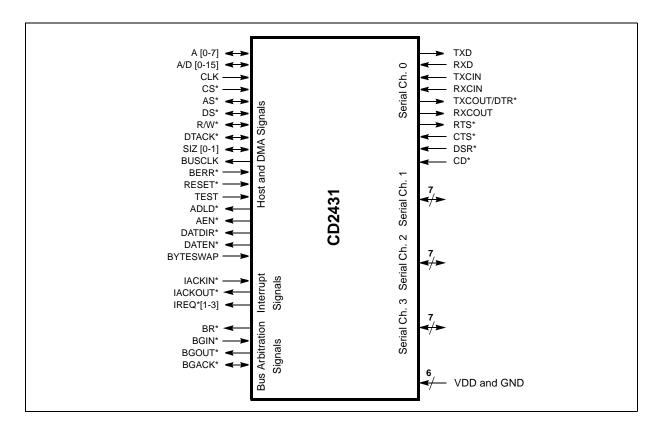
Symbol	Units of measure
°C	degree Celsius
μF	microfarad
μs	microsecond (1,000 nanoseconds)
Hz	hertz (cycle per second)
Kbit	kilobit (1,024 bits)
kbits/sec. kbps	kilobit (1,000 bits) per second
Kbyte	kilobyte (1,024 bytes)
kbytes/sec.	kilobyte (1,000 bytes) per second
kHz	kilohertz
kΩ	kilohm
Mbyte	megabyte (1,048,576 bytes)
MHz	megahertz (1,000 kilohertz)
mA	milliampere
ms	millisecond (1,000 microseconds)
ns	nanosecond
pV	picovolt
V	volt
W	watt

The use of 'tbd' indicates values that are 'to be determined', 'n/a' designates 'not available', and 'n/c' indicates a pin that is a 'no connect'.

CD2431 — Advanced Multi-Protocol Communications Controller


Acronyms

Acronym	Definition		
AC	alternating current		
BRG	bit rate generation		
bisync	byte synchronous		
CMOS	complementary metal-oxide semiconductor		
CRC	cyclic redundancy chack		
DC	direct current		
DCE	data communication equipment		
DMA	direct-memory access		
DPLL	digital phase-locked loop		
DRAM	dynamic random-access memory		
DTE	data terminal equipment		
FCS	frame check sequence		
FIFO	first in/first out		
HDLC	high-level data link control		
ISA	industry standard architecture		
LSB	least-significant bit		
MSB	most-significant bit		
NRZ	nonreturn to zero		
NRZI	nonreturn to zero inverted		
PPP	point-to-point protocol		
MQFP	metric quad flat pack		
RAM	random-access memory		
R/W	read/write		
SDLC	synchronous data link control		
SLIP			
TTL	transistor-transistor logic		


3.0 Pin Information

3.1 **Pin Diagram** — **CD2431**

3.2 Pin Functions — CD2431

3.3 Pin Descriptions

The following conventions are used in the pin-description tables:

- (*) after a name indicates that the signal is active-low
- 'I' indicates the pin is input-only
- 'O' indicates the pin is output-only
- 'I/O' indicates the pin is bidirectional
- 'OD' indicates open-drain; OD pins must be terminated to V_{CC} by a 2-K Ω 4.7-K Ω resistor
- 'TS' indicates tristate
- (–) indicates ascending pin numbers
- (:) indicates descending pin numbers

Table 1. Pin Descriptions (Sheet 1 of 3)

Symbol	Pin Number	Туре	Description
CS*	1	I	CHIP SELECT*: When low, the CD2431 registers can be read or written by the host processor.
AS*	14	I/O (TS)	ADDRESS STROBE*: When the CD2431 is a bus master, this pin is an output that indicates that R/W*, A[0–7], and the externally latched A[8–31] are valid.
DS*	15	I/O (TS)	DATA STROBE*: When the CD2431 is not a bus master, this is an input used to strobe data into registers during write cycles and enable data onto the bus during read cycles. When the CD2431 is a bus master, DS* is an output used to control data transfer to and from system memory.
R/W*	13	I/O (TS)	READ/WRITE*: When the CD2431 is not a bus master, this pin is an input that determines if a read or write operation is required when the CS* and DS* signals are active. When the CD2431 is a bus master, R/W* is an output and indicates whether a read from or a write to system memory is being performed.
DTACK*	16	I/O (OD)	DATA TRANSFER ACKNOWLEDGE*: When the CD2431 is not a bus master, this is an output and indicates to the host when a read or write to the CD2431 is complete. When BR* is driven low by the CD2431, DTACK* is an input that indicates that the system bus is no longer in use. When the CD2431 is a bus master, DTACK* is an input that indicates when system memory read and write cycles are complete.
SIZ[0–1]	3, 4	I/O (TS)	SIZE [0–1]: When not the active bus master, these are inputs that determine the size of the operand being read or written by the host. SIZ[1] SIZ[0] 0
IACKIN*	17	I	INTERRUPT ACKNOWLEDGE IN*: This input qualified with DS*, and A[0–6], acknowledges CD2431 interrupts.
IACKOUT*	19	0	INTERRUPT ACKNOWLEDGE OUT*: This output is driven low during interrupt acknowledge cycles for which no internal interrupt is valid.
IREQ*[1-3]	21, 23, 24	I/O (OD)	INTERRUPT REQUEST* [1–3]: These outputs signal that the CD2431 has a valid interrupt for modem-lead activity (IREQ*[1]), transmit activity (IREQ*[2]), or receive activity (IREQ*[3]).
BR*	7	OD	BUS REQUEST*: This output is used to signal to the (open drain) host processor or bus arbiter that bus mastership is required by the CD2431.
BGIN*	9	I	BUS GRANT IN*: This input indicates that the bus is available after the current bus master relinquishes the bus.
BGOUT*	10	0	BUS GRANT OUT*: This output is asserted when BGIN* is low and no internal Bus Request has been made. A daisy-chain scheme of bus arbitration can be formed by connecting BGOUT* to BGIN* of the next device in the chain. If a priority scheme is preferred, bus requests must be prioritized externally and bus grant routed to the BGIN* of the appropriate device

 Table 1.
 Pin Descriptions (Sheet 2 of 3)

Symbol	Pin Number	Туре	Description
BGACK*	12	I/O (OD)	BUS GRANT ACKNOWLEDGE*: As an input, this signal is used to determine if another alternate bus master is in control of the bus. As an output, it signals to other bus masters that this device is in control of the bus.
BERR*	100	I	BUS ERROR*: If this input becomes active while the CD2431 is a bus master, the current bus cycle is terminated, the bus relinquished, and an interrupt generated to indicate the error to the host processor.
A[7:0]	71–78	I/O (TS)	ADDRESS [0–7]: When the CD2431 is not a bus master, these pins are inputs used to determine which registers are being accessed, or which interrupt is being acknowledged. When ADLD* is low, A[0–7] output address bits 8 through 15 for external latching. When the CD2431 is a bus master, A[0–7] output the least-significant byte of the transfer address.
A/D[15:0]	80, 81, 83, 84, 86–95, 97, 98	I/O (TS)	ADDRESS/DATA [0–15]: When the CD2431 is not a bus master, these pins provide the 16-bit data bus for reading and writing to the CD2431 registers. When ADLD* is low, A/D[0–15] provide the upper address bits for external latching. When the CD2431 is a bus master, A/D[0–15] provide a multiplexed address/data bus for reading and writing to system memory.
ADLD*	29	O (TS)	ADDRESS LOAD*: This is a strobe used to externally latch the upper portion of the system address bus A[8–31]. While ADLD* is low, address bits 16–31 are available on A/D[0–15], and address bits 8 through 15 on A[0–7].
AEN*	30	O (TS)	ADDRESS ENABLE*: This output is used to output enable the external address bus drivers during CD2431 DMA cycles.
DATEN*	28	O (TS)	DATA ENABLE*: This output is active when either the CD2431 is a bus master, or the CS* and DS* pins are low. It is used to enable the external data bus buffers during host register read/write operations or during DMA operations. For operations on 32-bit buses, this signal needs to be gated with A[1] to select the correct half of the data bus.
DATDIR*	27	O (TS)	DATA DIRECTION*: This output is active when either the CD2431 is a bus master, or the CS* pin is low. It is used to control the external data buffers; when low, the buffers should be enabled in the CD2431 to system bus direction.
CLK	5	I	CLOCK: System clock.
BUSCLK	6	0	BUS CLOCK: This is the system clock divided by 2, which is used internally to control certain bus operations. This pin is driven low during hardware reset.
RESET*	26	I	RESET*: This signal should stay valid for a minimum of 20 ns. The reset state of the CD2431 is guaranteed at the rising edge of this signal. When RESET* is removed, the CD2431 also performs a software initialization of its registers.
TEST	33	ı	TEST: In normal operation, this pin should be kept low. For board-level testing purposes, it provides a mechanism for forcing normal output pins to High-Impedance mode. When the TEST pin is high, the following pins are in High-Impedance mode: BUSCLK, BGOUT*, IACKOUT*, RXCOUT[0–1], RTS*[0–1], DTR*[0–1], and TXD[0–1]. To ensure all CD2431 outputs are high-impedance, either of the following two conditions must be met: the RESET* pin can be driven low, and the TEST pin driven high; or, the CD2431 is kept in the bus idle state (not accessed for read/write operations nor DMA active), and the TEST pin is driven high.
RTS*[0-3]	56, 60, 65, 69	0	REQUEST TO SEND* [0–3]: This output can be controlled automatically by the CD2431 to indicate that data is being sent on the TXD pin.

Table 1. Pin Descriptions (Sheet 3 of 3)

Symbol	Pin Number	Type	Description
TXCOUT/DTR* [0-3]	55, 59, 64, 68	0	TRANSMIT CLOCK OUT/DATA TERMINAL READY* [0–1]: This output can be controlled automatically by the CD2431 to indicate a programmable threshold has been reached in the receive FIFO. It can also be programmed to output the transmit data clock. Following reset, this pin is high and stays high in Clock mode until the transmit channel is enabled for the first time; after which it remains active, independent of the state of the transmit enable. In all modes, the clock transitions every bit time, even during idle fill in Asynchronous mode. Data transitions are made on the negative-going edge of TXCOUT.
RXCOUT[0-3]	25, 32, 37, 47	0	RECEIVE CLOCK OUT [0–1]: This output provides a one-time bit rate clock for the receive data in all modes, except when an input (RXCIN) one-time receive clock is used. After reset, this pin is low until the channel is receive enabled for the first time, after which it remains active, independent of the state of receive enable. When in Asynchronous mode, the output only transitions while receiving data and not during inter-character fill. The receive data is sampled on the positive-going edge of this clock.
CTS*[0-3]	54, 58, 63, 67	I	CLEAR TO SEND* [0–1]: This input can be programmed to control the flow of transmit data, for out-of-band flow control applications.
CD*[0-3]	85, 11, 18, 22	I	CARRIER DETECT* [0–1]: This pin is always visible in the MSVR register. The CD input can be programmed to validate receive data.
TXCIN[0-3]	44, 48, 50, 52	I	TRANSMIT CLOCK [0–1]: This pin inputs the transmit clock to the bit rate generator.
RXCIN[0-3]	43, 46, 49, 51	I	RECEIVE CLOCK [0–1]: This pin inputs the receive clock to the bit rate generator.
DSR*[0-3]	53, 57, 61, 66	I	DATA SET READY* [0–1]: This pin is always visible in the MSVR register. The DSR input can be programmed to validate receive data.
TXD[0-3]	39, 40, 41, 42	0	TRANSMIT DATA [0–1]: Serial data output for each channel.
RXD[0-3]	34, 35, 36, 38	I	RECEIVE DATA [0-1]: Serial data input for each channel.
BYTESWAP	31	I	BYTESWAP: This pin alters the byte ordering of data during certain 16-bit transfers and changes the half of the data bus on which byte transfers are made to comply with Intel® or Motorola® processor systems. BYTESWAP does not alter the bus handshake signals. When the BYTESWAP pin is high, the byte of A/D[0–7] precedes that of A/D[8–15] in a string of transmit or receive bytes; when BYTESWAP is low, A/D[8–15] precedes A/D[0–7]. When the BYTESWAP pin is high, bytes are transferred on A/D[0–7] when A[0] is low, and on A/D[8–15] when A[0] is high. When BYTESWAP is low, bytes are transferred on A/D[8–15] when A[0] is low, and A/D[0–7] when A[0] is high. A different register map is used, depending on the state of this pin. Byteswap Byte Alignment 0 Motorola® byte alignment
			Motorola® byte alignment Intel® byte alignment
V _{DD}	8, 45, 79, 96	-	POWER
GND	2, 20, 62, 70, 82, 99	-	GROUND

4.0 Register Table

Registers in the CD2431 are either Global or Per-Channel. The column 'Address mode' in the memory map on the following pages defines this attribute for each register. Only one set of Global registers exists, and are accessible by the host at any time. Two sets of Per-Channel registers exist, and the set accessible at any one time is determined by the currently active channel number. The channel number is selected by the host in normal (non-interrupt) processing by writing to the Channel Access register. The channel number in the Channel Access register remains in force until changed by the host. The channel number is provided automatically by the CD2431 during interrupt service routines and DMA transfers.

In the following list, some register locations appear twice. They have different names and functions for asynchronous and synchronous protocol operations. See Chapter 8.0 on page 89 of this datasheet for detailed descriptions of all register functions.

4.1 Memory Map

4.1.1 Global Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
GFRCR	Global Firmware Revision Code Register	G	82	81	В	R/W	89
CAR	Channel Access Register	G	EC	EE	В	R/W	89

The following notes are applicable for Section 4.1.1 through Section 4.1.7.

NOTES:

- Address mode G: Global register one set is always accessible.
 Address mode P: Per-Channel register two sets, one per channel, accessible by CAR or interrupt context.
- 2. INT = address for Intel[®]-style processor.
- 3. MOT = address for Motorola[®]-style processor.

4.1.2 Option Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
CMR	Channel Mode Register	Р	18	1B	В	R/W	90
COR1	Channel Option Register 1	Р	13	10	В	R/W	91
COR2	Channel Option Register 2	Р	14	17	В	R/W	93
COR3	Channel Option Register 3	Р	15	16	В	R/W	96
COR4	Channel Option Register 4	Р	16	15	В	R/W	100
COR5	Channel Option Register 5	Р	17	14	В	R/W	101

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
COR6	Channel Option Register 6	Р	1B	18	В	R/W	102
COR7	Channel Option Register 7	Р	04	07	В	R/W	103
SCHR1	Special Character Register 1	Р	1C	1F	В	R/W Async	104
SCHR2	Special Character Register 2	Р	1D	1E	В	R/W Async	105
SCHR3	Special Character Register 3	Р	1E	1D	В	R/W Async	105
SCHR4	Special Character Register 4	Р	1F	1C	В	R/W Async	106
SCRI	Special Character Range low	Р	20	23	В	R/W Async	106
SCRh	Special Character Range high	Р	21	22	В	R/W Async	106
LNXT	LNext Character	Р	2D	2E	В	R/W Async	107
RFAR1	Receive Frame Address Register 1	Р	1C	1F	В	R/W Sync	107
RFAR2	Receive Frame Address Register 2	Р	1D	1E	В	R/W Sync	107
RFAR3	Receive Frame Address Register 3	Р	1E	1D	В	R/W Sync	108
RFAR4	Receive Frame Address Register 4	Р	1F	1C	В	R/W Sync	108
CPSR	CRC Polynomial Select Register	Р	D4	D6	В	R/W Sync	108
TSPMAP1	Transmit Special Mapped Character 1	Р	1B	18	В	R/W	109
TSPMAP2	Transmit Special Mapped Character 2	Р	04	07	В	R/W	109
TSPMAP3	Transmit Special Mapped Character 3	Р	2D	2E	В	R/W	109
TXACCM0	Transmit Async Control Character Map 0	Р	1C	1F	В	R/W	110
TXACCM1	Transmit Async Control Character Map 1	Р	1D	1E	В	R/W	110
TXACCM2	Transmit Async Control Character Map 2	Р	1E	1D	В	R/W	110
TXACCM3	Transmit Async Control Character Map 3	Р	1F	1C	В	R/W	110
RXACCM0	Receive Async Control Character Map 0	Р	20	23	В	R/W	111
RXACCM1	Receive Async Control Character Map 1	Р	21	22	В	R/W	111
RXACCM2	Receive Async Control Character Map 2	Р	22	21	В	R/W	111
RXACCM3	Receive Async Control Character Map 3	Р	23	20	В	R/W	112

4.1.3 Bit Rate and Clock Option Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
RBPR	Receive Bit Rate Period Register	Р	C9	СВ	В	R/W	112
RCOR	Receive Clock Option Register	Р	CA	C8	В	R/W	113
TBPR	Transmit Bit Rate Period Register	Р	C1	C3	В	R/W	114
TCOR	Transmit Clock Option Register	Р	C2	C0	В	R/W	114

4.1.4 Channel Command and Status Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
CCR	Channel Command Register	Р	10	13	В	R/W	115
STCR	Special Transmit Command Register	Р	11	12	В	R/W	118
CSR	Channel Status Register	Р	19	1A	В	R	120
MSVR-RTS	Modem Signal Value Registers	Р	DC	DE	В	R/W	125
MSVR-DTR	iviouem Signal value Registers	Р	DD	DF	В	R/W	125

4.1.5 Interrupt Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
LIVR	Local Interrupt Vector Register	Р	0A	09	В	R/W	126
IER	Interrupt Enable Register	Р	12	11	В	R/W	127
LICR	Local Interrupting Channel Register	Р	25	26	В	R/W	128
STK	Stack Register	G	E0	E2	В	R	129

4.1.5.1 Receive Interrupt Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
RPILR	Receive Priority Interrupt Level Register	G	E3	E1	В	R/W	130
RIR	Receive Interrupt Register	G	EF	ED	В	R	130
RISR	Receive Interrupt Status Register	G	8A	88	W	R	136
RISRI	Receive Interrupt Status Register low	G	8A	89	В	R	136
RISRh	Receive Interrupt Status Register high	G	8B	88	В	R	136
RFOC	Receive FIFO Output Count	G	33	30	В	R	137
RDR	Receive Data Register	G	F8	F8	В	R	137
REOIR	Receive End of Interrupt Register	G	87	84	В	W	137

4.1.5.2 Transmit Interrupt Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
TPILR	Transmit Priority Interrupt Level Register	G	E2	E0	В	R/W	139
TIR	Transmit Interrupt Register	G	EE	EC	В	R	140
TISR	Transmit Interrupt Status Register	G	89	8A	В	R	141

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
TFTC	Transmit FIFO Transfer Count	G	83	80	В	R	141
TDR	Transmit Data Register	G	F8	F8	В	W	142
TEOIR	Transmit End of Interrupt Register	G	86	85	В	W	142

4.1.5.3 Modem Interrupt Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
MPILR	Modem Priority Interrupt Level Register	G	E1	E3	В	R/W	143
MIR	Modem Interrupt Register	G	ED	EF	В	R	144
MISR	Modem (/Timer) Interrupt Status Register	G	88	8B	В	R	145
MEOIR	Modem End of Interrupt Register	G	85	86	В	W	145

4.1.6 DMA Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
DMR	DMA Mode Register	G	F4	F6	В	W	146
BERCNT	Bus Error Retry Count	G	8D	8E	В	R/W	147
DMABSTS	DMA Buffer Status	Р	1A	19	В	R	147

4.1.6.1 DMA Receive Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
ARBADRL	A Receive Buffer Address Lower	Р	40	42	W	R/W	148
ARBADRU	A Receive Buffer Address Upper	Р	42	40	W	R/W	149
BRBADRL	B Receive Buffer Address Lower	Р	44	46	W	R/W	149
BRBADRU	B Receive Buffer Address Upper	Р	46	44	W	R/W	149
ARBCNT	A Receive Buffer Byte Count	Р	48	4A	W	R/W	150
BRBCNT	B Receive Buffer Byte Count	Р	4A	48	W	R/W	150
ARBSTS	A Receive Buffer Status	Р	4C	4F	В	R/W	150
BRBSTS	B Receive Buffer Status	Р	4D	4E	В	R/W	151
RCBADRL	Receive Current Buffer Address Lower	Р	3C	3E	W	R	152
RCBADRU	Receive Current Buffer Address Upper	Р	3E	3C	W	R	152

4.1.6.2 DMA Transmit Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
ATBADRL	A Transmit Buffer Address Lower	Р	50	52	W	R/W	153
ATBADRU	A Transmit Buffer Address Upper	Р	52	50	W	R/W	153
BTBADRL	B Transmit Buffer Address Lower	Р	54	56	W	R/W	153
BTBADRU	B Transmit Buffer Address Upper	Р	56	54	W	R/W	154
ATBCNT	A Transmit Buffer Byte Count	Р	58	5A	W	R/W	154
BTBCNT	B Transmit Buffer Byte Count	Р	5A	58	W	R/W	155
ATBSTS	A Transmit Buffer Status	Р	5C	5F	В	R/W	155
BTBSTS	B Transmit Buffer Status	Р	5D	5E	В	R/W	155
TCBADRL	Transmit Current Buffer Address Lower	Р	38	3A	W	R	159
TCBADRU	Transmit Current Buffer Address Upper	Р	3A	38	W	R	160

4.1.7 Timer Registers

Name	Description	Addr. Mode ¹	INT ²	MOT ³	Size	Access	Page
TPR	Timer Period Register	G	D8	DA	В	R/W	160
RTPR	Receive Timeout Period Register	Р	26	24	W	R/W Async	161
RTPRI	Receive Timeout Period Register low	Р	26	25	В	R/W Async	161
RTPRh	Receive Timeout Period Register high	Р	27	24	В	R/W Async	161
GT1	General Timer 1	Р	28	2A	W	R/W Sync	162
GT1I	General Timer 1 low	Р	28	2B	В	R/W Sync	162
GT1h	General Timer 1 high	Р	29	2A	В	R/W Sync	162
GT2	General Timer 2	Р	2A	29	В	R/W Sync	163
TTR	Transmit Timer Register	Р	2A	29	В	R Async	163

Stop2

FCSApd

RxChk

4.2 Register Definitions

4.2.1 Global Registers

4.2.1	Global K	egisters						
	Global Fire	mware Revi	sion Code Re	gister (GFR	CR) 82	81	В	R/W
			Firmware Re	vision Code				
	Channel A	ccess Regis	ster (CAR)		EC	EE	В	R/W
0	0	0	0	0	0	(C1	C0
.2.2	Option R	Registers						
	Channel M	lode Registe	er (CMR)		18	1B	В	R/W
RxMode	TxMode	0	0	0	chmd2	chi	md1	chmd0
	Channel O		ter 1 (COR1)		13	10	В	R/W
AFLO	ClrDet	AdMde1	AdMde0	Flag3	Flag2	FI	ag1	Flag0
	Asynchro	nous Mode						
Parity	ParM1	ParM0	Ignore	Chl3	Chl2	С	hl1	Chl0
			ter 2 (COR2) c-HDLC / PPP	Mode	14	17	В	R/W
IXM	TxIBE	0	0	RLM	RtsAO	Ct	sAE	DsrAE
	HDLC Mod	de						
0	FCSApd	0	CRCNinv	0	RtsAO	Ct	sAE	DsrAE
	MNP 4/SLI	P Mode						
0	0	0	0	RLM	RtsAO	Ct	sAE	DsrAE
		ption Regis LC/PPP Mod	ter 3 (COR3) le		15	16	В	R/W

Datasheet 25

npad3

npad2

npad1

npad0

TxGen

CD2431 — Advanced Multi-Protocol Communications Controller

MNP 4 Mode

Stop2	FCSApd	RxChk	TxGen	npad3	npad2	np	ad1	npad0
	HDLC Mod	le						
sndpad	Alt1	FCSPre	FCS	idle	npad2	np	ad1	npad0
	Asynchro	nous Mode						
EDCDE	RngDE	FCT	SCDE	Splstp	Stop2	St	op1	Stop0
	SLIP Mode	•						
Stop2	0	0	0	npad3	npad2	np	ad1	npad0
	Channel O	ption Regis	ter 4 (COR4)		16	15	В	R/W
DSRzd	CDzd	CTSzd	0		FIFO T	hreshold	b	
	Channel O	ption Regis	ter 5 (COR5)		17	14	В	R/W
DSRod	CDod	CTSod	In/Out		Rx Flow Con	trol Thre	eshold	
		ption Regist nous Mode	ter 6 (COR6)		1B	18	В	R/W
IgnCR	ICRNL	INLCF	IgnBrk	NBrkInt	ParMrk	IN	PCK	ParInt
		ption Regist nous Mode	ter 7 (COR7)		04	07	В	R/W
IStrip	LNE	FCErr	0	0	0	ON	LCR	OCRNL
	Special Ch Special Ch Special Ch	naracter Reg naracter Reg	isters ister 1 (SCH ister 2 (SCH ister 3 (SCH ister 4 (SCH	R2) R3)	1C 1D 1E 1F	1F 1E 1D 1C	В В В	R/W Async R/W Async R/W Async R/W Async
	Special Ch		iges ige low (SCR ige high (SCI		20 21	23 22	B B	R/W Async R/W Async
	LNext Cha	racter (LNX	Τ)		2D	2E	В	R/W Async

ClkSel2	ClkSel1	ClkSel0	0	Ext-1X	0	L	LM	0
	1	•	Register (T	, 	C2	C0	В	R/W
			Transmit Bit Rate	e Period (Divisor	·)			
	Transmit E	Bit Rate Perio	od Register ((TBPR)	C1	C 3	В	R/W
TLVal	0	DpllEn	Dpllmd1	Dpllmd0	ClkSel2	CII	Sel1	ClkSel0
	Receive C	lock Option	Register (RC	COR)	CA	C8	В	R/W
			Receive Bit Rate	e Period (Divisor)			
	Receive B	it Rate Perio	d Register (F	RBPR)	C9	СВ	В	R/W
4.2.3	Bit Rate	and Clock	Option Re	egisters				
		•	l Character I I Character I		•	21 20	B B	R/W PPP R/W PPP
		•	I Character I I Character I		,	23 22	B B	R/W PPP R/W PPP
			I Character I				_	
	Transmit A	Async Contro	ol Character	Map 3 (TXA	CCM3) 1F	1C	В	R/W PPP
	Transmit A	Async Contro	ol Character	Map 2 (TXA	CCM2) 1E		В	R/W PPP
		•	ol Character ol Character		•		B B	R/W PPP R/W PPP
	Transmit A	Async Contro	ol Character	Maps (PPP	only)			
	Transmit S	Special Mapp	ed Characte	er 3 (TSPMA	P3) 2D	2E	В	R/W PPP
			oed Characte	•	•	07	В	R/W PPP
			oed Characte		• •	18	В	R/WPPP
0	0	0	0	0	0		0	Poly
	CRC Polyr	nomial Selec	t Register (C	PSR)	D4	D6	В	R/W
	Receive Fi	rame Addres	s Register 4	(RFAR4)	1F	1C	В	R/W Sync
			ss Register 2 ss Register 3	` '	1E		B B	R/W Sync
			ss Register 1 ss Register 2		10 10		В	R/W Sync R/W Sync
		rame Addres	_					

4.2.4 Channel Command and Status Registers

	Channel C	ommand Re	gister (CCR))	10	13 B	R/W
0	ClrCh	InitCh	RstAll	EnTx	DisTx	EnRx	DisRx
1	ClrT1	ClrT2	0	0	0	0	0
		ansmit Com LC/PPP Mod		ter (STCR)	11	12 B	R/W
0	Abort	0	0	sndsp	frame	Xon	Xoff
	SLIP/MNP	4 Mode					
0	Abort	0	0	sndsp	frame	0	0
	Asynchro	nous and HD	LC Modes				
0	AbortTx	AppdCmp	0	SndSpc	SSPC2	SSPC1	SSPC
	Channel S HDLC Mod	tatus Regist le	er (CSR)		19	1A B	R
RxEn	RxFlag	RxFrame	RxMark	TxEn	TxFlag	TxFrame	TxMarl
	Asynchro	nous Mode					
RxEn	RxFloff	RxFlon	0	TxEn	TxFloff	TxFlon	0
	Async-HD	LC/PPP Mod	e				
RxEn	RxFloff	RFram	Rldle	TxEn	TxFloff	TFram	Tldle
	SLIP/MNP	4 Mode					
RxEn	0	RFram	Rldle	TxEn	0	TFram	Tidle
	Modem Si	gnal Value R gnal Value R gnal Value R	egister (MS	VR-RTS)	DC DD	DE B DF B	R/W R/W R/W
DSR	CD	CTS	DTRop	0	0	DTR	RTS

4.2.5 Interrupt Registers

	Local Inter	rupt Vector	Register (LI	VR)	0A	09	В	R/W
Х	Х	Х	Х	Х	Х	ı	T1	IT0
	Interrupt E	inable Regis	ter (IER)		12	11	В	R/W
Mdm	0	RET	0	RxD	TIMER	Тх	Mpty	TxD
	Local Inter	rupting Cha	nnel Registe	er (LICR)	25	26	В	R/W
Х	Х	Х	Х	C1	C0		Х	Х
	Interrupt S	Stack Registe	er (STK)		E0	E2	В	R
CLvl [1]	MLvl [1]	TLvl [1]	0	0	TLvl [0]	ML	vl [0]	CLvl [0]
4.2.5.1	Receive P	nterrupt Re	upt Level Re	gister (RPILI		E 1	В	R/W
	Receive In	terrupt Regi	ster (RIR)		EF	ED	В	R
Ren	Ract	Reoi	0	Rvct [1]	Rvct [0]	Ro	:n[1]	Rcn [0]
	Receive In	terrupt Statu	ıs Register (RISR)	8A	88	W	R
	Receive In HDLC Mod	terrupt Statı le	ıs Register I	ow (RISRI)	8A	89	В	R
0	EOF	RxAbt	CRC	OE	ResInd		0	ClrDct
	Asynchror	nous Mode						
Timeout	SCdet2	SCdet1	SCdet0	OE	PE	ſ	E	Break
	Async-HD	LC / PPP / M	NP 4 Mode					
0	EOF	RxAbt	CRC	OE	FE		0	Break
	SLIP Mode	•						
0	EOF	0	0	OE	FE		0	Break

CD2431 — Advanced Multi-Protocol Communications Controller

	Receive In	terrupt Stati	us Register h	nigh (RISRh)	8B	88	В	R	
Berr	EOF	EOB	0	BA/BB	0		0		0
	Receive F	IFO Output (Count (RFOC	;)	33	30	В	R	
0	0	0	RxCt4	RxCt3	RxCt2	Rx	Ct1	F	xCt0
	Receive D	ata Register	(RDR)		F8	F8	В	R	
D7	D6	D5	D4	D3	D2	[D1		D0
		nd of Interru nous and HD	pt Register (DLC Modes	(REOIR)	87	84	В	w	
TermBuff	DiscExc	SetTm2	SetTm1	NoTrans	Gap2	G	ар1	(Sap0
	Async-HDLC / PPP / SLIP / MNP 4 Modes								
TermBuff	DiscExc	SetTm2	SetTm1	NoTrans	0		0		0
4.2.5.2	.2.5.2 Transmit Interrupt Registers								
	Transmit I	Priority Inter	rupt Level Ro	egister (TPIL	R) E2	E0	В	R/W	I
	Transmit I	nterrupt Reg	jister (TIR)		EE	EC	В	R	
Ten	Tact	Teoi	0	Tvct [1]	Tvct [0]	To	cn[1]	7	cn [0]
	Transmit I	nterrupt Sta	tus Register	(TISR)	89	8A	В	R	
Berr	EOF	EOE	UE	BA/BB	0	TxE	mpty	1	xDat
	Transmit I	FIFO Transfe	er Count (TF1	ГС)	83	80	В	R	
0	0	0	TxCt4	TxCt3	TxCt2	Тх	Ct1	1	xCt0
	Transmit I	Data Registe	r (TDR)		F8	F8	В	W	
	mansiint i	Jaia Negisie	,						
D7	D6	D5	D4	D3	D2	[D 1		D0
D7	D6	D5	· · ·		D2 86	85	D1 B	w	D0

E1

E3

В

R/W

4.2.5.3 Modem/Timer Interrupt Registers Modem Priority Interrupt Level Register (MPILR)

Modem Interrupt Register (MIR) ED EF B R

Men	Mact	Meo	0	Mvct [1]	Mvct [0]	Mcn[1]	Mcn [0]

	Modem (/T	imer) Interru	ıpt Status Re	egister (MISF	₹) 88	8B B	R
DSRChg	CDChg	CTSChg	0	0	0	Timer2	Timer1
Modem End of Interrupt Register (MEOIR)					85	86 B	w
0	0	SetTm2	SetTm1	0	0	0	0

4.2.6 DMA Registers

	DMA Mode	e Register (D		F4	F6 F8	W		
EnSvnc	0	0	0	BvteDMA	0	0	0	

Bus Error Retry Count (BERCNT) 8D 8E B R/W

_, ,,,	
Binary Value	

DMA Buffer Status (DMABSTS) 1A 19 B R TDAlign RstApd CrtBuf Append Ntbuf Tbusy Nrbuf Rbusy

4.2.6.1 DMA Receive Registers

EOF

EOB

Berr

A Receive Buffer Address Lower (ARBADRL) A Receive Buffer Address Upper (ARBADRU) B Receive Buffer Address Lower (BRBADRL) B Receive Buffer Address Upper (BRBADRU)	40 42 44 46	42 40 46 44	W W W	R/W R/W R/W R/W	
A Buffer Receive Byte Count (ARBCNT) B Buffer Receive Byte Count (BRBCNT)	48 4A	4A 48	W W	R R	
A Receive Buffer Status (ARBSTS) B Receive Buffer Status (BRBSTS)	4C 4D	4F 4E	B B	R/W R/W	

0

0

0

2431own

Datasheet 31

0

	Receive Current Buffer Address Lower (RCBADRL) 3C Receive Current Buffer Address Upper (RCBADRU) 3E						3E 3C	W W	R R
4.2.6.2	DMA Transmit Registers								
	A Transm B Transm	it Buffer Add it Buffer Add it Buffer Add it Buffer Add	lress Upper Iress Lower	(ATBADRU) (BTBADRL)		50 52 54 56	52 50 56 54	W W W	R/W R/W R/W R/W
	A Buffer Transmit Byte Count (ATBCNT) B Buffer Transmit Byte Count (BTBCNT)					58 5A	5A 58	W W	R/W R/W
	B Transm	it Buffer Stat it Buffer Stat LC/PPP Mod	us (BTBSTS	•		5C 5D	5F 5E	B B	R/W R/W
Berr	EOF	ЕОВ	0	0	map	32	IN	ITR	2431own
	SLIP/MNP	4 Mode							
Berr	EOF	EOB	0	0	0		INTR		2431own
	Asynchro	nous and HD	DLC Mode						
Berr	EOF	EOB	UE	Append	0		INTR		2431own
				ower (TCBA Jpper (TCBA	•	38 3A	3A 38	W W	R R
4.2.7	Timer Re	egisters							
	Timer Per	iod Register	(TPR)			D8	DA	В	R/W
			Binary	/ Value					
	Receive Time-Out Period Register (RTPR)				26	24	w	R/W Async	
			Binary	/ Value					
	Receive T	ime-Out Peri	iod Register	low (RTPRI)		26	25	В	R/W Async
			Binary Val	ue, bits 7:0					

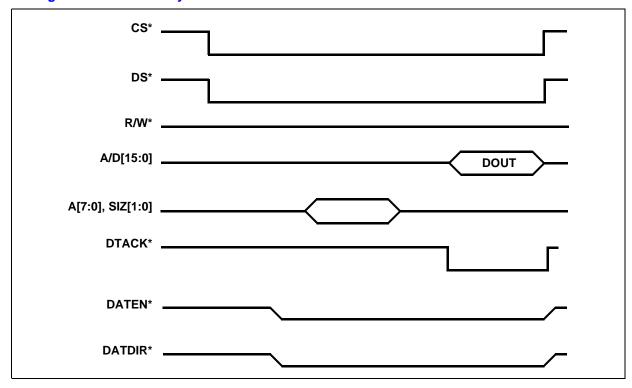
Receive Time-Out	Receive Time-Out Period Register high (RTPRh)			В	R/W Async
	Binary Value, bits 15:8				
General Timer 1 (GT1)	28	2A	W	R/W Sync
General Timer 1 lo	•	28	2B	В	R/W Sync
General Timer 1 h	•	29	2A	В	R/W Sync
General Timer 2 (• ,	2A	29	В	R/W Sync
Transmit Timer Ro	egister (TTR)	2A	29	В	R Async

5.0 Functional Description

5.1 Host Interface

The CD2431 is a synchronous device with an asynchronous bus interface. A stable input clock is required on the CLK pin — nominally 33 MHz. The CLK is divided by two (2) internally, and the resulting signal is an output on the BUSCLK pin. The baud-rate generators and timers are also related to CLK. The "AC Electrical Characteristics" in Chapter 9.0 shows that many input signal setup and output signal transitions are related to the edges of the CLK and BUSCLK signals. It is possible, however, to use the CD2431 in a purely asynchronous bus environment.

The CD2431 can act either as a bus master, during DMA transfers, or as a bus slave device, during normal host read and write transfers. Both byte and word transfers are supported in each of the Bus Slave and DMA Bus Master modes. Figure 2 and Figure 3 show the signals involved in these transfers.


5.1.1 Host Read and Write Cycles

The host read and write cycles begin with the activation of the CS* (chip select) and DS* (data strobe) signals. The DATADIR* (data direction) and DATEN* (data enable) signals are used to control external data buffers. The falling edge of the DTACK* (data transfer acknowledge) signal indicates that the transfer is complete. DTACK* is released when DS* is deasserted. At that time CS* should also be deasserted. The AS* (address strobe) is not used during slave cycles; it is an output during DMA transfers.

Note that the following open-drain and tristate outputs should have pull-up resistors attached: AEN*, AS*, DATADIR*, DATEN*, and DTACK*.

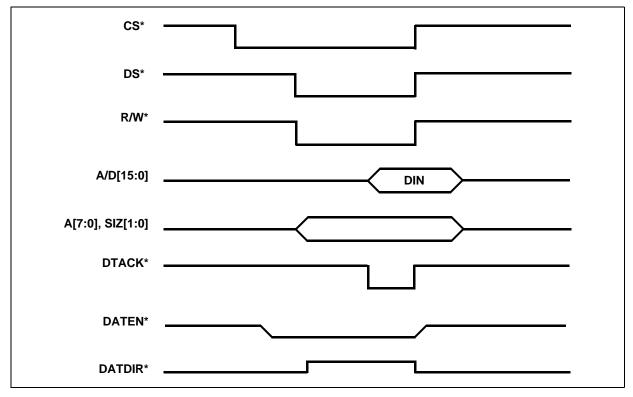


Figure 2. Host Read Cycle

5.1.2 Byte and Word Transfers

Data can be moved to and from the CD2431 in either byte or word transfers. To accommodate various families of host processors, the BYTESWAP input pin is set to indicate the system byte-ordering scheme. The SIZ pins (SIZ[1:0]) are used to indicate whether the transfer is 1 or 2 bytes wide.

In systems where the even addresses represent the most-significant byte, the BYTESWAP input pin should be tied low, and byte transfers occur on the A/D[15:8] pins for even addresses and on the A/D[7:0] pins for odd addresses. In systems where the most-significant byte is on the odd address, the situation is reversed, and BYTESWAP should be tied high. Byte transfers to even addresses occur on the A/D[7:0] pins, and to odd addresses on the A/D[15:8] pins.

5.2 Interrupts

The CD2431 uses interrupt requests to alert the host that certain events have occurred. Interrupt operations on the CD2431 are tightly coupled with several registers described later. The concept of context affects the accessibility of these and other registers.

5.2.1 Contexts and Channels

The registers in the CD2431 are grouped into Global, Virtual, and four sets of Per-Channel registers. The CD2431 is normally in the background context, where the CAR (Channel Access register) selects the channel number for the Per-Channel registers. The interrupt context begins with the interrupt acknowledge bus cycle, and ends with a write access to the appropriate End of Interrupt register. In the interrupt context, only the Per-Channel registers for the channel number being serviced are available; the CAR has no effect. Most Global registers are available at all times, but some are shared by the four channels, such as the FIFO registers. These are called Virtual registers, and must be accessed only during an interrupt context.

Interrupt contexts can be nested so that a higher-priority interrupt service can preempt a lower priority interrupt already in progress. The CD2431 pushes the current interrupt context onto the stack, visible in the STK (Stack register), and enters the context for the newly acknowledged interrupt. Any register accesses are in the new interrupt context until the host performs a write to the appropriate EOIR for the top-level context. The CD2431 then pops the top-level context off the stack and returns to the previous interrupt context.

5.2.2 Interrupt Registers

The IER (Interrupt Enable register) and the LIVR (Local Interrupt Vector register) are Per-Channel registers. IER contains bits to enable or disable the various interrupt sources within the CD2431. The LIVR value is output on the data bus during the interrupt acknowledge cycle. There are sets of three Global registers that correspond to the three types of interrupts: Receive, Transmit, and Modem. The Priority Interrupt Level registers (RPILR, TPILR, and MPILR) are programmed to contain the value that is present on the address bus during the interrupt acknowledge bus cycle for each type of interrupt. The Interrupt Status registers (RISR, TISR, or MISR) are examined during the interrupt service routine to determine the cause of each type of interrupt. TDR and RDR provide access to the FIFO buffers for each channel. These registers must not be accessed outside of the proper interrupt context. A write operation to the End of Interrupt registers — REOIR, TEOIR, or MEOIR must be the last access to the CD2431 at the end of this handler routine to return it to its background context.

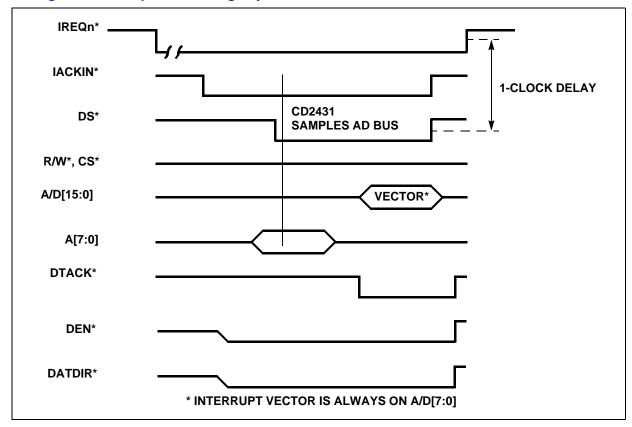


Figure 4. Interrupt Acknowledge Cycle

5.2.3 Groups and Types

There are two general reasons for the CD2431 to request service from the host processor — data transfer and exceptional conditions. Furthermore, interrupts are grouped into three categories, each with an associated Interrupt Request signal — IREQ1*, IREQ2*, and IREQ3*.

- Group 1 Modem signal change/timer events
- Group 2 Transmit interrupts
- Group 3 Receive interrupts

Group 1 is used only for exceptions. Groups 2 and 3 include both data transfer and exceptions. Table 2 shows the possible causes of transmit and receive interrupt service requests. The cause of an interrupt request is encoded into the 2 least-significant bits of the vector presented on the data bus during the interrupt acknowledge cycle. The most-significant 6 bits of the vector come from the LIVR:

Interrupt Vector LSBs

- 00 Receive exception
- 01 Modem signal change or timer event
- 10 Transmit data or exception
- 11 Receive Good Data™

Table 2. Transmit and Receive Interrupt Service Re	eduests
--	---------

Interrupt Cause	ASYNC	HDLC	PPP	SLIP	MNP 4 [®]	Comments
Receive Good Data™	•	•	•	•	•	Not in DMA mode
Break detect	•		•	•	•	
Framing error	•		•	•	•	
Parity error	•					
Receive timeout, no data	•		•	•	•	
Special character match	•					
Transmitter empty	•	•	•	•	•	
Tx FIFO threshold	•	•	•	•	•	Not in DMA mode
Receive overrun	•	•	•	•	•	
Clear detect		•				
CRC error		•	•		•	
Residual bit count		•				
Receive abort		•	•	•	•	
End of frame		•	•	•	•	
Transmit underrun		•				
Bus error	•	•	•	•	•	DMA mode only
End of buffer	•	•	•	•	•	DMA mode only

5.2.4 Hardware Signals and IACK Cycles

The IACK (interrupt acknowledge) bus cycle begins with the IACKIN* and DS* asserted, and a value matching the appropriate PILR contents on the least-significant seven address bus bits, A[6:0]. If the IACK cycle is valid (that is, the PILR values match), the corresponding vector from the interrupting channel LIVR is driven onto the data bus and DTACK* asserted. DTACK* is released after DS* is removed.

Figure 4 shows the interrupt acknowledge cycle timing. It is similar to the basic host read cycle, except that IACKIN* is active and CS* is inactive.

The three IREQn* pins are open-drain outputs requiring external pull-up resistors, nominally 4.7 $k\Omega$. The IACKOUT* is used to form a daisy chain in systems with more than one CD2431.

5.2.4.1 Programming the PILR

The three PILRs must be programmed with values that correspond to the least-significant seven address bits present on A[6:0] during the interrupt acknowledge bus cycle. Some CPUs output the priority level of the interrupts that are being acknowledged on the bus during the IACK cycle. In these systems the three PILR values are unique. In other systems that do not use this scheme, the PILR values can be the same or different depending on the specific design. When all of the PILRs contain the same value and multiple IREQn* lines are asserted, the CD2431 imposes the following priority scheme to determine which interrupt request are acknowledged:

Highest priority: Receive Interrupt register

CD2431 — Advanced Multi-Protocol Communications Controller

Transmit Interrupt register

Lowest priority: Modem Interrupt register

5.2.4.2 Systems with Interrupt Controllers

Some systems use an interrupt controller that supplies its own vector during the interrupt acknowledge cycle. To function properly, the CD2431 needs an IACK cycle in response to its interrupt request . These systems can decode three distinct locations from the CD2431 to produce an IACKIN* instead of CS*. The PILR registers should be programmed with the addresses of these three locations.

Alternatively, a single location can be decoded and the three PILRs given identical values as described earlier. In either case, the host should read one of these locations before the first access to the device in an interrupt service routine. The CD2431 enters its interrupt acknowledge context for the proper type and channel, and the data returned is the device interrupt vector from the LIVR.

5.2.5 Multi-CD2431 Systems

Multiple CD2431s can be chained for systems requiring more than four channels. Each group of interrupt request lines (IREQn*) can be connected in a parallel wired-OR fashion. The system Interrupt Acknowledge signal is connected to the IACKIN* pin of the first device, its IACKOUT* is then connected to the IACKIN* of the next device, and so on, forming a chain of CD2431s.

5.2.5.1 Keep and Pass Logic

The acceptance of an interrupt acknowledge cycle by the CD2431 depends on whether the part is requesting service and whether the least-significant seven address bits match the contents of the appropriate PILR. The following rules apply to the keep-and-pass logic:

- 1. If the CD2431 does not have an interrupt asserted, the interrupt acknowledge is passed out on IACKOUT*.
- 2. If the CD2431 is asserting one or more of its interrupts, but the interrupt priority levels driven on the address bus by the host do not match the contents of the appropriate PILR, this interrupt acknowledge is also passed out on the IACKOUT*.
- 3. If the CD2431 is asserting an interrupt and the interrupt priority level on the address bus matches the PILR for that interrupt type, the interrupt acknowledge is accepted by the CD2431, and the vector from the LIVR is driven onto the data bus.

5.2.5.2 Fair Share Scheme

When multiple CD2431s are chained, the Fair Share logic in these devices guarantees that the interrupts from all CD2431s in the system are presented to the host with equal urgency. There is no positional hierarchy in the interrupt scheme. For example, the CD2431 that is farthest from the host has an equal chance of getting its interrupts through as the CD2431 that is nearest to the top of the interrupt chain. The Fair Share scheme is totally transparent to the user, and no enabling or disabling is required.

Advanced Multi-Protocol Communications Controller — CD2431

When an interrupt request line is asserted, the Fair bit for that type of interrupt on the asserting device is cleared. The Fair bit remains cleared until the interrupt line returns to a high state. The CD2431 does not assert a new interrupt of that type while the corresponding Fair bit is cleared. Therefore, when multiple CD2431s assert interrupts together, each one is serviced in turn, before they can reassert the same interrupt type.

The IREQn* lines are open-drain outputs that can be tied together in groups of the same type, creating a Fair Share scheme for each group of interrupts. Alternatively, all three groups can be tied to a common request using the CD2431 internal-priority scheme (see Section 5.2.4.1).

5.3 FIFO and Timer Operations

Each channel in the CD2431 has a 16-byte receive FIFO and a 16-byte transmit FIFO. The FIFOs are accessible through the RDR and TDR. These Virtual registers are shared among the four channels; therefore, they can not be accessed outside an interrupt context.

Each channel's threshold level is common for both FIFOs. It is set by COR4 (Channel Option Register 4), with a maximum threshold value of 12. The FIFO threshold is meaningful in both DMA and non-DMA modes. In DMA mode, the FIFO threshold determines when transfer bursts should occur. In non-DMA mode, the threshold level determines when transfer interrupts are asserted.

5.3.1 Receive FIFO Operation

In the Asynchronous mode, a Good Data interrupt is initiated when the number of characters in the FIFO is greater than the FIFO threshold. Note that receive timeout and receive data exception conditions also cause an interrupt to the host.

In Synchronous mode, an interrupt request for data transfer is initiated when the number of characters is greater than the FIFO threshold or an end of frame is reached.

5.3.2 Transmit FIFO Operation

The TxDat and TxEmpty bits in the IER control the generation of transmit FIFO interrupts. The CD2431 initiates an interrupt request for more data when the number of empty bytes in the FIFO is greater than the threshold set. During synchronous operation when the last byte of the frame is transferred to the FIFO, the CD2431 stops asserting transmit interrupts until the frame is sent.

5.3.3 Timers

The global TPR (Timer Period register) provides a timer prescale 'tick' as a clock source for the timers. The TPR counter is clocked by the system clock (CLK) divided by 2048. To maintain timer accuracy, the TPR should not be programmed with a value less than 16 (10 hex) — a 'tick' of about 1 millisecond when CLK is 33 MHz.

Each channel has two timers: one 16-bit general timer 1 (GT1), and one 8-bit general timer 2 (GT2). Their operation and programming are different in synchronous and asynchronous protocols.

5.3.4 Timers in Synchronous Protocols

In synchronous protocols, the timers have no special significance for the CD2431; they are available to support the protocols. They are started by host commands or by interrupts generated by the CD2431. General timers 1 and 2 can be started in either of two ways:

- 1. By loading a new value to GT1 or GT2 when the timer is not running.
- 2. By setting the SetTm1 or SetTm2 bits in the EOIR when terminating an interrupt service routine. In this case, the value should be written to the appropriate Interrupt Status register (RISR, TISR, or MISR).

These timers can be disabled by a command through the CCR (Channel Command register).

5.3.5 Timers in Asynchronous Protocols

The receive timer is restarted from the value programmed in RTPR every time a character is received and loaded into the FIFO, or data is read by the host. For example, receive FIFO threshold is set to eight, and six characters are stored in the receive FIFO. If no more characters are received and the receiver timer times-out, a receive interrupt is asserted (in DMA mode, DMA transfer occurs). The host is expected to retrieve all six characters from the receive FIFO. Assuming the host is still enabling this feature (that is, IER[5] is still set) and if there is no character being received and receiver timer times-out, a receive exception timeout interrupt (a group 3 interrupt) is asserted. The timer can be disabled if the value in RTPR is set to '0' or the RET bit (IER[5]) is cleared.

5.3.6 Transmit Timer

The TTR (Transmit Timer register) is used only if the embedded transmit command is enabled in the COR2. The delay transmit command specifies the delay period loaded in the TTR; no further transmit operations are performed until this timer reaches zero. The current state of the line is held at either '0' for send break or '1' for inter-character fill.

5.4 DMA Operation

The CD2431 uses a simple, but powerful, double-buffering method that is readily compatible with higher-level buffer control procedures, such as circular queues, link lists, and buffer pools. Each transmitter and receiver is assigned an 'A' and 'B' buffer. When transmitting, the host processor alternately fills the A and B buffers and commands the CD2431 to transmit the buffers one at a time. When receiving, the CD2431 fills the A and B buffers and informs the host processor when each is ready.

A simple Ownership Status bit is used for each buffer; this ensures that there are no deadlocks between the host and the CD2431 regarding the use of a particular buffer.

By using the simple and flexible DMA management of the CD2431, the user host processor is concerned with transmit/receive data on a block-by-block -basis. The user does not need to be concerned with character-by-character transfers, or even filling and emptying the FIFOs. DMA controls are user-selectable per-channel and operate independently of one another.

Advanced Multi-Protocol Communications Controller — CD2431

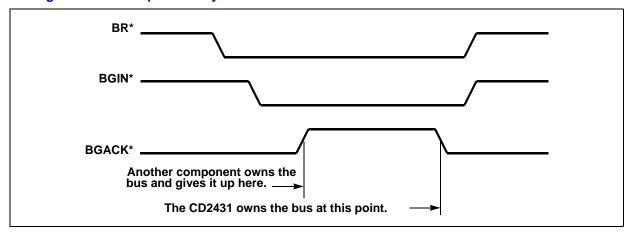
The CD2431 can perform DMA operations in any of the supported line protocols. A special Append mode feature can reduce host CPU overhead for asynchronous datastreams. DMA operations are channel- and direction-specific. In each channel, either the transmitter and the receiver, or both, can be independently programmed for DMA mode by the CMR (Channel Mode register).

When the CD2431 acquires the bus for a DMA transfer, only data for one channel and in one direction is transferred; then, bus ownership is relinquished. A maximum of 16 bytes — the depth of the transmit and receive FIFOs — are transferred during any ownership cycle.

Whenever possible, DMA cycles are 16 bits wide, and buffers have the proper byte alignment. Unaligned buffers are sent using only 8-bit-wide transfers. If the buffer begins on an even address and contains an odd number of bytes, the CD2431 uses 16-bit transfers for all the words in the buffer except the last transfer, which is 8 bits.

If one buffer in a chain ends on an odd address, the next buffer in the chain should also start on an odd address to maintain proper alignment for most efficient bus usage. In this case, only the last transfer of the first buffer and the first transfer of the next buffer is 8 bits wide; all others are 16 bits.

The CD2431 can be forced to perform only byte-wide DMA operations by setting the ByteDMA bit (DMR[3]).


5.4.1 Bus Acquisition Cycle

- 1. CD2431 asserts BR* and waits for BGIN*.
- 2. When BGIN* is detected, the CD2431 can access the bus after the current bus owner relinquishes control of the bus.
- 3. If BGACK* is high when BGIN* goes low, then the bus is free to access. Go to step 5.
- 4. If BGACK* is low when BGIN* goes low, then the bus is in use. The CD2431 waits for BGACK* to go high.
- 5. Once the CD2431 senses that BGACK* is high, the CD2431 waits for the current bus cycle to terminate (DS* and DTACK* high) and then asserts BGACK* by driving it low. At that time, the CD2431 owns the bus. After driving BGACK* low, the CD2431 drives BR* high.

In Figure 5, the CD2431 was required to wait to access the bus.

Figure 5. Bus Acquisition Cycle

5.4.2 DMA Data Transfer

After the CD2431 acquires the bus, it pulses ADLD* once. This loads the upper 24 address bits to the external 24-bit latch. This happens only once per DMA grant cycle. The AD[15:0] bits are remapped to memory address (MA) bits MA[31:16] and A[7:0] are mapped to MA[15:8]. If during DMA the upper 24 bits need to change, the CD2431 relinquishes the bus and then re-acquires the bus.

During each DMA read and write cycle, the least-significant eight memory address bits, MA[0–7] come from A[0–7].

In Figure 6, one DMA access after bus is acquired is shown.

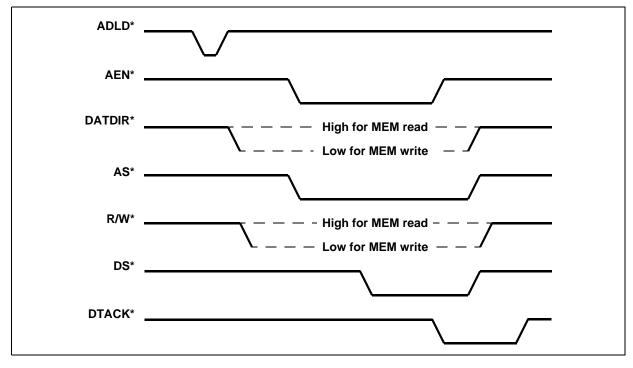


Figure 6. Data Transfer Timing

5.4.3 Bus Error Handling

When a bus error is detected during a DMA sequence, the CD2431 terminates the current bus cycle and relinquishes the bus. Any data transfer in the bus ownership cycle is ignored, and the original conditions are restored. A subsequent retry attempt would start again from these original conditions.

If there is a non-zero value in the BERCNT register, the register is decremented and the failed transfer is retried automatically. If the BERCNT is zero, a bus error interrupt is generated and DMA transfers are suspended on the failing buffer until the interrupt is serviced.

5.4.4 A and B Buffers and Chaining

The buffer management of the CD2431 uses a dual-buffer scheme. There is an A and B buffer pair for each transmitter and each receiver. Each buffer is controlled by an Ownership Status bit, called 2431own. When 2431own is set to '1', the CD2431 'owns' the buffer. When 2431own is set to '0', the host 'owns' the buffer. A simple rule prevents confusion in the buffer management — neither the CD2431 nor the host seizes buffer ownership. Each always relinquishes ownership to the other.

The host relinquishes ownership of a receive buffer to the CD2431 when the receive buffer is ready. The CD2431 is then free to write received data into the buffer. The CD2431 returns ownership of the receive buffer after the receive data is in the buffer. The host gives ownership of a transmit buffer to the CD2431 when the transmit buffer is ready to transmit. The CD2431 then transmits the contents of the buffer. When this is complete, the CD2431 returns ownership back to the host.

The CD2431 keeps track of which buffer (A or B) is to be used next in the status bits — Ntbuf for transmit and Nrbuf for receive. The relationship between the 2431own bit and the 'next' bits is shown later. The receive buffers are handled in the same way using the Nrbuf (next receive buffer).

Table 3. A and B Buffers and Chaining

Ntbuf	2431own Buffer A	2431own Buffer B	Transmit Action	
0	0	0	Send nothing	
0	1	0	Host sets up buffer A	
1	1	0	CD2431 accepts buffer A and marks B as next	
1	0	0	CD2431 completes A Tx, and passes it to host	
1	0	1	Host sets up buffer B	
0	0	1	CD2431 accepts B and marks A as next	
0	1	1	Host sets up buffer A	
1	1	0	CD2431 completes B Tx, passes to host, accepts A and marks B as next	
1	0	0	CD2431 completes A Tx and passes it to host	

Chaining is used to break up relatively long frames into shorter blocks in memory, and is useful where there are frequent smaller frames and occasional long frames. Chaining allows more efficient use of the user RAM.

The EOF Status bit controls chaining in Synchronous modes. Chaining applies to both transmit and receive. For transmit, the host determines the EOF bit; for receive, the CD2431 determines the EOF bit.

In Transmit DMA when the first buffer is supplied to the CD2431, it is treated as the start of frame — the CRC is reset and leading pad/flag/syn characters are transmitted, followed by the data. If the EOF bit is set, the CRC and closing flag/syn is appended, and the next buffer is again treated as the start of frame. If the EOF bit is not set, the CD2431 treats the buffer as the first part of a larger frame and chains into the next buffer (does not reset CRC); this process continues until a buffer is supplied with the EOF bit set.

5.4.5 Transmit DMA Transfer

As in receive data transfers, two buffers are available for DMA transmit transfers. The A/BTBADR[†] and A/BTBCNT (Transmit Buffer Address and Transmit Buffer Count registers) contain the start address of and the byte count in the buffers. These registers are set by the host when initiating a transfer. The CD2431 makes a copy of the registers to perform the transfer, leaving the originals unchanged. The transfer of buffers between the host and the CD2431 is controlled by the A/BTBSTS (Transmit Buffer Status) registers.

Buffers can contain either complete frames or blocks of data, linked together to form a complete frame or a block, or used in an Append mode to transmit data as it arrives from another process. The first two transfer types are Block mode transfers, the last is the Append mode, and both are described later. The management of the buffers reduces the processor overhead associated with short data transfers and increases the minimum response time requirements for frame-based transmissions.

 $[\]dagger. \quad A/B \ is \ used \ as \ a \ Buffer \ register \ abbreviation \ indicating \ A \ buffer \ / \ B \ buffer \ followed \ by \ the \ register \ acronym.$

Chain Mode Transfer

In Chain mode, the frame should be complete in buffers in memory before transmission is started. The Append Status bit should not be set; the Start of Frame bit must be set to begin transmission, and the Last Buffer bit must be set if this buffer is the last in a chained block or is a complete frame or a block.

When the CRC bit is set, the CD2431 generates and transmits a cyclic redundancy check word for the frame using the polynomial selected by the CPSR (CRC Polynomial Select register). If the Interrupt Required bit is set, a host interrupt is generated after the buffer is transmitted.

Transmit buffers can be chained to support large frames. To minimize bus usage, the first buffer of the chain should begin on an even address in host memory. The CD2431 begins fetching a frame from a buffer performing DMA transfer, reading two bytes at a time. The CD2431 cannot realign data between external memory and the FIFO. If one buffer of the chain ends on an odd address, the next buffer in the chain should begin on an odd address. Otherwise, only single-byte transfers are made for the rest of the buffer.

Append Mode Transfer (Buffer A Only)

The Append mode is available for buffer A in Asynchronous mode only. If buffer A is set to Append mode, the host can enable the CD2431 to transmit data in the buffer before it is completely filled. The CD2431 starts transmitting new data when it is appended to the buffer.

This mode is useful for terminal echo routines that do not wait for a complete block to be formed before starting transmission. In this mode, transmission is started when the buffer is made available to the CD2431 by the host; the ATBADR[3:0] and the ATBCNT[L, H] are initialized. Subsequent triggering of DMA transfer occurs by programming the ATBCNT[L, H] with the accumulated byte count. The ATBCNT should be written as a 16-bit word in this case, to avoid confusion between two byte operations. The ATBADR[3:0] should *not* be reprogrammed during the Append mode. If the memory space has to be moved, the Append mode must first be disabled. When the final data is added to the append buffer and ATBCNT has been updated, the host should set the AppdCmp bit (STCR[5]). When the CD2431 has completed the final transmission, it clears the 2431own bit in the ATBSTS register, and generates an end-of-buffer interrupt.

Physical CD2431 Transmit Memory **DMA Registers** Starting Address ATBADR (32) Transmit ATBCNT (16) **Buffer Byte Count** Buffer ATBSTS (8) (Status register) TABADR (32) (Currently **Current Count** using Buffer A) Starting Address BTBADR (32) Transmit BTBCNT (16) **Buffer Byte Count** Buffer BTBSTS (8) В (Status register)

Figure 7. Transmitter A and B Buffers

NOTE: Number of bits in each register is shown in parentheses (). Buffer A and buffer B do not need to be the same length.

5.4.6 Synchronous Transmitter Examples

In Figure 7, buffers A and B are contained in RAM external to the CD2431. All others (DMABSTS, ATBADR, TCBADR, ATBCNT, ATBSTS, BTBADR, BTBCNT, and BTBSTS) are inside the CD2431.

Example 1

Transmit a frame out of channel 1 — no chaining.

- 1. The host checks the Ntbuf bit in the DMABSTS register for channel 1 to determine which buffer is next. In this example, Ntbuf is set to '0' indicating that buffer A is used next.
- The host sets up the buffer data, the starting address ATBADR, and the buffer byte count ATBCNT.
- 3. The host sets up the ATBSTS (A Buffer Status) register. The EOF bit is set to indicate that there is no chaining. The 2431own bit is set to give ownership to the CD2431. By setting 2431own, the host commands the CD2431 to start transmission. Thus, everything must be ready (starting address, buffer data, and byte count) prior to setting 2431own.
- 4. The CD2431 starts frame transmission out of channel 1. When transmission is started, the CD2431 sets Tbusy bit in DMABSTS. As transmission progresses, the current buffer pointer (TCBADR) is updated by the CD2431. Also, at the start of transmission, the Ntbuf bit (Next Buffer) is set to '1' to notify the host that buffer B is next.
- 5. The CD2431 completes frame transmission by adding any necessary CRCs and trailing frame delimiters.
- 6. When the CD2431 completes the transmission, it clears the Tbusy bit. Then, it sets the EOB bit and clears the 2431own bit in the ATBSTS. This notifies the host that the transmission is complete, and return ownership of the buffer back to the host.

Advanced Multi-Protocol Communications Controller — CD2431

7. The CD2431 optionally interrupts the host, with EOF and EOB in the TISR both set to indicate that the transmission is complete and there was no chaining.

Example 2

Transmit out of channel 0 and chain three buffers into one frame. The frame is 240 bytes long, and the maximum buffer size is 100.

- 1. The host checks the Ntbuf bit in the DMABSTS register for channel 0 to determine which buffer is next. In this example, Ntbuf is set to '1' indicating that buffer B is used next.
- 2. The host sets up the buffer data, the starting address (BTBADR), and the buffer byte count (BTBCNT) for the first 'link' of the chain to be transmitted. For this example, BTBCNT is set to '100'.
- 3. The host sets up the BTBSTS (B Buffer Status) register. The EOF bit is cleared to indicate that this buffer is the first link in a chain. The 2431own bit is set to give ownership to the CD2431. By setting 2431own, the host commands the CD2431 to start transmission. Thus, everything must be ready (starting address, buffer, and data count) prior to setting 2431own.
- 4. At this point, the host has enough time to transmit 100 bytes to set up the next buffer link. If the host fails to do this in time, there is a transmitter underrun, and the frame is aborted in HDLC.
- 5. The CD2431 starts transmitting buffer B from channel 0. When this is started, the Ntbuf bit is cleared to '0' to indicate that buffer A is next. This helps the host keep track of which buffer is next. As transmission progresses, the current buffer pointer, TCBADR, is updated by the CD2431. During this or prior, the host has readied buffer A. For buffer A, the EOF bit in the ATBSTS register is cleared by the host, indicating that the buffer is not at the end of the chain.
- 6. At the end of transmission of this buffer, the CD2431 does not add any CRCs or end of frame delimiters because there is more data for the current frame.
- 7. After the CD2431 has completed transmission of the first link out of buffer B, the CD2431 sets the EOB bit and clears the 2431own bit in the BTBSTS. This notifies the host that the transmission is complete, and returns ownership of the buffer back to the host.
- 8. The CD2431 optionally interrupts the host with EOF clear and EOB set in the TISR to indicate that the transmission is complete and chaining occurred.
- 9. The ATBSTS register indicates that the CD2431 has ownership of buffer A for transmission of the next 'link'. The EOF is cleared so that this link is not the last link in the transmitted chain.
- 10. The CD2431 continues transmission of the current frame, but now transmission is from buffer A. This is the second link, which is 100 bytes long. During this time, the host must set up a new buffer B for the third and final link. The BTBCNT for the last link is set to 40 bytes.
- 11. After the CD2431 has completed transmission of the second link out of buffer A, it sets the EOB bit and clears the 2431own bit in the ATBSTS. This notifies the host that the transmission has completed, and returns ownership of the buffer back to the host. As with the first link, the CD2431 does not add CRCs or ending frame delimiters to this link.
- 12. The CD2431 optionally interrupts the host with the EOF bit cleared, and the EOB bit set (TISR[6:5]) to indicate that the transmission is complete and chaining occurred.
- 13. By this time, the host has set up a new buffer for buffer B. The EOF bit in the BTBSTS is set to indicate that this is the last link in the chain.
- 14. The CD2431 transmits buffer B in the same manner as explained earlier. As before, the CD2431 transmits the number of bytes indicated in the BTBCNT, which is 40 bytes for the third segment.

- 15. When the CD2431 completes transmission, any necessary CRCs and ending frame delimiters are transmitted.
- 16. The CD2431 optionally interrupts the host with EOF and EOB bits set (TISR[6:5]) to indicate that the transmission has completed, and that this was the last link in the chain.

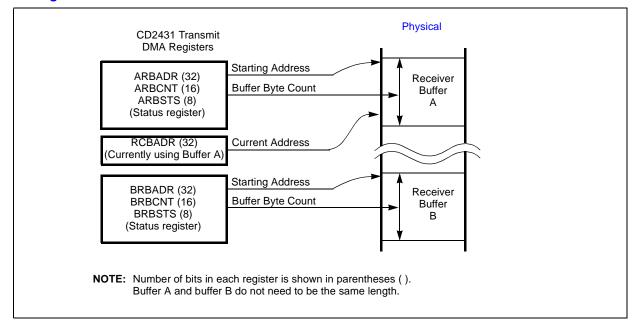
5.4.7 Receive DMA Transfer

In all protocol modes, two host memory buffers can be made available to each receive channel, by the A/BRBADR and A/BRBCNT (Receive Buffer Address and Receive Buffer Count registers) registers. To make a buffer available, the user must supply the buffer address in the Receive Buffer Address registers; the number of free bytes in the buffer must be written in the Receive Buffer Count registers, and the buffer status must be updated in the A/BRBSTS registers. The CD2431 is then free to use the buffer for receive data, and updates the Buffer Status register as appropriate. When the buffer is no longer in use, the CD2431 writes the number of bytes stored in the buffer in RBCNT and updates status in RBSTS. This frees the host to take control of this buffer and supply a new buffer in its place. The CD2431 automatically switches to the other buffer whenever one buffer becomes full, or the end of a frame has been reached. If the other buffer has not been allocated, the host still has the time required to fill the CD2431 16-byte FIFO, to respond, and to avoid loss of data.

Special actions are taken depending on the channel protocol. In HDLC, PPP, SLIP, and MNP 4 the end-of-frame/data block boundaries are recognized by the CD2431. When a data-block boundary is detected, the current buffer is automatically terminated. If the other buffer is allocated and owned by the CD2431, it becomes the current buffer. End-of-frame and block interrupts are also generated to the host.

In Asynchronous mode, a host interrupt is generated when there are receive exceptions (framing error, special character, and so on) but the buffer is not terminated. The data and exception status are made available to the host, just as when the Asynchronous mode is purely interrupt-driven. New data is buffered internally in the FIFO until the host services the exception interrupt. The host has the following three options when terminating an exception interrupt:

- 1. The exception character can be discarded.
- 2. The buffer can be terminated if there is no additional interrupt to be generated. The transfer count is not provided in A/BRBCNT, but can be calculated by RCBADR.
- 3. A user-defined gap can be left in the buffer.


These selections are communicated to the CD2431 by the value written by the host to the REOIR, when the Receive Interrupt service is complete. Leaving an 'n' byte gap enables the host to insert status of its own in the current buffer, while continuing to receive data in the same buffer. This eliminates the overhead of allocating a new buffer. The host must have noted the starting location of the gap while in the exception interrupt. This is done by reading the RCBADR. The address in this register is guaranteed to be stable during the Receive Interrupt, and point to the next free character location in the current DMA buffer. If the size of the gap supplied by the host is sufficient to fill or complete the current buffer, the CD2431 automatically switches to the other buffer and advances the Receive Current Buffer Address enough to complete the desired gap. The CD2431 readjusts data alignment in its internal FIFO as needed to maintain alignment with the external buffer.

Receiver A and B Buffers

In the Figure 8, buffers A and B are contained in RAM external to the CD2431. All others (DMABSTS, ARBADR, ARBCNT, ARBSTS, RCBADR, BRBADR, BRBCNT, and BRBSTS) are inside the CD2431.

Figure 8. Receiver A and B Buffers

Example 1

Receive a frame from channel 1 — no chaining.

- 1. The host must first make a receive buffer available before a frame can be received. Thus, the host checks the Nrbuf bit (DMABSTS[1]) for channel 1 to determine which buffer is next. In this example, Nrbuf is set to '0' indicating that buffer A is used next.
- 2. The host sets up the starting address ARBADR, and the buffer byte count ARBCNT. When the host writes the count ARBCNT, the host has defined the size limit for the buffer.
- 3. The host then gives the buffer to the CD2431 by setting the 2431own bit in the ARBSTS status register. This notifies the CD2431 that it is now OK to write received.
- 4. The Rbusy bit in the DMABSTS register for channel 1 is '0' until a frame starts to be received. When frame data starts coming in, the CD2431 sets Nrbuf to notify the host that buffer B is next. As data bytes are written into the buffer, the current buffer pointer (RCBADR) is updated by the CD2431.
- 5. At the end of the received frame, the CD2431 tests for correct end of frame delimiter and CRC. When the received frame is complete, the CD2431 clears the Rbusy bit. In this example, there is no receive chaining, so the received frame byte count is less than or equal to the buffer size count ARBCNT. The CD2431 writes the value of the actual received byte count into the same register ARBCNT. (Note that the host has written the maximum buffer size in ARBCNT when the buffer is given to the CD2431; however, when the buffer is returned back to the host, the CD2431 has written the actual byte count of the received buffer into ARBCNT.)

6. The CD2431 sets the EOB and EOF bits. This notifies the host that the end of the buffer and frame have been reached. The CD2431 also clears the 2431own bit to return the buffer to the host.

Example 2

Receive a frame on channel 0, which consists of three buffers chained together. The frame is 240 bytes long, and the maximum buffer size is 100.

- 1. The host checks the Nrbuf bit (DMABSTS[1]) for channel 0 to determine which buffer is next. In this example, Nrbuf set to '1' indicates that buffer B is used next.
- 2. The host sets up the starting address (BRBADR). Buffer size is set to '100' in this example. Thus, the host sets BRBCNT to '100'.
- 3. The host then sets the 2431own bit to give ownership to the CD2431.
- 4. The host should know the amount of time it takes to receive 100 bytes, because this is the minimum time the host has to set up the next buffer link. If the host fails to do this in time, there is a receiver overrun, and the received frame is lost.
- 5. Suppose that the CD2431 starts receiving data into buffer B of channel 0. When this is started, the Nrbuf bit is cleared to '0' by the CD2431 to help the host keep track of which buffer is next. (During this time or prior, the host has made buffer A ready.)
- 6. After the CD2431 has received the first link of the frame into buffer B, it sets the EOB and SOB bits and clears the EOF bit. This indicates that the first link in a chain has been received. Also, the CD2431 clears the 2431own bit, and returns ownership of the buffer to the host.
 - For the first received link, the received byte count (BRBCNT) remains unchanged at 100, since the received data filled the buffer.
- 7. The CD2431 optionally interrupts the host with the EOF bit clear (RISRh[6]) and the EOB bit set (RISRh[5]) to indicate that the received buffer is complete, and that there was chaining.
- 8. The ARBSTS register indicates that the CD2431 has ownership of buffer A for transmission of the next link.
- 9. As the frame continues to be received, the data goes into buffer A. This is the second link, which is 100 bytes long. During this time, the host must set up a new buffer B for the third and final link.
- 10. After the CD2431 has received the second link into buffer A, the CD2431 sets the EOB bit and clears the 2431own bit in the ARBSTS. This returns ownership of the buffer to the host.
 - As with the first link, the received byte count (ARBCNT) remains unchanged at 100 since the received data filled the buffer.
- 11. The CD2431 optionally interrupts the host with the EOF bit clear and the EOB bit set in the RISR to indicate that the received buffer is complete and that there was chaining.
- 12. By this time the host has set up a new buffer for buffer B.
- 13. The CD2431 receives data into buffer B in the same manner as previously explained.
- 14. In this example, the third link does not fill the buffer. Thus, when the end-of-frame delimiter is detected by the CD2431, the value of 40 (for 40 received bytes) is written into the received byte count (BRBCNT).
- 15. Next, the CD2431 sets the EOB and EOF bits to show that the buffer is complete, and that this is the last link in the chain.

Advanced Multi-Protocol Communications Controller — CD2431

16. The CD2431 optionally interrupts the host with the EOF and EOB bits set (RISRh[6:5]) to indicate that the received frame is complete, and this was the last link in the chain.

5.4.8 Transmit DMA Transfer

The CD2431 contains two DMA descriptors that can be loaded by the CPU to specify transmit buffers. These descriptors are designated A and B, and each consists of a 32-bit address (A/BTBADR), a 16-bit count (A/BTBCNT), and an 8-bit status (A/BTBSTS).

The Status register contains an Ownership Status bit (2431own). When this bit is set the CD2431 owns the descriptor, and it should not be written to by the CPU. When this bit is clear, the descriptor is owned by the CPU.

When DMA is selected and the channel is enabled, the CD2431 waits for ownership of buffer A. When ownership of A is given by setting the 2431own bit, the buffer is transmitted and the ownership bit is cleared. The CD2431 waits for ownership of buffer B; this process continues, toggling between the two buffer descriptors.

The DMABSTS register contains a status bit (NtBuf) that informs the CPU of the next buffer to transmit and to ensure that the CPU and CD2431 stay in synchronization. This procedure ensures that a pipeline of data is available for the CD2431 to send, maximizing the bandwidth utilization and minimizing the possibility of underruns. Figure 9 illustrates this procedure.

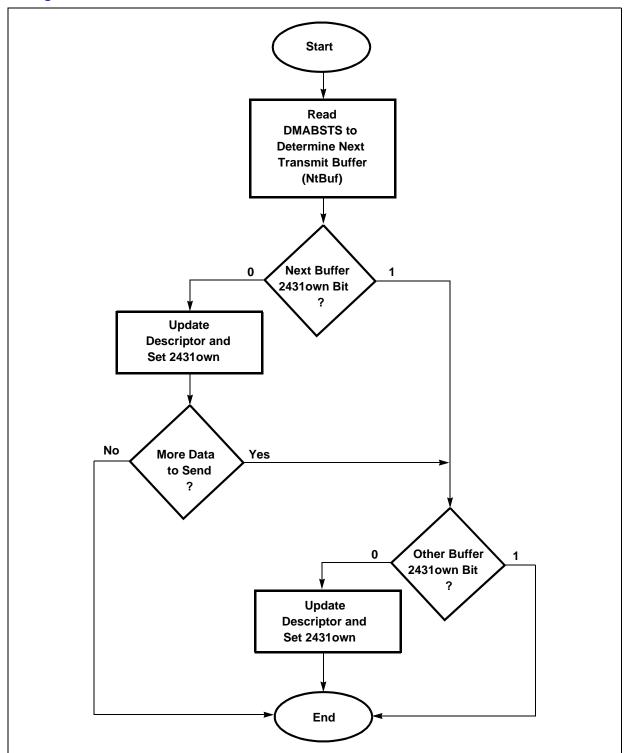
5.4.8.1 Interrupts for Transmit DMA Buffers

Two types of transmit interrupts are available in DMA mode; they are enabled by the IER and controlled by the TxD and TxMpty bits.

When the TxMpty interrupt is enabled, interrupts are generated when there is no transmit data available to send. For example, the TxMpty interrupt can be used by the CPU to determine when line turn-around can occur on half-duplex lines.

Normally, the TxD interrupt indicates the end of each transmit buffer. The interrupt is scheduled internally when the last data is read from the transmit buffer into the FIFO.

Because only one interrupt is generated for each buffer, the TxD bit (IER[0]) can be left permanently enabled. If interrupts are required selectively for individual buffers, the INTR bit in the ATBSTS/BTBSTS registers can selectively enable interrupts.


5.4.8.2 Chained Buffers

In Synchronous modes when the frame size exceeds the maximum buffer size, a frame can be transmitted from a number of separate buffers. This is achieved simply by not setting the EOF bit in the A/BTBSTS registers until the last buffer of the frame. The CD2431 transmits the buffers as one frame; it appends the CRC only when all the data is transmitted from the buffer with the EOF flag set.

If the above procedure for allocating buffers is used, the CPU has the transmission time of the last buffer to allocate the next to avoid possible underrun. The EOF bit (TISR[6]) is set for the interrupt associated with the last buffer.

Figure 9. DMA Transmit Buffer Selection

5.4.8.3 Append Mode

The Append mode reduces the CPU overhead required to provide asynchronous terminal echoing functionality; this is also necessary for any similar application that involves an unpredictable datastream. The A buffer can be set into Append mode by the ATBSTS register. This buffer can then be used for the echoed data, while the B buffer is used for all other output data. The append buffer allows data transmission to start from a buffer before all the data is available for transmission. For example, terminal echoing requires that each character is echoed (or translated and echoed) before the complete line is typed.

To operate in Append mode, the ATBADR and ATBCNT are set as normal (the ATBCNT can be zero), and the 2431own and Append bits are set in the ATBSTS. When any data is available for transmission, it is placed in the RAM buffer by the CPU, and the total buffer byte count is updated in the ATBCNT. The CD2431 now scans the ATBCNT register for any changes; if new data is found, it is read from the buffer and transmitted.

When no more data is found in the append buffer, the CD2431 scans the B buffer for ownership. If the B buffer is owned by the CD2431, the data in that buffer is transmitted uninterrupted; at the end of the transmission, the A buffer count continues to be scanned for new data.

For correct operation of this feature, the ATBCNT register should be updated with a word-write operation. If only byte access is possible, the value should not exceed 256 bytes. This mode allows multiple transfers to be performed through a single buffer; it saves CPU overhead by either processing multiple buffers or in handling interrupts with every character.

Line retransmission becomes as simple as 'stepping back' in the buffer and resending. To terminate the Append mode, a command can be given by the STCR to terminate the A buffer when all current data has been sent.

5.4.8.4 Transmit Bus Errors

When a transmit bus error interrupt is generated, the TISR and A/BTBSTS registers both indicate a bus error status. The current transfer address is available in the TCBADR[0–3] registers, and the bus error occurred on the last transfer that started at this address. This means the actual error address can be up to 16 bytes further in the buffer.

Following a bus error condition, the CPU can either discontinue the current buffer or retry from the start of the last transfer. To discontinue, the current buffer and the TermBuff bit should be set when TEOIR is written to at the end of the interrupt. In Synchronous mode, the frame is still in progress and needs to be aborted by the STCR.

To retry the frame, the CPU should set the 2431own bit in the A/BTBSTS register, and not set the TermBuff bit when writing to TEOIR at the end of the interrupt. This causes the last transfer to be retried; should a bus error occur again, the above procedure is repeated. The CPU should check to ensure that a bad location is not continually retried.

5.4.9 Receive Buffer Interrupts

When a receive buffer is complete, the CD2431 generates an end-of-frame receive exception interrupt. It provides the CPU with RISR status and information on which buffer is complete.

When a receive error occurs, the device stops DMA at the point of error and generates a bus error receive exception interrupt. RISR indicates the cause of the exception, and RCBADR provides the next location in the receive buffer.

CD2431 — Advanced Multi-Protocol Communications Controller

The CPU has the following five options:

- 1. Terminate the buffer.
- 2. Discard the exception.
- 3. Terminate the buffer and discard the exception.
- 4. Continue from the current position in the buffer.
- 5. Leave an 'n'-byte gap in the buffer and then continue.

The required option is written to the REOIR by the CPU to terminate the interrupt. If the terminate buffer option is chosen, the 2431own bit in the A/BRBSTS register should first be cleared by the CPU, or a new buffer can be supplied by the CPU.

5.4.9.1 Receive Timeout in Asynchronous DMA Mode

In Asynchronous DMA mode, the only way that the CD2431 releases the ownership is by reaching the end-of-buffer. Receive timeouts or any exceptions do not release the ownership if end-of-buffer condition is not met. The following illustrates recommended procedures to handle a receive timeout in Asynchronous DMA mode.

Scenario 1: Buffer A is currently selected, receive timeout occurs, host wants to continue on. **Recommendation:** Do nothing in the receive timeout interrupt service routine.

Scenario 2: Buffer A is currently selected, receive timeout occurs, host no longer requires DMA. **Recommendation:** Reset ownership bits in ARBSTS/BRBSTS, and set TermBuff in REOIR in the receive timeout interrupt service routine.

Scenario 3: Buffer A is currently used, a receive timeout occurs, host wants to start DMA in buffer B

Recommendation: Set TermBuff in REOIR in the receive timeout interrupt service routine. The CD2431 switches to buffer B.

Note: When a receive timeout occurs in buffer B, the CD2431 pops back to buffer A, unless the host clears both Ownership Status bits.

The above scenarios applies if buffer B is selected first.

5.4.9.2 Receive Bus Errors

When a receive bus error interrupt is generated, the RISR and A/BRBSTS registers both indicate a bus error status. The current transfer address is available in the RCBADR[0–3] registers, the bus error occurred on the last transfer that started at this address. This means that the actual error address can be up to 16 bytes further in the buffer.

Following a bus-error condition, the CPU can either discontinue the current buffer or retry from the start of the last transfer. If the buffer is discontinued, the number of valid receive bytes can be calculated by subtracting the starting address A/BRBADR[0–3] from the current address RCBADR[0–3]. The CPU should set the TermBuff bit in REOIR to terminate this buffer and move to the next.

The transfer that failed to the first buffer (due to the bus error) is still in the receive FIFO and is transferred to the next buffer following the end of the interrupt.

To retry the buffer from the failure point, the CPU should set the 2431own bit in the A/BRBSTS register. The CPU should not set the TermBuff bit when writing to REOIR at the end of the interrupt, this causes the last transfer to be retried. Should a bus error occur again, the above procedure is repeated. The CPU should check to ensure that a bad location is not continually retried.

5.5 Bit Rate Generation and Data Encoding

5.5.1 BRG and DPLL Operation

Data clocks are generated in the CD2431 by feeding one of a number of clock sources into a programmable divider. The clock source and divisor are user-programmable separately for each channel and direction. Clock options are programmed in the TCOR and RCOR. The divisors are programmed in the TBPR and RBPR. The possible clock sources are as following:

Transmit

- 1. Clk 0 CLK input/8
- 2. Clk 1 CLK input/32
- 3. Clk 2 CLK input/128
- 4. Clk 3 CLK input/512
- 5. Clk 4 CLK input/2048
- 6. TXCIN pin
- 7. Receive bit clock

Receive

- 1. Clk 0 CLK input/8
- 2. Clk 1 CLK input/32
- 3. Clk 2 CLK input/128
- 4. Clk 3 CLK input/512
- 5. Clk 4 CLK input/2048
- 6. RXCIN pin

The CLK input is nominally 33 MHz.

The divisor can be programmed for values from 1–255. To maximize the accuracy of edge detection in Asynchronous and DPLL (digital phase locked loop) modes, select the highest frequency clock and largest divisor combination.

An external clock input can be used and be at a multiple of the desired bit rate. If so, the appropriate divisor value must be loaded into the Bit Rate Period register. If the external clock is at the desired bit rate (1× clock) a value of 01h must be loaded into the associated Bit Rate Period register.

The receive bit rate generator can also be programmed to act as a DPLL. In that mode, the clock select and divisor are programmed to be as near as possible to the nominal receive bit rate. Clock phase adjustments are made by the DPLL logic to lock to the incoming datastream. The receive bit clock is an optional input to the transmitter. This makes it possible to use the DPLL derived clock to synchronize the transmit datastream.

In Section 5.2 examples for programming standard bit rates are provided. The value to be loaded to set a given bit rate is determined by the following equation:

```
Bit rate divisor =

Frequency of chosen clock source
Desired bit rate
```

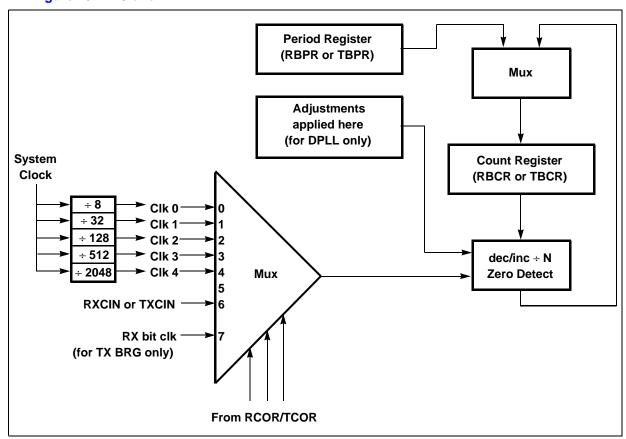
In general this equation yields a non-integer result. The nearest integer value, along with the clock source, is the optimum choice for that bit rate. The value loaded in the Period register must be that integer expressed as an 8-bit binary value. The bit-rate error is the difference between the integer value and the ideal value, expressed as a percentage.

Example 1

This example illustrates programming the bit rate generator at 19.2 kbps using the internal clock with a system clock frequency of 33 MHz.

```
Divisor loaded into R/TBPR^{\dagger} = 214 or d6h Value loaded into R/TCOR = 00h, to select Clk 0
```

Example 2


This example illustrates programming the bit rate generator at 56,000 bps using the external clock with a system clock frequency of 33 MHz.

The user provides a 1.25-MHz clock on the RXCIN or TXCIN pin. Divisor loaded into R/TBPR = 21 or 15h Value loaded into RCOR = 06h, to select External Clock mode Value loaded into TCOR = C0h, to select External Clock mode

 $[\]dagger$. R/T is used as a register abbreviation indicating Receive/ Transmit followed by the register acronym.

Figure 10. BRG and DPLL

	Receive Clock Option Register (RCOR)				CA	C8 B	R/W
TLVal	res	dpllEn	Dpllmd1	Dpllmd0	ClkSel2	ClkSel1	ClkSel0
Transmit Clock Option Register (TCOR)					C2	C0 B	R/W
ClkSel2	ClkSel1	ClkSel0	res	Ext-1X	res	LLM	res

Table 4. Clock Source Select (Sheet 1 of 2)

ClkSel2	ClkSel1	ClkSel0	Select	
0	0	0	Clk 0	
0	0	1	Clk 1	
0	1	0	Clk 2	
0	1	1	Clk 3	
1	0	0	Clk 4	
1	0	1	Reserved	

CD2431 — Advanced Multi-Protocol Communications Controller

Table 4. Clock Source Select (Sheet 2 of 2)

ClkSel2	ClkSel1	ClkSel0	Select	
1	1	0	External clock	
1	1	1	Reserved	(RCOR)
1	1	1	Receive clock	(TCOR)

Table 5. Bit Rate Constants, CLK = 20 MHz

Bit Rate	Divisor ¹	Clock	Error
50	c2	Clk 4	0.16%
110	58	Clk 4	0.25%
150	40	Clk 4	0.16%
300	81	Clk 3	0.16%
600	40	Clk 3	0.16%
1200	81	Clk 2	0.16%
2400	40	Clk 2	0.16%
3600	ad	Clk 1	0.22%
4800	81	Clk 1	0.16%
7200	56	Clk 1	0.22%
9600	40	Clk 1	0.16%
19200	81	Clk 0	0.16%
38400	40	Clk 0	0.16%
56000	2c	Clk 0	0.80%
64000	26	Clk 0	0.16%

^{1.}All divisors are in hexadecimal.

Table 6. Bit Rate Constants, CLK = 25 MHz (Sheet 1 of 2)

Bit Rate	Divisor ¹	Clock	Error
50	f3	Clk 4	0.06%
110	6e	Clk 4	0.02%
150	50	Clk 4	0.47%
300	a2	Clk 3	0.15%
600	50	Clk 3	0.47%
1200	a2	Clk 2	0.15%
2400	50	Clk 2	0.47%
3600	d8	Clk 1	0.01%
4800	a2	Clk 1	0.15%
7200	6c	Clk 1	0.45%
9600	50	Clk 1	0.47%

Datasheet Datasheet

Table 6. Bit Rate Constants, CLK = 25 MHz (Sheet 2 of 2)

Bit Rate	Divisor ¹	Clock	Error
19200	a2	Clk 0	0.15%
38400	50	Clk 0	0.47%
56000	37	Clk 0	0.35%
64000	30	Clk 0	0.35%
76800	28	Clk 0	0.76%

^{1.}All divisors are in hexadecimal.

Table 7. Bit Rate Constants, CLK = 30 MHz

Bit Rate	Divisor ¹	Clock	Error
110	84	Clk 4	0.13%
150	61	Clk 4	0.35%
300	c2	Clk 3	0.16%
600	61	Clk 3	0.35%
1200	c2	Clk 2	0.16%
2400	61	Clk 2	0.35%
3600	40	Clk 2	0.16%
4800	c2	Clk 1	0.16%
7200	81	Clk 1	0.16%
9600	61	Clk 1	0.35%
19200	c2	Clk 0	0.16%
38400	61	Clk 0	0.35%
56000	42	Clk 0	0.05%
64000	3a	Clk 0	0.69%
76800	30	Clk 0	0.35%
115200	20	Clk 0	1.38%

^{1.}All divisors are in hexadecimal.

Table 8. Bit Rate Constants, CLK = 35 MHz (Sheet 1 of 2)

Bit Rate	Divisor ¹	Clock	Error
110	9a	Clk 4	0.23%
150	71	Clk 4	0.06%
300	e3	Clk 3	0.06%
600	71	Clk 3	0.06%
1200	e3	Clk 2	0.06%
2401	71	Clk 2	0.06%

Table 8. Bit Rate Constants, CLK = 35 MHz (Sheet 2 of 2)

Bit Rate	Divisor ¹	Clock	Error
3600	4b	Clk 2	0.06%
4800	e3	Clk 1	0.06%
7200	97	Clk 1	0.06%
9600	71	Clk 1	0.06%
19200	e3	Clk 0	0.06%
38400	71	Clk 0	0.06%
56000	4d	Clk 0	0.16%
64000	43	Clk 0	0.53%
76800	38	Clk 0	0.06%
115200	25	Clk 0	0.06%
12800	21	Clk 0	0.53%
134400	20	Clk 0	1.38%

^{1.}All divisors are in hexadecimal.

Transmit and receive data can be encoded and decoded in NRZ, NRZI, or Manchester formats. For NRZI, at the start of transmission, a learning datastream of contiguous zeros achieves bit synchronization; for Manchester, an alternating pattern of ones and zeros is required.

NRZ, NRZI, and Manchester are data encoding schemes used in various synchronous protocols. In NRZ, the signal condition represents the data type, high for logic '1' and low for logic '0'. In NRZ and NRZI encoding, the transitions of the datastream occur at the beginning of the bit cell. In NRZI encoding, the signal condition switches to the opposite state to send a binary '0'. In Manchester encoding, the transitions are always in the middle of the bit cell. A high-to-low transition is made to send a logic '1', and a low-to-high transition to send a logic '0'. The timing diagrams (Figure 11 through Figure 13) illustrate the encoding method. The data bits are '0110010'.

Example 3

This example illustrates programming the DPLL at 128 kbits/second in NRZI mode, using the internal clock with a system clock frequency of 33 MHz.

Divisor loaded into RCOR = 38 or 26h

Value loaded into RCOR = 28h, to enable the DPLL, NRZI framing and select Clk 0

Example 4

This example illustrates programming the DPLL in the ×1 External Clock mode with Manchester encoding.

Divisor loaded into RBPR = 01h to enable $\times 1$ external clock

Value loaded into RCOR = 36h to enable the DPLL, select Manchester framing, and external clock

When using an n-times external clock, the highest possible clock frequency and largest divisor combination is recommended. The frequency of an external clock should be less than the system CLK input divided by 16, (that is, for 33-MHz operation, the data clock should be less than 2.0 MHz). Note that R/TBPR is an 8-bit register; therefore the largest divisor value is 255.

Datasheet Datasheet

The equation to compute the divisor value is:

rate divisor =
$$\left(\frac{\text{Frequency of external clock source}}{\text{Desired bit rate}}\right)$$
" - 1

Figure 11. Data Encoding

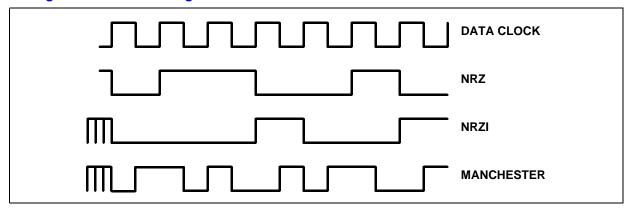


Figure 12. Transmit Data With External Clock In

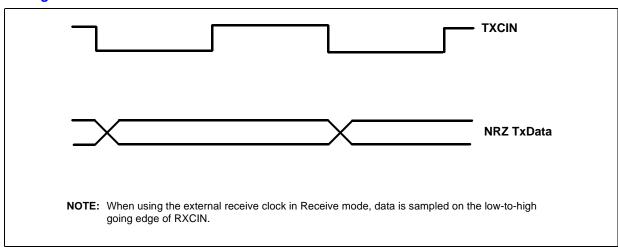


Figure 13. Transmit Data With External Clock Ou

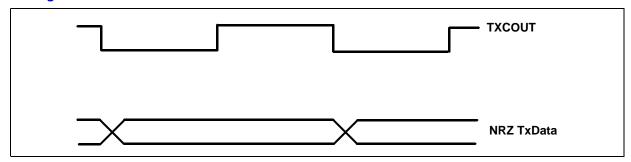


Table 9. Data Clock Selection Using External Clock

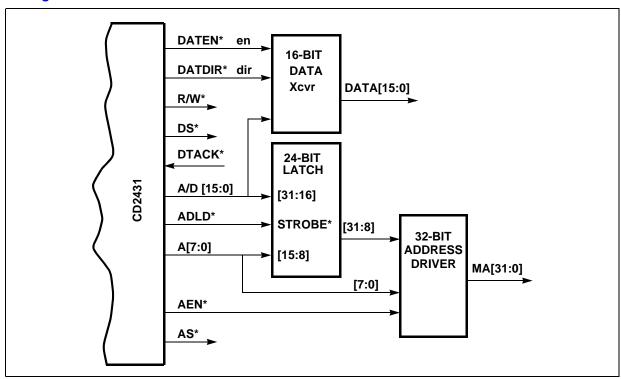
Bit Rate	External Clock Frequency	Divisor (hex)
CLK = 33 MHz		
50	9.765 kHz	c2
110	9.765 kHz	57
150	9.765 kHz	40
300	39.062 kHz	81
600	39.062 kHz	40
1200	156.250 kHz	81
2400	156.250 kHz	40
3600	625.00 kHz	ef
4800	625.00 kHz	81
7200	1.250 MHz	ac
9600	1.250 MHz	81
19200	1.250 MHz	40
38400	1.250 MHz	1f
56000	1.250 MHz	15
64000	1.250 MHz	12
76800	1.250 MHz	Of
115200	2.00 MHz	10
128000	2.00 MHz	Of

5.6 Hardware Configurations

To demultiplex the A/D[15:0] bus into separate address and data buses, external buffers and latches are required. To reduce external circuitry, these external devices can be shared in multi–CD2431 applications. The common control lines (ADLD*, AEN*, DATDIR*, DATEN*) to the external devices are wire-OR'ed together. These pins are tristate, not open collector, but an external pull-up resistor (2.2–5.0 k³/4) must be connected to each line to ensure logic '1' when no CD2431 is a bus master.

When no higher-priority alternate bus masters are present, a daisy-chain priority scheme can be implemented by wire OR'ing BR* and BGACK* and connecting directly to the 680X0. The 680X0 BG* signal is then connected to the first device in the chain and daisy-chained to the remaining devices. A lower-priority bus master can then be connected at the end of the chain.

If a higher-priority bus master is present, the BG* signal must be qualified before being passed into the highest priority CD2431. If a priority-encoded scheme is required, the BR* signals must be prioritized externally and BG* signals routed to individual devices.



5.6.1 Interface to a 32-Bit Data Bus

To interface to a 32-bit data bus, two 16-bit data buffers must be used to isolate the CD2431 A/D[15:0] pins from either half of the 32-bit bus. The A[1] address pin determines if the lower or upper half of the data bus is in use for a particular bus cycle. The CD2431 always drives all 16 data bits during a register-read or DMA-write operation, regardless of the size of the actual transfer.

5.6.2 DMA Connections for the CD2431

Figure 14. DMA Connections for the CD2431

NOTES:

- 1. The 24-bit latch is required.
- 2. The 16-bit transceiver is *optional* depending on application.
- 3. The 32-bit driver is *optional* depending on drive requirements.

5.6.3 Recommended CD2431 as a DTE and DCE Interface

The following table shows the recommended DTE (data terminal equipment) connections between the CD2431 and RS-232C standard interfaces.

CD2431	RS-232C
RXD	ВВ
TXD	ВА
RTS*	CA
CTS*	СВ
DSR*	CC
TXCOUT/DTR*	-/CD
RXCIN	DD
TXCIN	DB
RXCOUT	DA
CD*	-/CF

The following table shows the recommended DCE (data communications equipment) connections between the CD2431 and RS-232C standard interfaces.

CD2431	RS-232C
RXD	BA
TXD	ВВ
RTS*	СВ
CTS*	CA
DSR*	CD
TXCOUT/DTR*	DB/CC
RXCIN	_
TXCIN	DA
RXCOUT	DD
CD*	DA/-

Reference: CCITT 1988 Blue Book.

Datasheet Datasheet

6.0 Protocol Processing

6.1 HDLC Processing

6.1.1 FCS (Frame Check Sequence)

The FCS is a 16-bit standard computation used in HDLC, and defined in ISO 3309. This FCS algorithm is the same that is used with the synchronous HDLC operation of the CD2431. The basic characteristics of the FCS are the following:

Accumulation: FCS computation starts after the opening flag and continues to the closing flag.

Polynomial: The standard polynomial is $x^{16} + x^{12} + x^{5} + 1$.

Pre-load: The FCS 16-bit accumulator is pre-set to all '1's.

Transmit order: The FCS bits are identified as X15 to X0. The most-significant bit is X15, and is transmitted first. Thus, the first FCS character transmitted has bits X15–X8 in character positions D1–D8, respectively. The second FCS character has bits X7–X0 in character positions D1–D8, respectively.

Transmit polarity: Inverted.

Correct remainder: The receiver calculates the entire received frame, including the received FCS field. If the frame is received error-free, then the correct remainder in the FCS accumulation is 'F 0 B 8' (X15 is the leftmost bit).

The FCS can be individually enabled or disabled for the transmitter and receiver.

If enabled for the transmitter, the device appends the FCS on transmitted frames. If disabled, the device adds no FCS at the end of the frame.

If enabled for the receiver, the device computes the received FCS and reports the results. If the FCS append is also enabled, the device includes the 2-byte FCS in the received data presented to the host. If disabled, the device does not test the received FCS.

6.1.2 HDLC Transmit Mode

The transmitter can be programmed to idle in either Flag (01111110) or Mark (continuous 1's) mode by the Idle bit (COR3[3]). When idle in Mark mode, frame transmission can be programmed to be pre-pended by a programmable number of pad characters and flags. The pad character can be selected as either 00 or AA. The pad characters allow the remote receivers phase locked loop to synchronize quickly to the data. When NRZI encoding is used for Manchester encoding, the 00 character guarantees a transition every bit time, and the AA character guarantees exactly one transition per bit time.

If the transmitter is idle in Mark mode, frame transmission is started when data is made available to the transmitter, either by the TDR (Transmit Data register) or a DMA buffer. First, the programmable number of pad characters are transmitted, then the programmable number of flag characters. Data characters are then transmitted and a CRC value accumulated using each data character.

CD2431 — Advanced Multi-Protocol Communications Controller

When end-of-frame status is passed to the CD2431 by the TEOIR or the A/BTBSTS, and the remaining data transmitted, the CRC and a closing flag are appended to the frame. If a new frame is available immediately, the correct number of opening flags are transmitted and data transmission starts. If data is not available, the line is returned to its idle condition.

If data underrun occurs, the CD2431 does not append a CRC, but aborts the transmission by sending eight continuous '1's, and then reverts to the idle condition. An underrun interrupt is generated, and if interrupt transfer is being used, the CPU should provide an EOF response in TEOIR. If DMA Transfer mode is being used, the CD2431 discards DMA buffers until an EOF buffer is found; transmission then resumes from the next buffer. This ensures correct operation when a multiple buffer frame underruns.

When programmed in NRZI mode and idle in Mark mode, after the closing flag and the first eight '1's are transmitted, the transmit data line is sampled to determine if it is a logic high or low. If it is low, an extra '0' is transmitted to force the line to be a logic high.

When idle in Flag mode is selected, the send pad and opening number of flags have no significance; transmission is started when data is first made available in the FIFO. If no data underrun occurs, the frame is terminated normally with a CRC, and then continuous flags are generated. If an underrun does occur, then no CRC is appended, eight '1's are transmitted, and then continuous flags and an underrun interrupt are generated.

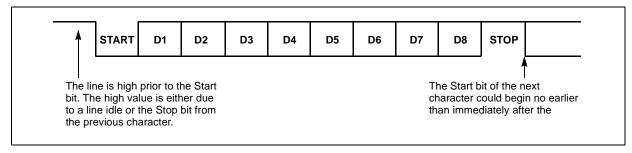
6.1.3 HDLC Receive Mode

When enabled, the receiver enters Flag Hunt mode. When the first flag is detected, the next non-flag/abort character is treated as the start of frame. If no address recognition is enabled, frame reception then continues; if Address Recognition mode is enabled, the incoming data is compared with the receive address registers. The following two modes of address recognition are available:

- First byte of address field only (four possible matches available against RFAR1-4).
- First and second byte address field (two possible matches available against RFAR1–2, RFAR3–4).

For the purposes of address matching, the Address Extension bit is not interpreted by the device. The address matching occurs on either the complete first byte, or the complete first and second byte of the frame. If no address match is recognized, Flag Hunt mode is once again entered, thereby discarding the current frame. If a match is found, normal frame reception continues. When the closing flag of the frame is detected, the data remaining in the FIFO is passed to the CPU, either through DMA transfers or Good Data interrupts, and then an EOF (end of frame) interrupt is generated. The CRC can be either validated or ignored. If the CD2431 does not check the CRC, it is passed onto the host. A validated CRC can be discarded or passed onto the host for diagnostic purposes.

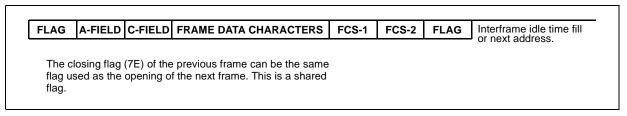
The next non-flag/abort character restarts the process; the current state of the receive process is visible to the CPU by the CSR register, which indicates whether data, flag, or mark are currently being received. To support the data phase of an X.21 connection, a clear detect feature can be enabled by COR1. When enabled, the receive data and CTS* pin are monitored for the clear indication (0, off) from the remote. If detected, the remainder of the current frame is discarded, and a clear detect indication is passed to the CPU by the RISR. However, the channel remains in HDLC mode until modified by the CPU.


6.2 PPP (Point-to-Point Protocol) Mode

6.2.1 Character Format

The PPP mode uses the async-HDLC character format, which is fixed as one start bit, eight data bits, and one stop bit. There is no parity bit. The character format is as shown in Figure 15.

Using the bit definitions from the standard format (Figure 15), the data bits are identified as D1–D8. D1 is the LSB. Characters are identified as either bits (D1–D8) or as hexadecimal values showing the hex value for bits D5–D8 first, followed by the hex value for D1–D4. Thus, a flag character is '01111110', and is indicated as a hex 7E. A control-escape character is '10111110' or 7D.


Figure 15. Character Format

6.2.2 Frame Format

The standard frame format is as follows:

Figure 16. Point-to-Point Protocol Frame

A and C fields

The device passes the A and C fields to and from the host. The device does no special processing on these fields.

6.2.3 FCS (Frame Check Sequence)

The PPP mode uses the same 16-bit CRC as HDLC mode (V.41).

Everything between the flags is included in the calculation with two exceptions: control-escape (7D) characters added for transparency, and mapped characters received without a preceding control-escape. For characters preceded by a control-escape, the FCS calculation is made after bit 6 is inverted.

6.2.4 Transparency

Transparency means that there is a protocol method to prevent confusion and ambiguity between control characters and data characters in the frame.

For PPP mode, there is a control-escape mechanism. Specific characters are identified as 'control mapped' characters. The control map is called the ACCM (async-control-character map). Whenever there is a mapped character in the data stream, the transmitter precedes that character with a control-escape character of 7D. After the control-escape, the character itself is transmitted with bit 6 inverted. For example, if the character 13 is a mapped character, then the transmission of 13 is 7D–33.

When the receiver sees the 7D control-escape character, the 7D is removed and bit 6 of the following character is inverted. The resultant reconstructed character is passed on to the host as one received character.

6.2.4.1 Mapped Characters from 00–1F

When a channel is selected for PPP mode, two ACCMs are assigned. Each ACCM consists of four registers (32 bits) to define mapped characters in the range 00–1F. One ACCM is for the transmitter (TXACCM), and one for the receiver (RXACCM). Each bit within the ACCM points to a particular character within the range. When the bit is set, that character is a mapped character. When the bit is clear, that character is not a mapped character.

For example, suppose the TXACCM bit pointing to the character 12 is set, and that the TXACCM bit pointing to the character 0B is clear. Then whenever a 12 is present for transmission, the actual transmission is 7D–32. Whenever a 0B is present for transmission, the 0B is transmitted without modification.

Continuing the example, if the receiver ACCM bits pointing to 12 and 0B are also set and clear, respectively. Then a received 12 (without a preceding 7D) is discarded, and a received 0B (without a preceding 7D) is passed through to the host unchanged.

6.2.4.2 Mapped Characters from 20 and Above

Three characters above 20 can be mapped. These characters are defined in the Channel Specific registers TSPMAP[1], TSPMAP[2], and TSPMAP[3].

6.2.4.3 Characters 7D and 7E as Transmitted Data

Whenever the transmitter sees either 7D or 7E as data for transmission, the transmitter treats these as mapped characters. Thus, a 7D as data is transmitted as 7D–5D, and a 7E as data is transmitted as 7D–5E.

6.2.4.4 Mapped Characters in the FCS Field

Whenever the transmitter sees that the FCS result to be transmitted contains a mapped character, it handles that character as any other mapped character. See Section 6.2.4.

For example, if an FCS field is A7–7E, the transmitter would send three characters in the FCS field, A7–7D–5E. The receiver would convert the received FCS back to A7–7E before completing the FCS computation.

6.2.5 Definition of a Valid Frame

This section discusses valid frames from the viewpoint of the CD2431 devices.

All characters are formatted as in the standard async-HDLC format shown in Section 6.2.1. When a channel is placed in the PPP mode, that channel transmits and expects received characters to be as shown in Section 6.2.1. There is one exception of an option to transmit a framing error. See Section 6.2.6.2 and Section 6.2.6.4.

Async-HDLC and PPP protocols have minimum frame size requirements. However, the CD2431 devices makes no requirement of a minimum frame size.

The frame opens and ends with a flag (7E). The device complies with this in transmit, and requires opening and closing flags on the receiver. The closing flag from a preceding frame can be the same flag as the opening flag of the next frame. This is a shared flag. The device can send and receive both shared or non-shared flags.

The frame never ends with a control-escape followed by a flag (7D–7E). The device does not send a 7D–7E at the end of a frame in the normal PPP mode. The device can be commanded to send an abort of either a 7D–7E or a character with a bad stop bit.

If the device receives a frame that ends in a 7D–7E, that frame is indicated to the host as being in error.

The PPP mode requires transparency as described in Section 6.2.4. The transparency is always enabled when the channel is in the PPP mode.

6.2.6 Transmitter

6.2.6.1 Fixed Transmitter Operations

For PPP mode, all transmitted characters are of the format shown in Section 6.2.1, and the transmitter always sends an opening flag.

6.2.6.2 Transmitter Options

The device transmitter can be control-bit selected for the following options:

Option	Description
map32 (ATBSTS) (BTBSTS)	When map32 is set, all the characters in the TXACCM (00–1F) are mapped. All 32 characters are transmitted with a preceding 7D, and with bit 6 flipped. When map32 is clear, the normal TXACCM is used.
npad3, 2, 1, 0 (COR3)	The minimum number idle character times between transmitted frames is programmable from 0–15 character times.
TxGen (COR3)	If TxGen is set, the device adds the two character FCS at the end of each frame. If TxGen is clear, the device ends the frame with a closing flag after the last data byte from the host.
frame (STCR)	When commanded by setting the frame bit in STCR, the device sends one character in the frame with the Stop bit forced to '0'.

6.2.6.3 Transmission of Abort

When commanded through a bit in the STCR (Special Transmit Command register), the device ends the transmission of the current frame with an abort sequence of 7D–7E. After executing the abort, the device clears the STCR. The rules for shared flag transmission in Section 6.2.6.2 are followed for the trailing flag (7E) of the abort sequence (7D–7E).

If the device is not sending a frame when the Command bit is set, the device clears the STCR and does not send an abort sequence.

6.2.6.4 Transmit Framing Error

For test purposes, one character with a framing error can be transmitted inside a frame. A Command bit in the STCR notifies the device to transmit one character with Stop bit forced to '0'. If the channel is transmitting a frame, one framing error character is inserted. After transmission, the channel continues with the frame transmission. After executing the command, the device clears the STCR.

If the device is not sending a frame when the Command bit is set, the device clears the STCR and does not send a framing error character.

6.2.7 Receiver

6.2.7.1 Fixed Receiver Operations

The receiver accepts a frame or a character when the received data is brought through the device and presented to the host.

In Async-HDLC mode, the receiver accepts only characters of the format shown in Section 6.2.1.

The receiver accepts only frames that have an opening flag; there can be more than one opening flag.

6.2.7.2 Receiver Options

The device receiver can be control-bit selected for the following options:

Option	Description
RxChk (COR3)	If RxChk is set, the receiver tests the FCS at the end of each frame and reports the result. If RxChk is clear, the receiver makes no FCS computation.
RTPR	The RTPR timer is disabled when all bits are zero. RTPR is enabled with a non-zero value. See Section 6.5.

6.3 SLIP Processing

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and later devices.

6.3.1 Framing

As defined in the original implementation, SLIP frames end with an 'END' character and have no beginning character. However, RFC-1055 suggests that all frames begin and end with 'END' characters. The CD2431 uses the 'END' character essentially as opening and closing flags. The defined characters (see table below) are fixed (hardcoded) and cannot be changed by the user.

Defined Character	Hex Encoding
END	0xC0
ESC	0xDB
ESC_END	0xDC
ESC_ESC	0xDD

The CD2431 uses the following conventions when transmitting a SLIP frame:

- When an 'END' character is to be sent, it is replaced by the character sequence 'ESC', 'ESC_END'.
- When an 'ESC' character is to be sent, it is replaced by the character sequence 'ESC', 'ESC_ESC'.

During receipt of a frame, the CD2431 makes the following substitutions:

- When an 'ESC' character is found in the data stream, only the 'ESC_END' and 'ESC_ESC' characters can follow. These two character sequences are replaced with a single character:
 - The sequence 'ESC', 'ESC_END' is replaced with 'END'.
 - The sequence 'ESC', 'ESC_ESC' is replaced with 'ESC'.
- Even though the characters 'ESC_END' and 'ESC_ESC' are the only valid characters following 'ESC', RFC-1055 suggests that when other characters are encountered, the 'ESC' should be discarded and the second character should be kept unmodified. The CD2431 follows this convention.

The SLIP protocol prohibits in-band flow control. As such, the CD2431 does not respond to XON and XOFF characters in any special way, they are treated as normal data.

6.3.2 Debugging Aids

For debug purposes, the CD2431 can send the sequence 'ESC', 'END', by the STCR (Special Transmit Command register). This is intended as an abort frame function. The STCR also has a command for sending a bad (0 value) Stop bit, which causes a framing error at the receiving end.

When the CD2431 receives the sequence 'ESC', 'END', it is reported as 'receive abort' in the RISR register. A bad Stop bit is reported as a FE (framing error) in the RISR.

6.4 MNP 4[®]/ARAP Protocol Processing

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and later devices.

6.4.1 Framing

An MNP 4 (V.42) frame consists of a start flag, data octets, a stop flag, and a 16-bit FCS (frame check sequence). The FCS uses the polynomial ($x^{16} + x^{12} + x^5 + 1$), preset to all '1's, transmitted, and inverted. The character format uses asynchronous framing with 8 data bits, no parity, and one Stop bit. In-band flow control (XON/XOFF) is not permitted in this mode.

The start flag is a three octet sequence consisting of the start character, escape character, and STX (0x02). The stop flag is a two octet sequence consisting of the escape character and ETX (0x03).

During transmit, if an escape character is encountered in the data stream, it is duplicated. Conversely, the receiver discards the second of two sequential escape characters.

MNP 4 is the data-link layer of ARAP 1.0 (AppleTalk™ Remote Access Protocol). ARAP 2.0 is the same as MNP 4 except for the two start and escape characters.

The CD2431 uses two Special Character registers (SCHR1 and SCHR2) to hold the definition of the start and escape characters. There is no mode selection within the CD2431 that allows it to determine whether it is in an ARAP 1.0 or ARAP 2.0 environment. It builds and detects frames using the values in the two Special Character registers. The user must load the two Special Character registers with the appropriate start and escape characters for the version in use during channel initialization. The two special characters for each protocol are shown in Table 10.

Table 10. Special Character Definition

Special Character Register 1 and 2	ARAP 1.0	ARAP 2.0	
SCHR1 contains the start character	SYN	SOH	
SCHR2 contains the escape character	DLE	ESC	

For both versions of ARAP, frames begin with SCHR1, SCHR2, STX, and end with SCHR2 and ETX:

- ARAP 1.0— SYN, DLE, STX, data, data, data, ... DLE, ETX
- ARAP 2.0— SOH, ESC, STX, data, data, data, ... ESC, ETX

Both versions escape the escape character (in SHCR2) by duplicating it if it appears within the data stream.

6.4.2 MNP® 4/ARAP FCS (Frame Check Sequence) Calculation

Both versions use the $(x^{16} + x^{12} + x^5 + 1)$ polynomial, preset to all '1's, transmitted and inverted with remainder equal to 0x1D0F. The frame body and ETX octet of the stop flag are included in the FCS calculation for both versions. The start flag and all DLE (ARAP 1.0)/ESC (ARAP 2.0) octets that are used for transparency are excluded from the FCS calculation. Figure 17 and Figure 18 illustrate the characters used in the FCS calculation. Data used in FCS calculation is in bold print.

Figure 17. ARAP 1.0 Frame

	Start Flag T					End Flag						
SYN	DLE	STX	data	data	DLE	DLE	data	data	DLE	ETX	FCS1	FCS2

Figure 18. ARAP 2.0 Frame

	Start Flag				T			End Flag				
SOH	ESC	STX	data	data	DLE	DLE	data	data	ESC	ETX	FCS1	FCS2

Note: The DLE (ARAP 1.0) and ESC (ARAP 2.0) characters in the middle of the data stream, indicated by the 'T' column, are inserted for transparency and thus not included in the FCS calculation.

6.5 Async Processing

Data is transmitted according to the format options defined in the Channel Option registers. These options determine the character length, parity, and Stop bit length. New data sent from the host is transmitted in a continuous stream, unless one of the following occurs:

- Transmitter disabled transmission terminated at the end of the current character until transmitter enabled.
- XOFF received from line transmission terminated at end of the current character until XON received or transmitter enabled.
- 3. Out-of-band flow control transmission terminated at the end of the current character until out-of-band flow control removed.
- 4. In-line command received in data stream from host in-line command is executed and transmission resumed.
- 5. Send special character command from host the current character is completed and the special character is transmitted after which normal transmission is resumed.

6.5.1 Transmitter In-Band Flow Control

For in-band flow control modes to be active, the Special Character Detect mode must be enabled.

Transmit in-band flow control is enabled when the TxIBE (Transmit In-Band Enable) bit in COR2 is set to '1'. When TxIBE is set to '0', in-band flow control is disabled, the IXM (Implied XON Mode) bit, also in COR2, has no meaning. The XON and XOFF characters are defined in the Special Character registers SCHR[1:2].

CD2431 — Advanced Multi-Protocol Communications Controller

When in-band flow control is enabled (TxIBE = 1) and an XOFF character is received, the channel stops transmission after the current character in the transmit shift register and the current character in the transmit holding register are transmitted. When IXM = 0, transmission restarts after an XON character is received. When IXM = 1, transmission restarts after any character is received.

The FCT (flow control transparency) Mode bit (COR3[6]) is used to determine if the received flow control characters are to be passed to the host. If FCT = 1, the characters are not passed to the host. If FCT = 0, they are passed to the host as exception characters. This bit does not affect non-flow control special characters.

Additional status information about transmitter in-band flow control is available in the CSR (Channel Status register). The TxFloff (Transmit Flow Off) and TxFlon (Transmit Flow On) bits are used.

TxFloff = 0 is normal. TxFloff = 1 indicates that the channel has been requested by the remote to stop transmission. This bit is reset to '0' when the channel receives restart, as described earlier. This bit is reset to '0' when the transmitter is enabled or disabled, or the channel is reset.

TxFlon = 0 is normal. TxFlon = 1 indicates that the channel has been requested by the remote to restart transmission. This bit is reset to '0' once the channel has restarted transmission. This bit is reset to '0' when the transmitter is enabled or disabled, or the channel is reset.

6.5.1.1 Receiver In-Band Flow Control

The channel can request the remote to stop transmission by sending an XOFF character. Likewise, the channel can request the remote to restart transmission by sending an XON characters. The XON/XOFF characters is transmitted by setting the SndSpc bit (STCR[3]) to '1'.

The CSR contains status bits RxFloff (Receive Flow Off) and RxFlon (Receive Flow On) which are used for receiver in-band flow control.

RxFloff = 0 is normal. RxFloff = 1 indicates the channel has requested that the remote stops transmission. This bit is reset to '0' when the channel requests that the remote restart its transmission. This bit is reset to '0' when the receiver is enabled or disabled, or the channel is reset.

RxFlon = 0 is normal. RxFlon = 1 indicates that the channel has requested that the remote restarts transmission. This bit is reset to '0' when the next non-flow control character is received. This bit is reset to '0' when the receiver is enabled or disabled, or the channel is reset.

6.5.1.2 Automatic Receive In-Band Flow Control

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and later devices.

The CD2431 can perform automatic in-band flow control, if desired. Automatic in-band flow control means that the device sends XON and XOFF characters based on the level of characters in the receive FIFO. This function is identical to the automatic out-of-band (hardware) flow control that uses the DTR bin.

As with automatic hardware flow control, when the number of characters in the FIFO exceeds the number programmed in COR5 (Channel Option Register 5), the automatic feature is activated and the CD2431 transmits an XOFF character (as defined by SCHR2). When the number of characters falls back to equal or below the programmed value, an XON character (as defined by SCHR1) is transmitted. The CD2431 keeps track of XON/XOFF characters that it has sent so that erroneous

flow control characters are not transmitted. For example, it does not transmit an XON simply because the number of characters is below the threshold; it only does so if it had previously sent an XOFF due to the threshold being exceeded. For this reason, the user should not use the Send Special Character command in the STCR (Special Transmit Command register) to send XON/XOFF characters because the CD2431 does not keep track of flow control characters that it did not send automatically. The result could cause confusion on the other end of the connection due to conflicting flow control commands.

Automatic in-band flow control is functional only in standard Async and Async-HDLC/PPP modes; SLIP and MNP 4 expressly forbid in-band flow control. See the COR5 description (page 101) for programming details.

6.5.2 Out-of-Band Flow Control

Receive out-of-band flow control is enabled when the CtsAE bit (COR2[1]) is set to '1'. In this mode, character transmission begins only after the CTS* pin is active (low). In asynchronous transmission if CTS* goes inactive (high) after transmission starts, the channel stops transmission after the current character in the Transmit Shift register, and the current characters in the Transmit Holding register are transmitted. In Synchronous modes if CTS* goes inactive, the channel stops transmission after the current frame. In either case, transmission restarts after CTS* goes active.

The CD2431 can automatically flow control the remote device by the DTR* pin. This mode is selected by setting a non-zero DTR* threshold in COR5; when the thresholds in COR4 and COR5 are exceeded, the CD2431 sets the DTR* pin high. When the data in the FIFO falls below the DTR* threshold, the DTR* pin is automatically driven low.

Each channel of the CD2431 has four pins that can be used either as a modem control or general-purpose input/output pins. The modem signal names assigned to these four pins were selected to provide an easy reference for system designers. In fact, they are all simply general-purpose inputs and outputs (if automatic out-of-band flow-control is not used) that can be individually controlled by the Modem Signal Value register(s). Since the pins are general-purpose, system designers can choose to connect the pins in any way that is appropriate for the application.

However, when the system software design employs automatic out-of-band flow control with the pins, the signal naming convention no longer holds true in some cases, depending on whether the device is used as DCE or DTE. In this case, it is best to think of the pins in terms of their actual uses within the CD2431 and connect them accordingly, without regard to their names. The RTS* and CTS* pins are associated with transmitter, and the DTR* and DSR* pins are associated with the receiver. The following table shows the recommended signal hook-up if automatic out-of-band flow control is desired.

Table 11. Recommended Signal Connection

Мо	de	CD2431 Pin Name	Out-of-Band Flow Control		
DCE	DTE				
CTS		DTR	Signal remote to transmit		
RTS			Not implemented in this direction		
	RTS	RTS	Request remote permission to transmit		
	CTS	CTS	Enable transmitter		

For example, if the CD2431 is designed to be DCE and automatic out-of-band flow control is desired, connect the DTR pin to the remote CTS input. If the CD2431 is to be used as the DTE side, then the CD2431 CTS output would be connected to the remote CTS input.

Note that if automatic out-of-band flow control is implemented, the activity of the DTR and DSR pins do not implement the function assigned to those signal names by the signaling conventions of the CCITT and other standards organization. These names would only apply to these pins if they are under program control and not under automatic CD2431 control. In fact, the DTR function enables the modem to go on- and off-line, depending on the state of the pin. If automatic control is used, then DTR goes inactive when the receive FIFO reached the programmed threshold, thus causing the modem to drop the connection (carrier) to the remote; this would not be the correct function based on the state of the receive FIFO.

6.5.3 Line Break Detection and Generation

A line break on the receiver occurs when the input at the RXD (receive data) pin is all zeros (low) for at least one full character time. This is indicated when the Break bit (RISRL[0]) is set to '1'.

Line break generation out of the transmitter is possible when the ETC bit (COR2[5]) is set to '1'. A line break is generated when the output at the TXD pin is all zeroes (low) for at least one full character time.

Line breaks can be transmitted by embedding certain sequences in the data stream as defined later. These sequences are valid for transmitting breaks only if ETC is set to '1'. The embedded sequences to transmit a break are listed in Table 12 on page 78.

The ETC mechanism works in ASYNC mode only, though breaks can be detected in ASYNC, PPP, SLIP, and MNP 4 modes.

Table	12.	BREA	K Sec	luenci	inq

Index	Description
00h-81h	Send BREAK – Send a line break for at least one character time.
00h–82h-xxh	Insert delay – To increase the break generation beyond one character time, the insert delay sequence can be used. The inserted delay is xx, where xx is a binary number. The delay is xx times the 'tick' set by the TPR (Timer Period register). The minimum period of TPR should be 1 millisecond. If the insert delay sequence is not preceded by a send BREAK sequence, there is an inserted delay of all '1's (high) on the output for duration xx.
00h-83h	Stop BREAK – This must follow the send BREAK sequence, or the insert delay sequence.
00h–00h	Send NUL – If the user needs to send a NUL character and ETC = 1, the user can embed 00h–00h to send one NUL character. If there are less than 8-bits per character, the user can also send a NUL character by 'sending' an 80h.

Note: In addition to insert delay, a 'break' can also be increased beyond one full character by transmitting more than one 'send BREAK' sequence at a time.

6.5.4 Special Character Transmission

Selected special characters can be sent preemptively by setting the SndSpc bit (STCR[3]). The CD2431 channel acknowledges the command by clearing the STCR. Along with the SndSpc bit, the host needs to set-up the three Special Character Select bits (STCR[2:0] to select which character is to be sent.

Advanced Multi-Protocol Communications Controller — CD2431

When the host commands a special character transmission, the channel completes transmitting any characters in the Transmit Shift register and Transmit Holding register, and then transmit the special character sequence. Any other characters awaiting transmission in the FIFO or through DMA are transmitted after the special character.

If the transmitter is off due to in-band flow control, the special characters override and are sent. Special characters override out-of-band flow control. Also if the transmitter is disabled, the special character send command overrides and the character are sent.

Table 13. SSPC[x] Settings

SSPC2	SSPC1	SSCP0	Function
0	0	1	Send Special Character #1
0	1	0	Send Special Character #2
0	1	1	Send Special Character #3
1	0	0	Send Special Character #4
0	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

6.5.5 Special Character Recognition and Special Character Range

Special character recognition is enabled when the SCDE bit (COR3[4]) is set to '1'. The special characters are programmed in the SCHRs, and are the same characters used for the transmitter.

If the FCT bit (COR3[5]) is set to '1', the channel processes the flow control characters and discards them. Otherwise, if FCT is set to '0', the received flow control characters is processed and passed onto the host by an exception interrupt.

In the event of an error (framing and/or parity) in a received character sequence, the channel does not interpret this character as a special character. But, if an overrun condition occurred after a special character was detected, the new character is lost and the overrun status is set. In this condition, the CD2431 gives both an overrun exception and a special character recognition status.

6.5.6 Special Character Range

The Special Character Range low and high (SCRl and SCRh) registers define an inclusive range for special character recognition in Asynchronous mode. This mode can be useful for identifying that a received character is within a certain range, such as a control character. To disable this function, if special character detection is enabled, make both SCRl and SCRh equal to Special Character #1 (SCHR1).

Special characters and range detection is through the three Special Character Detect (SCdet0, SCdet1, SCdet2) bits in the RISR1 register. The meanings of these bits are listed in the following table.

Table 14. SCdet[x] Settings

SCdet2	SCdet1	SCdet0	Function
0	0	0	No special characters/range detected
0	0	1	Special character 1 matched
0	1	0	Special character 2 matched
0	1	1	Special character 3 matched if character 1 and 3 sequence not enabled
1	0	0	Special character 4 matched if character 2 and 4 sequence not enabled
1	1	1	The hex value of the receive character is within the range SCRI ≤ receive character ≤ SCRh.

6.5.7 UNIX Support Features

The COR6 provides several functions useful for UNIX TTY drivers, to further reduce the amount of character-by-character processing that the CPU is required to perform. Separate receive and transmit bits are provided to perform CR/NL (carriage return/new line) translations. In transmit, NL can be converted to CR NL or CR converted to NL. In receive, CR can be discarded, NL converted to CR, or CR converted to NL.

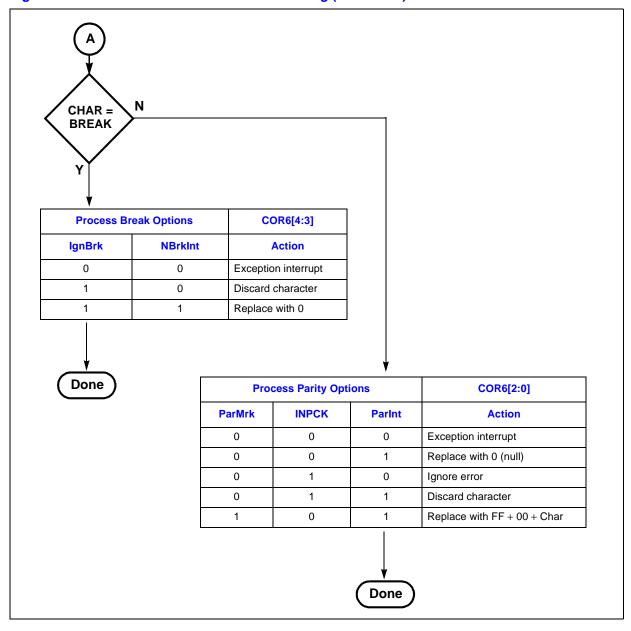
In receive processing, separate modes are provided to handle break conditions and character error conditions. Break conditions can be handled in the normal way (by a receive status interrupt), the condition can be discarded, or the break can be translated to a NULL (00) and passed as normal data to the CPU. Parity and framing errors can either be handled as normal (by receive status interrupts), discarded, translated to a NULL (00) and passed to the CPU as normal data, or the character can be passed to the CPU as normal data preceded by the sequence FF 00.

The LNext option (COR7[6]) provides a mechanism to transfer flow control and other special characters without invoking flow control or special character interrupts at the receiver. If the LNext option is enabled when the LNext character is received, the following character is just passed to the CPU as a normal character. The LNext character is programmed by the LNext register. The 'Strip' feature (COR7[7]) strips the eighth bit off each error-free received character. This has no effect on the transmitted data. The flowchart in Figure 19 shows the exact order of the CD2431 character processing steps.

6.6 Non-8-Bit Data Transfers

In Asynchronous mode, it is possible to transmit and receive less than 8 bits per character. There can be 5, 6, 7, or 8 bits per character.

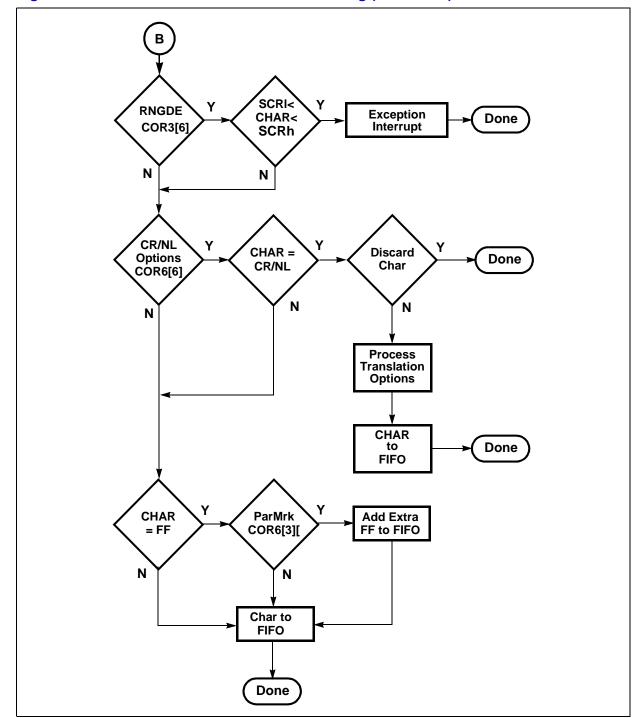
For HDLC mode, there are always 8 bits per character transmitted. The CD2431 transmits only byte-aligned frames. The CD2431 receives HDLC frames using transfers of 8 bits per character, except for the last character received before the FCS. If this last character is not aligned to an 8-bit boundary, the ResInd (Residual Indication) bit is set, along with the EOF bit in RISR.

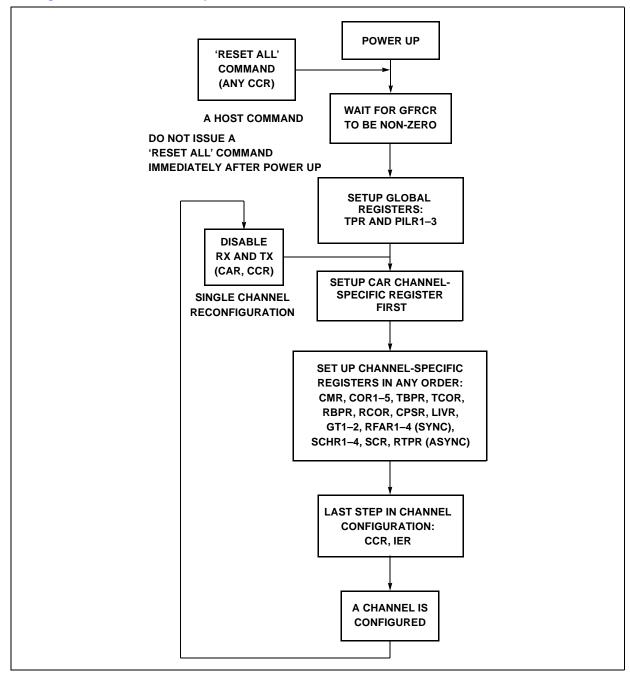


Character Received Error? ISTRIP COR7[7 Zero Bit 7 **FCErr** COR7[5] LNE COR7[6] Ν Ν Υ Previous CHAR = LNXT **ISTRIP** COR7[7] Zero Bit 7 For Special Char Match Ν Only Υ SCDE COR3[4] Ν Ν CHAR = SCHR1/2 Flow Control Done Processing ESCDE COR3[7] Ν CHAR = SCHR3/4 Exception Interrupt Done В

Figure 19. CD2431 Receive Character Processing

Figure 19. CD2431 Receive Character Processing (Continued)




Figure 19. CD2431 Receive Character Processing (Continued)

7.0 Programming Examples

This section provides some examples of the CD2431 programming. Included are examples of global and per-channel initialization, and two interrupt service routines. The code is written in Borland[®] Turbo C^{++} .

Figure 20. Initialization Sequence for the CD2431

7.1 Global Initialization

The following code segment is an example of global initialization. The host waits for a hardware reset, determined by a non-zero value in the GFRCR. A 'RESET ALL' command is sent to the CD2431 by the CCR. The internal processor puts a non-zero value into the GFRCR when initialization is complete.

It is a good practice to manually clear the GFRCR before issuing the 'Reset All' command as it takes a small amount of time for the internal processor to detect the command and clear the register. If the host is sufficiently fast, it might read the GFRCR before the command execution begins and incorrectly assume the command is complete.

The PILRs should be loaded with the value of the seven address lines (A[6:0]) during interrupt acknowledge cycles. The TPR loads the dividing counter that inputs each of the other timers in the CD2431. The DMA Mode register and the Bus Error Count register are used in DMA modes only. After the global portion is done, the Per-Channel registers need to be initialized. Transfers and interrupts should be enabled after all other initialization is complete.

```
// Global Initialization
   while( !inportb( GFRCR ) )// wait for hardware reset
        ; // wait
   outportb( GFRCR, 0x00 );// manually clear GFRCR
   outportb( CCR, RESET_ALL );// Reset command
   while( !inportb( GFRCR ) ) // wait for reset command
         ; // wait
   outportb( PILR1, 0x02 );// Priority Interrupt
   outportb( PILR2, 0x04 );// Level Registers
   outportb( PILR3, 0x06 );
   outportb( TPR, 0x40 );// Set timer prescale
   outportb( BERCNT, 0 );// Bus error count
   outportb( DMR, 0 );// DMA mode - 16-bit
// per-channel initialization
   for( i=0; i<2; i++ ) {
       outportb( CAR, i );// set channel number
       init_chan( cor, bpr );// initialize channel
       outportb( CCR, INIT_CH | EN_RX | EN_TX );
       while( inportb(CCR) )
         ; // wait
   outportb( IER, TX_DATA | RX_DATA );// enable interrupts
   }
```


7.2 Async Interrupt Setup Example

This section provides a code example for an asynchronous channel running at 19,200 bps, with 8 bits/character, 1 Stop bit, and no parity. The sample program enables In-Band Flow Control and Implied Xon mode. This code assumes that the proper channel is been set by the CAR.

```
outportb( LIVR, 0x40 );
outportb( RCOR, 0 );// Receive clock option
outportb( RBPR, 0x81 );// Baud Rate divisor
outportb( TCOR, 0 );// Transmit clock option
outportb( TBPR, 0x81 );// Baud Rate divisor

outportb( CMR, ASYNC );// Async Mode, interrupt

outportb( COR1, PARIGN | CHAR8 );// 8 bit chars, no parity
outportb( COR2, IXM | TXIBE );// in-band flow,implied XON
outportb( COR3, STOP1 | FCT );// 1 stop, flow control
outportb( COR4, thresh );// FIFO threshold
outportb( COR5, 0 );
```

7.3 HDLC DMA Channel Setup Example

This per-channel initialization code example is for the HDLC protocol at 64 kbps (with CLK = 33MHz) with NRZI encoding. The setup specifies two extra opening flags before frames, no address matching, and that DMA transfers should be used.

```
outportb( LIVR, 0x30 );// Set interrupt vector
outportb( RCOR, DPLL_NRZI );// Receive clock option
outportb( RBPR, x'3F );// Baud rate divisor
outportb( TCOR, 0 );// Transmit clock option
outportb( TBPR, x'3F );// Baud rate divisor
outportb( CMR, RX_DMA | TX_DMA | HDLC );// Mode register
outportb( CPSR, CPSR_CRC_V41 );// CRC polynomial select
outportb( COR1, NO_ADDR | FLAG_2 );// No address matching,
outportb( COR2, CRC_V41 );// 2 opening flags
outportb( COR3, 0 );
outportb( COR4, thresh );// FIFO threshold
outportb( COR5, 0);
```


7.4 Receive DMA Interrupt Service Routine

The following code example shows an interrupt service routine for the CD2431 in DMA mode. The buffer class array ib[] is used for notational convenience, and its exact implementation is user-defined. The upper () and lower () functions should return the upper and lower 16 bits of the DMA address for the current buffer segment. The nxt_buf() accesses the next segment.

If the system uses separate interrupt handlers for receive, transmit, and modem interrupts, the channel number can be obtained from the least-significant bit of the Interrupt register (RIR, TIR, or MIR). Otherwise, first use the LIVR to determine the type of interrupt. Receive Good Data interrupts should not occur during DMA transfers. The normal exception is when an end-of-frame is received.

The DMABSTS register shows which buffer the CD2431 expects to use next. Fill the descriptor registers for that buffer, including the 2431own bit and return. The last access to the CD2431 during the service routine is the REOIR.

```
int risrl = inportb( RISRL );// low status
int ch = inportb( RIR ) & 0x01;// channel number
switch( inport(LIVR) & 0x03 ) {
case LIVR_GOODDATA:// shouldn't happen in DMA
   break;
case LIVR_EXCEPTION:// EOF is 'normal' exception
   if( risrl & RISR_EOF ) {
   if( inportb(DMABSTS) & DMABS_NRBUF ) {// buffer B next
   outport( BRBADRU, ib[ch].upper() );
   outport( BRBADRL, ib[ch].lower() );
   outport( BRBCNT, BUF_MAX );
   outport( BRBSTS, OWN_2431 );
   ib[ch].nxt_buf();// get next buffer
    else {
            // buffer A next
   outport( ARBADRU, ib[ch].upper() );
   outport( ARBADRL, ib[ch].lower() );
   outport( ARBCNT, BUF_MAX );
   outport( ARBSTS, OWN_2431 );
   ib[ch].nxt_buf();// get next buffer
   }
outportb( REOIR, ZERO );
```


7.5 Transmit Interrupt Service Routine

The following code example is a transmit interrupt service handler example. When using a synchronous protocol, transmitters must declare an end of frame if an underrun occurs. If the end of buffer is encountered before data is transferred by this interrupt service, then the Notrans bit (TEOIR[3]) should be set along with EOF (TEOIR[6]). TEOIR is always the last access of an interrupt service routine.

```
int teoir = ZERO;// default
int tisr = inportb( TISR );// status
int ch = inportb( TIR ) & 0x01;// channel number
switch( tisr ) {
case TISR_UE:
   teoir = TEOIR_EOF;// underflow
   break;
case TISR_TXDATA:
   tftc = inportb( TFTC ); // FIFO count
   for( i=0; i<tftc; i++) {</pre>
     if( ob[ch].is_eob() ) {// end of buffer ?
     ob[ch].nxt_buf();// get next buffer
   teoir = TEOIR_EOF;
   if( i==0 )
       teoir |= NOTRANS;
   break;
   }
   else outportb( TDR, ob[ch].nxt_char() );//send next character
     }
 outportb( TEOIR, teoir );
```


8.0 Detailed Register Descriptions

8.1 Global Registers

8.1.1 Global Firmware Revision Code Register (GFRCR)

Register Nan Register Des Default Value Access: Byte	cription: Global e: x'0D		Address: x'82 Address: x'81							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Firmware revision code									

This register serves two functions in providing the host with information about the CD2431. When a hardware RESET* signal or a software RESET ALL command is issued through either of the two Channel Command registers, it initializes the CD2431 and zeros this register at the start of the initialization. At the end of the initialization, the CD2431 writes its firmware revision code to the GFRCR. All valid CD2431 revision codes are non-zero and the revision code is incremented by one with each new release (for example, GFRCR for Revision $D = 34 \, \text{hex}$).

Host software must confirm that the GFRCR contents are non-zero before proceeding to configure the CD2431 for normal operation.

8.1.2 Channel Access Register (CAR)

Register Name: CAR Register Description: Channel Access Default Value: x'03 Access: Byte Read/Write							Address: x'EC Address: x'EE
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved							CO

This register contains the channel number for the channel-oriented host read or write operations, when the host is not in an interrupt service routine. The CD2431 supplies the interrupting channel number during all interrupt service operations. The Channel Access register contents are not used during an interrupt service. Note that this means that an interrupt service routine is restricted to accessing only the register set of the Interrupting Channel and Global registers.

Bits 7:2 Reserved – must be '0'.

Bits 1:0 Channel number

C 1	CO	Channel number			
0	0	Channel 0			
0	1	Channel 1			
1	0	Channel 2			
1	1	Channel 3			

8.2 Option Registers

8.2.1 Channel Mode Register (CMR)

Register Name: CMR Intel Hex Address: x'18 Register Description: Channel Mode Motorola Hex Address: x'1B Default Value: x'02 Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 Bit 4 RxMode TxMode 0 chmd2 chmd1 chmd0 0 0

Bit 7 Receive Transfer mode

 $\begin{array}{l} 0-Interrupt \\ 1-DMA \end{array}$

Bit 6 Transmit Transfer mode

 $\begin{array}{l} 0-Interrupt \\ 1-DMA \end{array}$

Bits 5:3 Reserved – must be '0'.

Bits 2:0 Protocol mode select

If these options are changed, an initialize command must be given to the CD2431 through the Channel Command register.

chmd2	chmd1	chmd0	Mode
0	0	0	HDLC
0	0	1	Reserved
0	1	0	Async
0	1	1	Reserved
1	0	0	Async-HDLC/PPP
1	0	1	SLIP
1	1	0	MNP 4/ARAP
1	1	1	Reserved

8.2.2 Channel Option Register 1 (COR1)

8.2.2.1 **COR1** — **HDLC Mode**

Register Name: COR1 Intel Hex Address: x'13
Register Description: Channel Option 1 Motorola Hex Address: x'10

Default Value: x'00
Access: Byte Read/Write

Access. Byte Neady Write								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	AFLO	ClrDet	AdMd1	AdMd0	Flag3	Flag2	Flag1	Flag0

If any options specified in this register are changed, an initialize command must be given to CD2431 through the Channel Command register.

Bit 7 Address field length option

0 = Address field is one octet in length 1 = Address field is two octets in length

Bit 6 Clear detect for X.21 data transfer phase

0 = Clear detect disabled 1 = Clear detect enabled

A 'clear' is defined as two consecutive all-zero receive characters with the CTS* pin high.

Bits 5:4 Addressing modes

00 = no address recognition

 $01 = 4 \times 1$ byte $10 = 2 \times 2$ byte

If this bit is set, RFAR1, RFAR2, RFAR3, and RFAR4 should contain the address to be matched. If AFLO (COR1[7]) is set to '1', an address match is made against the RFAR1 and RFAR2 pair or the RFAR3 and RFAR4 pair.

Bits 3:0 Inter-frame flag option

Defines the minimum number of flags transmitted before a frame is started.

Flag 3	Flag 2	Flag 1	Flag 0				
0	0	0	0	minimum of one opening flag, with			
0	0	0	1	shared closing/opening flags permitted			
	th	rough	minimum number of opening flags				
1	1	1	1	sent			

The minimum number of opening flags always precede a frame when Idle-in Mark mode is set, or is always separated by two consecutively transmitted frames. No restriction is placed on the number of flags between received frames.

8.2.2.2 COR1 — Asynchronous Mode

Register Name: COR1 Intel Hex Address: x'13
Register Description: Channel Option 1 Motorola Hex Address: x'10

Default Value: x'00
Access: Byte Read/Write

Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Parity ParM1 ParM0 Chle Chl2 Chl1 Chl0 Ignore

Bit 7 Parity

1 = odd parity0 = even parity

Bits 6:5 Parity mode 1 and 0

Defines Parity mode for both transmitter and receiver:

ParM1	ParM0	Partly		
0	0	none		
0	1	force		
		(odd = force 1, even = force 0		
1	0	normal		
1	1	reserved		

Bit 4 Ignore parity

0 = evaluate parity on received characters.

1 = do not evaluate parity on received characters.

Bits 3:0 Character Length

Chl3	Chl2	Chl1	Chl0	Character Length
0	1	0	0 0 5 bits	
0	1	0	1	6 bits
0	1	1	0	7 bits
0	1	1 1 8 bits		8 bits

Note: Not used in PPP, MNP 4, and SLIP modes.

8.2.3 Channel Option Register 2 (COR2)

8.2.3.1 **COR2** — **HDLC Mode**

Register Name: COR2 Intel Hex Address: x'14
Register Description: Channel Option 2 Motorola Hex Address: x'17

Default Value: x'00 Access: Byte Read/Write

·							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	FCSApd	0	CRCNinv	0	RtsAO	CtsAE	DsrAE

Bit 7 Reserved – must be '0'.

Bit 6 FCS append

0 = receive CRC is not passed to the host at end of frame. 1 = receive CRC passes to the host at end of frame.

Bit 5 Reserved – must be '0'.

Bit 4 CRCNinv

0 = CRC is transmitted inverted (that is, CRC V.41). 1 = CRC is not transmitted inverted (that is, CRC-16).

Bit 3 Reserved – must be '0'.

Bit 2 RTS Automatic Output Enable

When set, if the channel is enabled, the CD2431 automatically asserts the RTS* output when it has characters to send. When Idle-in Mark mode is selected, RTS* is asserted prior to opening flags and remains asserted until after a closing flag is transmitted.

mitted.

Bit 1 CTS Automatic Enable

This enables the CTS* input to be used as the automatic transmitter enable/disable.

If enabled, CTS* is checked before frame transmission starts.

Bit 0 DSR Automatic Enable

This enables the DSR* input as the automatic receiver enable/disable. If enabled,

DSR* is checked at the beginning of each received frame.

8.2.3.2 Asynchronous / Async-HDLC / PPP Mode

Register Name: COR2 Intel Hex Address: x'14 Register Description: Channel Option 2 Motorola Hex Address: x'17 Default Value: x'00 Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IXM TxIBE ETC 0 RLM RtsAO CtsAE DsrAE

CD2431 — Advanced Multi-Protocol Communications Controller

Bit 7 Implied XON mode

IXM has meaning only if TxIBE is set.

If transmission stops due to a received XOFF character, and:

If IXM = 0, transmission resumes only after the receipt of an XON character or a transmit enable command by the CCR (Channel Command register).

If IXM = 1, transmission resumes after the receipt of any character or a transmit enable command by the CCR.

Bit 6 Transmit In-Band Flow Control Enable

If TxIBE is clear, there is no in-band flow control.

If TxIBE is set, transmission stops after the receipt of an XOFF character (cntl-S or hex 13). Immediately after receiving an XOFF, any character in the Transmit Shift register or Holding register is transmitted, and then character transmission is halted. Thus, no more than two characters are sent after receiving an XOFF.

Depending on the state of the IXM bit, either the receipt of an XON (cntl-Q or hex 11) character or any other character (IXM = 1) restarts the transmission. A transmit enable command by the CCR also restarts the transmission.

Bits 5:4 Reserved – must be '0'.

Bit 3 RLM – Remote loop back

RLM = 1, enables Remote Loopback mode RLM = 0, disables Remote Loopback mode

Bit 2 RTS* Automatic Output Enable

If RtsAO = 1, the RTS* output pin remains enabled during DMA or character bursts from the transmit FIFO. If the CTS* input pin goes high, RTS* goes high and transmission stops after the current burst is complete.

Bit 1 CTS Automatic Enable

When clear, the transmitter output enable is independent of the CTS* input pin.

When set, the CTS* input pin is evaluated prior to the transmission of each character. If CTS* is asserted low, that character is transmitted completely. If CTS* is high, that character transmission is held until CTS* goes low.

Bit 0 DSR Automatic Enable

When clear, the receiver input enable is independent of the DSR* input pin.

When set, the DSR* input pin is evaluated at the end of each received character. If DSR* is asserted low, the receiver input is enabled for the next character. If DSR* is high, the receiver is disabled until DSR* goes low.

8.2.3.3 COR2 — MNP 4/SLIP Mode

Register Name: COR2 Intel Hex Address: x'14 Register Description: Channel Option 2 Motorola Hex Address: x'17 Default Value: x'00 Access: Byte Read/Write Bit 5 Bit 7 Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 RLM RtsAO CtsAE DsrAE

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and later devices.

Bits 7:6 Reserved – must be '0'. No in-band flow control in MNP 4 mode.

Bits 5:4 Reserved – must be '0'.

Bit 3 Remote Loop Back mode

RLM = '1' enables Remote Loopback mode RLM = '0' disables Remote Loopback mode

Bit 2 RTS* Automatic Output Enable

If RtsAO = 1, then the RTS* output pin remains enabled during DMA or character bursts from the transmit FIFO. If the CTS* input pin goes high, then RTS* goes high and transmission stops after the current burst is completed.

Bit 1 CTS* Automatic Enable

When clear, the transmitter output enable is independent of the CTS* input pin.

When set, the CTS* input pin is evaluated prior to the transmission of each character. If CTS* is asserted low, that character transmits completely. If CTS* is high, that character transmission is held until CTS* goes low.

Bit 0 DSR* Automatic Enable

When clear, the receiver input enable is independent of the DSR* input pin. When set, the DSR* input pin is evaluated at the end of each received character. If DSR* is asserted low, the receiver input is enabled for the next character. If DSR* is high, the receiver is disabled until DSR* goes low.

Channel Option Register 3 (COR3) 8.2.4

8.2.4.1 Async-HDLC/PPP Mode

Register Name: COR3 Intel Hex Address: x'15 Motorola Hex Address: x'16

Register Description: Channel Option 3

Default Value: x'00 Access: Byte Read/Write

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Stop2	FCSApd	RxChk	TxGen	npad3	npad2	npad1	npad0

Bit 7 Stop2

> 0 = 1 Stop bit 1 = 2 Stop bit

Bit 6 FCS append

> 0 = Receive CRC is not passed to the host at the end of the frame 1 = Receive CRC is passed to the host at the end of the frame

Bit 5 Receive FCS Check Enabled

When clear, the channel does not test the 2-byte FCS field. All frame data characters

are given to the host.

When set, the channel tests the 2-byte FCS field.

Bit 4 Transmit FCS Enabled

When clear, the channel does not add the 2-byte FCS field.

When set, the channel adds the 2-byte FCS field at the end of the frame.

Bits 3:0 Transmit Frame Leading Pads

> The number of character times preceding any frame transmission. A character time is 10 bit times. All zeros in this field disables the leading pads.

npad3	npad2	npad1	npad0	Number of leading pads
0	0	0	0	0
0	0	0 1		1
0	0	1	0	2
1	1	1	1	15

8.2.4.2 MNP 4 Mode

Register Name: COR3 Intel Hex Address: x'15
Register Description: Channel Option 3 Motorola Hex Address: x'16

Default Value: x'00 Access: Byte Read/Write

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Stop2	FCSApd	RxChk	TxGen	npad3	npad2	npad1	npad0

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and later devices.

Bit 7 Stop2

0 = 1 Stop bit 1 = 2 Stop bit

Bit 6 FCS Append

0 = Receive CRC is not passed to the host at the end of the frame 1 = Receive CRC is passed to the host at the end of the frame

Bit 5 Receive FCS Check Enabled

When clear, the channel does not test the 2-byte FCS field. All frame data characters are given to the best

are given to the host.

When set, the channel tests the 2-byte FCS field.

Bit 4 Transmit FCS Enabled

When clear, the channel does not add the 2-byte FCS field.

When set, the channel adds the 2-byte FCS field at the end of the frame.

Bits 3:0 Transmit Frame Leading Pads[3:0]

The number of character times preceding any frame transmission. A character time is 10 bit times. All zeros in this field disables the leading pads.

npad3	npad3 npad2		npad0	Number of leading pads
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
1	1	1	1	15

8.2.4.3 **HDLC Mode**

Register Name: COR3 Intel Hex Address: x'15
Register Description: Channel Option 3 Motorola Hex Address: x'16

Default Value: x'00 Access: Byte Read/Write

Access: Byte Read/Write									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
sndpad	Alt1	FCSPre	FCS	idle	npad2	npad1	npad0		

In Synchronous mode, COR3 specifies the learning pattern (pad character) sent by the CD2431 to synchronize the DPLL at the remote end. The pad character (00h or AAh) sent depends on the type of encoding used.

Bit 7 Sends Pad Character(s)

1 = CD2431 sends pad character(s) before sending flag when coming out of the Idlein Mark mode.

0 = CD2431 does not send any pad character.

Bit 6 Send Sync Pattern

1 = AAh (Manchester/NRZ encoding) is sent as pad character.

0 = 00h (NRZI encoding) is sent as pad character.

Bit 5 FCS Preset

0 = FCS is preset to all '1's (CRC V.41).

1 = FCS is preset to all '0's (CRC-16).

Bit 4 FCS mode

1 = disables FCS generation and checking. The CD2431 treats the entire frame as data.

0 = normal FCS mode. The CD2431 generates and appends CRC on transmit and validates CRC on receive using the CRC polynomial selected through the CRC Polynomial Select register.

Bit 3 Idle mode

0 = Idle-in Flag mode 1 = Idle-in Mark mode

Bits 2:0 Character Count

These bits specify the number of synchronous characters sent.

npad2	npad1	npad0	
0	0	0	Reserved
0	0	1	1 pad character sent
0	1	0	2 pad characters sent
0	1	1	3 pad characters sent
1	0	0	4 pad characters sent
101-111 are reserved.			

8.2.4.4 **SLIP Mode**

Register Name: COR3 Intel Hex Address: x'15
Register Description: Channel Option 3 Motorola Hex Address: x'16

Default Value: x'00
Access: Byte Read/Write

, , .							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Stop2	0	0	0	npad3	npad2	npad1	npad0

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and later devices.

Bit 7 Stop2

0 = 1 Stop bit 1 = 2 Stop bit

Bits 6:4 Reserved – must be '0'.

Bits 3:0 Transmit Frame Leading Pads[3:0]

The number of character times preceding any frame transmission. A character time is 10 bit times. All zeros in this field disables the leading pads.

npad3	npad2	npad1	npad0	Number of leading pads
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
1	1	1	1	15

8.2.4.5 Asynchronous Mode

Register Name: COR3 Intel Hex Address: x'15
Register Description: Channel Option 3 Motorola Hex Address: x'16

Default Value: x'00 Access: Byte Read/Write

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ESCDE	RngDE	FCT	SCDE	Splstp	Stop2	Stop1	Stop0

Bit 7 Extended Special Character Detect Enable

0 = Special character detect for SCHR3 and SCHR4 is disabled.

1 = Special character detect for SCHR3 and SCHR4 is enabled; a special character interrupt is generated following the receipt of a character matching SCHR3 or SCHR4.

Bit 6 Range Detect Enable 0 = Range detect disabled.

CD2431 — Advanced Multi-Protocol Communications Controller

1 = Characters between SCRl and SCRh (inclusive) generate special character interrupts.

Bit 5 Flow Control Transparency mode

> 0 = Flow control characters received are passed to the host by receive exception interrupts.

1 = Flow control characters received are not passed to the host.

This bit has no effect unless both TxIBE (COR2[6]) and SCDE (COR3[4]) are set.

Bit 4 Special Character Detection Enable

> 0 = Special character detect for SCHR1 and 2 is disabled. 1 = Special character detect for SCHR1 and 2 is enabled.

This bit must be set along with TxIBE (COR2[6]) before FCT (COR3[5]) becomes effective.

Bit 3 Special Character I-strip

When set, this bit causes the receive character to be I-Stripped (COR3[7] set to '0') for the special character matching functions only. The character passed to the host is unaffected. This function allows special character processing of data without knowing if the data is 8 bit with no parity or 7 bit with parity.

Bits 2:0 Stop Bit Length[2:0]

These bits specify the length of the Stop bit.

Stop2	Stop1	Stop0	Stop Bit Length			
0	1	0	1 stop bit			
0	1	1	1.5 stop bits			
1 0 0 2 stop bits						
000–001 and 110–111 are reserved.						

8.2.5 **Channel Option Register 4 (COR4)**

Register Nan Register Des Default Value Access: Byte	cription: Channe e: x'00	el Option 4					Address: x'16 Address: x'15
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DSRzd	CDzd	CTSzd	0		FIFO th	nreshod	

(Modem Change Options and FIFO Transfer Threshold)

Bit 7 DSRzd = 1

Detect one-to-zero transition on the DSR* input (zero-to-one transition of DSR

(MSVR) bit)

Bit 6 CDzd = 1

> Detect one-to-zero transition on the CD* input (zero-to-one transition of CD (MSVR) bit)

Advanced Multi-Protocol Communications Controller — CD2431

Bit 5 CTSzd = 1

Detect one-to-zero transition on the CTS* input (zero-to-one transition of CTS (MSVR) bit)

Bit 4 Reserved – must be '0'.

Bits 3:0 FIFO Threshold in characters

Note that the maximum value allowed for this field is 12 (0C hex). This 4-bit binary-encoded field sets the FIFO transfer threshold for both transmit and receive FIFOs in both Interrupt and DMA Transfer modes.

In Asynchronous mode, a Good Data transfer is initiated for the number of characters in the FIFO greater than the specified threshold. Receive timeout and the occurrence of a receive data exception are also cause to initiate a receive transfer.

In Synchronous modes, data transfer is initiated when the number of characters in the FIFO is greater than the specified threshold. An EOF also initiates a receive transfer.

For transmit operation, the CD2431 attempts to refill the transmit FIFO when the empty space in the FIFO is greater than the set threshold. In synchronous frame transmissions, the CD2431 stops refilling the transmit FIFO once the last character in the frame transfers to the FIFO.

8.2.6 Channel Option Register 5 (COR5)

Register Nar Register Des Default Value Access: Byte	cription: Channe e: x'00	el Option 5					Address: x'17 Address: x'14
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DSRod	CDod	CTSod	In/Out	Rx flow control threshold			

This register defines the current-state change options to be monitored.

Bit 7 DSRod = 1

Detect zero-to-one transition on DSR* input (one-to-zero transition of DSR (MSVR) bit)

Bit 6 CDod = 1

Detect zero-to-one transition on CD* input (one-to-zero transition of CD (MSVR)

bit)

Bit 5 CTSod = 1

Detect zero-to-one transition on CTS* input (one-to-zero transition of CTS (MSVR) bit)

Bit 4 In/Out – Automatic Receive Flow Control Select

This bit is ignored when bits 3:0 are all zeros. 0 = Use out-of-band flow control (DTR pin).

1 = Use in-band flow control (automatic transmission of XOFF/XON characters)

Bit 4	Number of characters in FIFO	CD2431 Action
0	Less than or equal to threshold	DTR asserted
0	Greater than threshold	DTR deasserted
1	Less than or equal to threshold	XON transmitted
1	Greater than threshold	XOFF transmitted

Note: Do not use the STCR (Special Transmit Command register) to send XON and XOFF characters while using automatic in-band flow control.

Bits 3:0 Receive Flow Control FIFO Threshold

These four bits define the threshold for automatic flow control activation based on the contents of the receive FIFO. A threshold value of zero disables this function and the setting of bit 4 is ignored. Bit 4 determines whether the out-of-band (DTR pin) or the in-band (XOFF/XON characters) is used to stop the flow of incoming data from the remote transmitter.

When the number of characters in the FIFO exceeds this threshold, the DTR pin deasserts or an XOFF character is transmitted. When the number of characters in the FIFO is less than or equal to the threshold, the DTR asserts or and XON is transmitted.

8.2.7 Channel Option Register 6 (COR6) — Async Mode Only

Register Nan Register Des Default Value Access: Byte	cription: Channe e: x'00	el Option 6					Address: x'1B Address: x'18
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IgnCR	ICRNL	INLCF	IgnBrk	NBrkInt	ParMrk	INPCK	ParInt

CR is defined as 0D hex, NL as 0A hex, and NULL as 00 hex.

Bits 7:5 These three bits are used to enable translation of received CR/NL characters as follows:

IgnCr	ICrRNL	INLCR	
0	0	0	No special action on CR and NL
0	0	1	NL translated to CR
0	1	0	CR translated to NL
0	1	1	CR translated to NL and NL translated to CR
1	0	0	CR discarded
1	0	1	CR discarded and NL translated to CR
1	1	0	CR discarded
1	1	1	CR discarded and NL translated to CR

Advanced Multi-Protocol Communications Controller — CD2431

Bits 4:3 Break Action

These bits determine the action taken after a break condition is received.

lgnBrk	NBrkint	
0	0	Generate an exception interrupt
0	1	Translate to a NULL character
1	0	Reserved
1	1	Discard character

Bits 2:0 Parity/Framing Error Actions

These bits determine the action taken when a parity or framing error is received.

Following the generation of a BREAK exception interrupt, a receive exception interrupt is generated with RET bit (RISRI[7]) set, when the end of break is detected. The RET interrupt must be enabled (IER[5]) to enable this feature.

ParMrk	INPCK	Parint	
0	0	0	Generated an exception interrupt
0	0	1	Translated to a NULL character
0	1	0	Ignore error; character passed on as good data
0	1	1	Discard error character
1	0	0	Reserved
1	0	1	Translate to a sequence of FF NULL and the error character and pass on as Good Data
1	1	0	Reserved
1	1	1	Reserved

When ParMrk = 1 and ParInt = 1, each occurrence of FF hex in the datastream is preceded by FF hex to distinguish it from a parity error sequence.

8.2.8 Channel Option Register 7 (COR7) — Async Mode Only

Register Name: COR7 Register Description: Channel Option 7 Default Value: x'00 Access: Byte Read/Write							Address: x'04 Address: x'07			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1 Bit 0				
IStrip	LNE	FCErr	0	0	0	ONLCR	OCRNL			

CR is defined as 0D hex, NL as 0A hex, and NULL as 00 hex.

Bit 7 IStrip

When this bit is set, the most-significant bit of receive characters is stripped, leaving

7-bit characters. IStrip is applied after all other character processing, but before special character processing.

Bit 6 LNext

This bit enables the LNext option

0 =all receive characters are processed for special character detection.

1 = the character following the LNext character is not processed for special character matching or flow control.

This provides a mechanism to transfer flow control and special characters as normal data, without invoking flow control action in the CD2431, and without generating special interrupts. The LNext character is defined in the LNXT register, and when processed, is always passed to the host CPU as normal data.

Bit 5 Flow control on error characters

0 = characters received with an error are not processed for special character/flow control matching.

1 = all receive characters, even those with errors, are processed for special character/flow control processing.

Bits 4:2 Reserved – must be '0'.

Bits 1:0 Transmit processing for CR and NL

These bits define the Translation mode when CR and/or NL are present in the transmit data.

ONLCR	OCRNL	
0	0	No special action.
0	1	CR translated to NL.
1	0	NL translated to the sequence CR NL.
1	1	CR translated to NL and NL translated to the sequence CR NL.

8.2.9 Special Character Registers — Async Modes Only

Special Character registers can be used for detecting specific receive characters in the incoming data stream, and can be used to transmit character (by STCR) preempting any data in the transmit FIFO.

8.2.9.1 Special Character Register 1 (SCHR1)

Register Name: SCHR1 Intel Hex Address Register Description: Special Character 2 Motorola Hex Address Default Value: x'00 Access: Byte Read/Write											
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
	User-defined Special Character, protcol-defined Special Characters (see below).										

8.2.9.2 Special Character Register 2 (SCHR2)

Register Name: SCHR2 Intel Hex Address: Register Description: Special Character 2 Motorola Hex Address Default Value: x'00 Access: Byte Read/Write									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
User-defined Special Character, protcol-defined Special Characters (see below).									

Asynchronous Mode

Special characters 1 and 2 are used in conjunction with the SCDE bit (COR3[4]) to detect incoming characters; when both SCDE and TxIBE (COR2[6]) are set, they define the in-band flow control characters XON and XOFF.

SCHR1 = XONSCHR2 = XOFF

In addition to the SCDE and TxIBE bits, if the FCT bit (COR3[5]) is set when flow control characters are received, they are stripped from the data stream.

MNP 4 Mode

SCHR1 holds the start character. SCHR1 holds the escape character

MNP 4/ARAP 1.0ARAP 2.0

SCHR1 SYN 16 hexSOH 01 hex SCHR2 DLE 10 hexESC 1B hex

8.2.9.3 Special Character Register 3 (SCHR3)

1							Address: x'1E Address: x'1D			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	User-defined special character									

8.2.9.4 Special Character Register 4 (SCHR4)

Register Nan Register Des Default Value Access: Byte	cription: Special			Address: x'1F Address: x'1C					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
User-defined special character									

Special characters 3 and 4 are used in conjunction with the ESCDE bit (COR3[7]) to detect characters in the receive data stream and to generate receive special character interrupts.

Note: Special characters 3 and 4 are not stripped from the data stream if FCT (Flow Control Transparency) mode is enabled.

8.2.10 Special Character Range Register — Async Mode Only

8.2.10.1 Special Character Range — Low (SCRI)

Register Name: SCRL Register Description: Special Character Range, low Default Value: x'00 Access: Byte Read/Write							Address: x'20 Address: x'23			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	User-defined special character detect range, low									

8.2.10.2 Special Character Range — High (SCRh)

Register Nan Register Des Default Value Access: Byte	scription: Special			Address: x'21 Address: x'22					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
User-defined special character detect range, high									

These registers define an inclusive range for special character recognition in the Asynchronous mode. It can be useful for identifying that a received character is within a user defined range and is, for example, a control character.

8.2.11 LNext Character (LNXT) — Async Mode Only

Register Name: LNXT Register Description: Literal Next Character Default Value: x'00 Access: Byte Read/Write							Address: x'2D Address: x'2E		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
User-defined literal next character									

This register defines the LNext character. If the LNext function is enabled (COR7[6]), the CD2431 examines received characters and compare them against this value. If a match occurs, this character and the next are placed in the FIFO without any special processing. In effect, the LNext function causes the CD2431 to ignore characters with special meaning, such as flow control characters. There are two exceptions: a 'BREAK' or an 'ERROR' character. If the character following the LNext character is either a 'break' or an 'errored' character, LNext is placed in the FIFO, and the next character is treated as it normally would be for these error conditions.

8.2.12 Receive Frame Address Registers — HDLC Sync Mode Only

8.2.12.1 Receive Frame Address Register 1 (RFAR1)

Register Name: RFAR1 Register Description: Receive Frame Address 1 Default Value: x'00 Access: Byte Read/Write							Address: x'1C Address: x'1F			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Frame Qualification Address 1									

8.2.12.2 Receive Frame Address Register 2 (RFAR2)

Register Name: RFAR2 Register Description: Receive Frame Address 2 Default Value: x'00 Access: Byte Read/Write							Address: x'1D Address: x'1E	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Frame Qualification Address 2								

8.2.12.3 Receive Frame Address Register 3 (RFAR3)

Register Name: RFAR3
Register Description: Receive Frame Address 3
Default Value: x'00
Access: Byte Read/Write

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Frame Qualification Address 3

8.2.12.4 Receive Frame Address Register 4 (RFAR4)

Register Name: RFAR4 Register Description: Receive Frame Address 4 Default Value: x'00 Access: Byte Read/Write							Address: x'1F Address: x'1C			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Frame Qualification Address 4									

Reception of an HDLC frame can be qualified with a matched 1- or 2-byte address field either as four 1-byte alternatives or two 2-byte alternatives. The use of RFAR registers for address recognition is described in the Channel Option registers (COR1) on page 91.

8.2.13 CRC Polynomial Select Register (CPSR)

Register Name: CPSR Register Description: CRC Polynomial Select Default Value: x'00 Access: Byte Read/Write Intel Hex Address: x'D Motorola Hex Address: x'D							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	0	0	Poly

Bits 7:1 Reserved – must be '0'.

Bit 0 Polynomial select

 $0=CRC\ V.41$ polynomial (normally used for HDLC protocol and preset to 1's) $x^{**}16+x^{**}12+x^{**}5+1$

1= CRC-16 polynomial (generally used for Bisync but will work in HDLC mode, preset to 0's)

 $x^{**}16 + x^{**}15 + x^{**}2 + 1$

8.2.14 Transmit Special Mapped Characters — PPP Mode only

8.2.14.1 Transmit Special Mapped Character 1 (TSPMAP1)

Register Des Default Value	Register Name: TSMAP1 Register Description: Special Mapped Transmit Character 1 Default Value: x'00 Access: Byte Read/Write						Address: x'1B Address: x'18
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
User-defined mapped transmit character							

8.2.14.2 Transmit Special Mapped Character 2 (TSPMAP2)

•			Address: x'04 Address: x'07					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
User-defined mapped transmit character								

8.2.14.3 Transmit Special Mapped Character 3 (TSPMAP3)

			Address: x'2D Address: x'2E				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
User-defined mapped transmit character							

The three TSPMAP registers are used to provide control character escape processing on characters outside the 00–1f (hex) range. Each of these three registers are scanned to match the character currently being transmitted; if a match occurs, that character is 'escaped' before transmission. If a zero value is found in any of them, the scan is terminated. (Zero is already covered in the standard TXACCM.)

8.2.15 Transmit Async Control Character Maps — PPP Mode Only

8.2.15.1 Transmit Async Control Character Map 0 (TXACCM0)

Register Name: TXACCM0 Register Description: Transmit Async Control Character Map 0 Default Value: x'00 Access: Byte Read/Write							Address: x'1C Address: x'1F
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Char. 07 Char. 06 Char. 05 Char. 04 Char. 03 Char. 02							Char. 00

8.2.15.2 Transmit Async Control Character Map 1 (TXACCM1)

Register Des Default Value	Register Name: TXACCM1 Register Description: Transmit Async Control Character Map 1 Default Value: x'00 Access: Byte Read/Write						Address: x'1D Address: x'1E
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Char. 0F Char. 0E Char. 0D Char. 0C Char. 0B Char. 0A Char. 09 Char							

8.2.15.3 Transmit Async Control Character Map 2 (TXACCM2)

Register Des Default Value	Register Name: TXACCM2 Register Description: Transmit Async Control Character Map 2 Default Value: x'00 Access: Byte Read/Write						Address: x'1E Address: x'1D
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Char. 17 Char. 16 Char. 15 Char. 14 Char. 13 Char. 12 Char. 11 Char. 11							

8.2.15.4 Transmit Async Control Character Map 3 (TXACCM3)

Register Des Default Value	Register Name: TXACCM3 Register Description: Transmit Async Control Character Map 3 Default Value: x'00 Access: Byte Read/Write						Address: x'1F Address: x'1C	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Char. 1F Char. 1E Char. 1D Char. 1C Char. 1B Char. 1A Char. 19 Char. 18								

intط_•

Advanced Multi-Protocol Communications Controller — CD2431

The TXACCM registers define transmitted characters in the range 00–1F as mapped (Control bit set) or not mapped (Control bit clear) as follows:

TXACCM0 bits 0–7 control characters 00–07, respectively. TXACCM1 bits 0–7 control characters 08–0F, respectively. TXACCM2 bits 0–7 control characters 10–17, respectively. TXACCM3 bits 0–7 control characters 18–1F, respectively.

8.2.16 Receive Async Control Character Maps — PPP Mode Only

8.2.16.1 Receive Async Control Character Map 0 (RXACCM0)

Register Name: RXACCM0 Register Description: Receive Async Control Character Map 0 Default Value: x'00 Access: Byte Read/Write							Address: x'20 Address: x'23	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Char. 07 Char. 06 Char. 05 Char. 04 Char. 03 Char. 02 Char. 01 Char								

8.2.16.2 Receive Async Control Character Map 1 (RXACCM1)

_			Address: x'21 Address: x'22					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Char. 0F Char. 0E Char. 0D Char. 0C Char. 0B Char. 0A Char. 09 Char. 08								

8.2.16.3 Receive Async Control Character Map 2 (RXACCM2)

Register Name: RXACCM2 Register Description: Receive Async Control Character Map 2 Default Value: x'00 Access: Byte Read/Write							Address: x'22 Address: x'21	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Char. 17 Char. 16 Char. 15 Char. 14 Char. 13 Char. 12 Char. 11 Char. 10								

8.2.16.4 Receive Async Control Character Map 3 (RXACCM3)

Register Des Default Value	Register Name: TXACCM3 Register Description: Transmit Async Control Character Map 3 Default Value: x'00 Access: Byte Read/Write						Address: x'23 Address: x'20
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Char. 1F Char. 1E Char. 1D Char. 1C Char. 1B Char. 1A Char. 19 Char.							

The RXACCM registers define received characters in the range 00–1F as mapped (Control bit set) or not mapped (Control bit clear) as follows:

RXACCM0 bits 0–7 control characters 00–07, respectively. RXACCM1 bits 0–7 control characters 08–0F, respectively. RXACCM2 bits 0–7 control characters 10–17, respectively. RXACCM3 bits 0–7 control characters 18–1F, respectively.

8.3 Bit Rate and Clock Option Registers

8.3.1 Receive Bit Rate Generator Registers

8.3.1.1 Receive Bit Rate Period Register (RBPR)

Register Des Default Value	Register Name: RBPR Register Description: Receive Bit Rate Period Default Value: x'81 Access: Byte Read/Write						Address: x'C9 Address: x'CB	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Receive Bit Rate Period (Divisor)							

This register contains the preload value for the receive baud rate counter. When using an internal clock option or an n-times external clock, the preload value in conjunction with the receiver clock source chosen, determines the receive bit rate. If a 1× external clock is used, a value of 01h must be loaded in the RBPR.

8.3.1.2 Receive Clock Option Register (RCOR)

Register Name: RCOR Intel Hex Address: x'CA Register Description: Receive Clock Option Motorola Hex Address: x'C8 Default Value: x'00 Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 3 Bit 0 Bit 4 Bit 2 Bit 1 TLVal 0 DpllEn Dpllmd1 Dpllmd0 ClkSel2 ClkSel1 ClkSel0

This register is used to select the DPLL mode and the desired clock source for the receive bit rate generator.

Bit 7 Transmit Line Value

This bit reflects the logical value of the transmit data pin. It is a read-only bit; writing

to this bit has no effect.

Bit 6 Reserved – must be '0'.

Bit 5 DPLL Enable

1 = DPLL is enabled 0 = DPLL is disabled

Bits 4:3 DPLL mode selects the type of data encoding used.

Dpllmd1	Dpllmd0	Encoding
0	0	NRZ
0	1	NRZI
1	0	Manchester
1	1	Reserved

Bits 2:0 These three bits select the clock source for the receive baud rate generator or DPLL.

Clksel2	Clksel1	Clksel0	Clock Source
0	0	0	Clk 0
0	0	1	Clk 1
0	1	0	Clk 2
0	1	1	Clk 3
1	0	0	Clk 4
1	0	1	Reserved
1	1	0	External clock
1	1	1	Reserved

Note: See the description of clock options in Section 5.5.

8.3.2 Transmit Bit Rate Generator Registers

8.3.2.1 Transmit Bit Rate Period Register (TBPR)

Register Name: TBPR
Register Description: Transmit Bit Rate Period
Default Value: x'81
Access: Byte Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transmit Bit Rate Period (Divisor)

This register contains the preload value for the transmit baud rate count. When using one of the internal clocks or an n-times external clock, the preload value in conjunction with the transmitter clock source chosen, determines the transmit bit rate. If a 1× external clock or the receive clock is used, a value of 01h must be loaded in the TBPR.

8.3.2.2 Transmit Clock Option Register (TCOR)

Register Nan Register Des Default Value Access: Byte	cription: Transme: x'00	cription: Transmit Clock Option : x'00					Address: x'C2 Address: x'C0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ClkSel2	ClkSel1	ClkSel0	0	Ext-1X	0	LLM	0

This register controls the transmit bit rate generator and Local Loopback mode.

Bits 7:5 These bits select the clock source for the transmit bit rate generator.

ClkSel2	ClkSel1	ClkSel0	Select
0	0	0	Clk 0
0	0	1	Clk 1
0	1	0	Clk 2
0	1	1	Clk 3
1	0	0	Clk 4
1	0	1	Reserved
1	1	0	External clock
1	1	1	Receive clock

Note: See the description of clock options in Section 5.5.

Bit 4 Reserved – must be '0'.

Advanced Multi-Protocol Communications Controller — CD2431

Bit 3 Times 1 external clock. This bit is set to '1' when the user supplies the data clock on TXCIN pin where the frequency is equal to the transmit data rate. When using the external 1× clock or the clock from the receiver's DPLL, the TBPR must be pro-

grammed to 01h.

Bit 2 Reserved – must be '0'.

Bit 1 Local Loopback mode

1 = enables the Local Loopback mode 0 = disables the Local Loopback mode

Bit 0 Reserved – must be '0'.

8.4 Channel Command and Status Registers

8.4.1 Channel Command Register (CCR)

There are two CCR command sets. Mode 1 (if bit 7 is '0') commands affect basic channel control. In Mode 2 (if bit 7 is '1'), additional commands that control timer functions are available.

Mode 1

Register Nan Register Des Default Value Access: Byte	cription: Channe e: x'00			Address: x'10 Address: x'13			
Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2		Bit 1	Bit 0	
0	ClrCh	InitCh	RstAll	EnTx	DisTx	EnRx	DisRx

The various command and control bits in this register perform largely independent functions. The host can assert multiple command bits to achieve the desired effect. The CD2431 clears the register to '0' after it accepts and acts on a host command. The host must verify that the contents of this register are '0' prior to issuing a new command. If the RESET ALL command is issued, all other commands are ignored. All other combinations are legal, and the order of processing is as follows:

- 1. Clear channel
- 2. Initialize channel
- 3. Enable receive
- 4. Disable receive
- 5. Enable transmit
- 6. Disable transmit

Note: Processing CCR commands is a low-priority task for the internal firmware, since they seldom occur. The user must take care when waiting for command completions at critical times, that is, during interrupt service routines.

Channel Control Commands (Bit 7 = 0)

Bit 7 Must be '0'.

Bit 6 Clear Channel Command

When this command is issued, the CD2431 clears the data FIFOs and current transmit and receive status of the channel in the CSR. If the channel is currently transmitting a frame in synchronous protocol, the host should issue the transmit abort special transmit command, before issuing a Clear command. The channel parameters are not affected by a Clear Channel command. This command causes both receive and transmit FIFOs to be cleared, the transmitter and receiver to be disabled, and all DMA Status registers (DMABSTS, A/BRBSTS and A/BTBSTS) to be cleared.

Bit 5 Initialize Channel

If any change is made to the Protocol Mode Select bits in the CMR (Channel Mode register) or to the COR1, the channel must be reinitialized by this command. The InitCh command causes the internal protocol-specific registers to be initialized.

Warning: If the Initialize Channel command is issued after a channel is already in operation, then a Clear Channel command must be issued prior to, or coinciding with the Initialize Channel command. Failure to observe this requirement will result in unpredictable device behavior.

Bit 4 Reset All

An on-chip firmware initialization of all channels is performed. All channel and global parameters are reset to their power-on reset condition. This command is the strongest the host can issue. None of the other command bits are interpreted if the RESET ALL command is given. The host must re-initialize the CD2431 following the execution of this command just as after a hardware power-on reset. When this command is complete, the GFRCR is updated with the firmware revision code.

Bit 3 Enable Transmitter

Enables the transmitter by setting the TxEn bit (CSR[3]). In Asynchronous mode, this command also clears the transmit flow control options.

Bit 2 Disable Transmitter

Disables the transmitter by clearing the TxEn bit (CSR[3]). In Asynchronous mode, the Transmit Flow Control bits are cleared.

Bit 1 Enable Receiver

Enables the receiver by setting the RxEn bit (CSR[7]). In Asynchronous mode, the Receive Flow Control bits are cleared.

Bit 0 Disable Receiver

Disables the receiver by clearing the RxEn bit (CSR[7]). In Asynchronous mode, the Receive Flow Control bits are cleared.

8.4.1.1 CCR Mode 2

Register Nar Register Des Default Value Access: Byte		Address: x'10 Address: x'13					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	ClrT1	ClrT2	ClrRcv	ClrTx	0	0	0

Either one or both of the timers can be cleared with a single command. Note that if the running timer value is 01h at the time this command is issued, there is a small chance that the timer expires and causes a timer interrupt before the command is processed.

Bit 7 Must be '1'.

Bit 6 Clear Timer 1

General timer 1 is cleared.

Bit 5 Clear Timer 2

General timer 2 is cleared.

Bit 4 Clear Receiver Command

This command only affects the receiver. It resets all receiver functions like a combination of clear channel, initialize channel and enable receiver commands. ClrRcv clears the receive FIFO and clears receive status in the CSR register, except for the RcvEn bit. ClrRcv clears the receive DMA buffer status in A/BRBSTS and receive status in DMABSTS. Clearing the 2431own bits in both Receive Buffer Status registers means that DMA buffers *must* be returned to the CD2431 before receive transfers can begin again.

For Synchronous modes, this command puts the receiver back into SYN/Flag Hunt mode.

Bit 3 Clear Transmitter Command

This command only affects the transmitter; it is *only* available on Revision C and later devices and only effective in asynchronous protocols. It resets all transmitter functions like a combination of clear channel, initialize channel and transmit commands. ClrTx clears the transmit FIFO and clears transmit status in the CSR, except for the TxEn bit.

ClrTx clears transmit DMA buffer status in ATBSTS, BTBSTS, and Transmit Status bits in DMABSTS. Clearing the 2431own bits in both the Transmit Buffer Status registers means that DMA buffers have to be returned to the CD2431 before transmit transfers begin again.

Bits 2:0 Reserved – must be '0'.

8.4.2 Special Transmit Command Register (STCR)

Async — HDLC/PPP Mode

Register Name: STCR Intel Hex Address: x'11
Register Description: Special Transmit Command Motorola Hex Address: x'12

Default Value: x'00
Access: Byte Read/Write

Access: Byte Read/Write							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	AbortTx	0	0	SndSpc	Frame	Xon	Xoff

Special characters can be transmitted preemptively (ahead of any characters in the transmit FIFO) upon commands described below. When the special character is transmitted, the STCR is cleared by the device.

Bit 7 Reserved – must be '0'.

Bit 6 Abort

Transmission of the two-character sequence (7D–7E) aborts the current transmit frame. All data in the FIFO following the abort is discarded. If DMA is used, the remaining data up to the EOF is discarded.

Bits 5:4 Reserved – must be '0'.

Bit 3 Send Special Character Command

When clear, the frame, Xon, and Xoff bits described below have no meaning. When set, the host should also set one of the following bits: frame, Xon, or Xoff.

Bit 2 Send Framing Error

This bit causes the next character in the transmit stream to be sent with an incorrect

Stop bit (Stop bit is '0').

This bit is intended as a test function. Unlike the Abort bit, this bit does not terminate

the transmission.

Bit 1 Send XON

This bit causes the transmission of an XON (cntl-Q or hex 11).

Note: The user should not use the send XON/XOFF commands if automatic in-band flow control is enabled (Asynchronous modes only) in COR5.

Bit 0 Send XOFF

Causes the transmission of an XOFF (cntl-S or hex 13).

The command structure associated with the sndsp Control bit is:

sndsp	frame	Xon	Xoff	Action	
0	Х	Х	Х	Send Special Disabled	
1	1	Х	Х	Send one character with FE	
1	0	1	Х	Send Xon	
1	0	0	1	Send Ooff	

Note: The user should not use the send XON/XOFF commands if automatic in-band flow control is enabled (Asynchronous modes only) in COR5.

SLIP/MNP 4 Mode

Note: SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and

later devices.

Register Name: STCR Intel Hex Address: x'11 Register Description: Special Transmit Command Motorola Hex Address: x'12 Default Value: x'00 Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 AbortTx 0 0 SndSpc Frame 0 0

Special characters can be transmitted preemptively (ahead of any characters in the transmit FIFO) upon commands described below. When the special character is transmitted, the STCR is cleared by the device.

Bit 7 Reserved – must be '0'.

Bit 6 Abort

Transmission of the two-character sequence (7D–7E) aborts the current transmit frame. All data in the FIFO following the abort is discarded. If DMA is used, the remaining data up to the EOF is discarded.

Bits 5:4 Reserved – must be '0'.

Bit 3 Send Special Character Command

When clear, the frame, Xon, and Xoff bits described below have no meaning. When set, the host should also set one of the following bits: frame, Xon, or Xoff.

Bit 2 Send Framing Error

Causes the next character in the transmit stream to be sent with an incorrect stop bit (stop bit is '0').

This bit is intended as a test function. Unlike the Abort bit, this bit does not terminate

the transmission.

Bits 1:0 Reserved – must be '0'.

Async and HDLC Modes

Register Name: STCR Intel Hex Address: x'11 Register Description: Special Transmit Command Motorola Hex Address: x'12 Default Value: x'00 Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 AbortTx AppdCmp 0 SndSpc SSPC2 SSPC1 SSPC0

The CD2431 clears the register to '0' when it accepts a host CPU command.

Bit 7 Reserved – must be '0'.

Bit 6 Abort Transmission (HDLC mode)

Terminates the frame currently in transmission with an abort sequence. In DMA mode, all data up to the next EOF is discarded.

Bit 5 Append Complete (Asynchronous DMA mode)

This bit should be set by the host when the last addition is made to the append buffer.

Bit 4 Reserved – must be '0'.

Bit 3 Send Special Character(s) Çcommand

In Asynchronous mode, the sends a user-defined special character or special-character sequence. The special character is transmitted ahead of any data remaining in the FIFO.

Bits 2:0 Special Character Select

SSPC2	SSCP1	SSPC0	Function		
0	0	0	Reserved		
0	0	1	Send Special Character 1		
0	1	0	Send Special Character 2		
0	1	1	Send Special Character 3		
1	0	0	Send Special Character 4		
1	0	1	Reserved		
1	1	0	Reserved		
1	1	1	Reserved		

Note: The user should not use the send XON/XOFF commands if automatic in-band flow control is enabled (Asynchronous modes only) in COR5.

8.4.3 Channel Status Register (CSR)

This status register stores the current state of the channel. It can be read by the host at any time. The states of the RxEn and the TxEn bits are controlled by host CPU commands to the CCR.

HDLC Mode

Register Name: CSR Intel Hex Address: x'19
Register Description: Channel Status Motorola Hex Address: x'14

Default Value: x'00 Access: Byte Read/Write

Noode. Byte Node, who								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	RxEn	RxFlag	RxFrame	RxMark	TxEn	TxFlag	TxFrame	TxMark

Bit 7 Receiver Enable

0 = Receiver is disabled. 1 = Receiver is enabled.

Bit 6 Rx Flag

0 = Currently not receiving flag/SYN 1 = Currently receiving flag/SYN

Bit 5 Rx Frame

0 = Currently not receiving frame.1 = Currently receiving frame.

Bit 4 Rx Mark

0 = Currently not receiving continuous mark.1 = Currently receiving continuous mark.

Bit 3 Transmitter Enable

0 = Transmitter is disabled.1 = Transmitter is enabled.

Bit 2 Tx Flag

0 = Currently not transmitting flag.1 = Currently transmitting flag.

Bit 1 Tx Frame

0 = Currently not transmitting frame. 1 = Currently transmitting frame.

Bit 0 Tx Mark

0 = Currently not transmitting continuous ones.1 = Currently transmitting continuous ones.

Asynchronous Mode

Register Name: CSR Intel Hex Address: x'19 Register Description: Channel Status Motorola Hex Address: x'1A Default Value: x'00 Access: Byte Read/Write Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RxEn **RxFloff RxFlon** 0 TxEn TxFloff **TxFlon** 0

If the host determines that a flow control state is inappropriate, it can be cleared by enabling or disabling the transmitter or receiver by a CCR command.

Bit 7 Receiver Enable

0 = receiver disabled. 1 = receiver enabled.

Bit 6 Receive Flow Off

0 = normal

1 = The CD2431 has requested the remote to stop transmission (Send Xoff command given to the channel). This bit is reset when the CD2431 has requested the remote to restart transmission, the receiver is enabled or disabled, or the channel is reset.

Bit 5 Receive Flow On

0 = normal

1 = The CD2431 has requested the remote to restart character transmission (Send XON command has been given to the channel). This bit is reset when the next (non-flow control) character is received, the receiver is enabled or disabled, or the channel is reset.

Bit 4 Reserved — always returns '0' when read.

Bit 3 Transmitter Enable

0 = transmitter disabled 1 = transmitter enabled

Bit 2 Transmit Flow Off

0 = normal

1 = The CD2431 has been requested by the remote to stop transmission. This bit is reset when the CD2431 receives a request to resume transmission, the transmitter is enabled or disabled, or the channel is reset.

Bit 1 Transmit Flow On

0 = normal

1 = The CD2431 has been requested by the remote to resume transmission. This bit is reset once character transmission is resumed, the transmitter is enabled or disabled, or the channel is reset.

Bit 0 Reserved — always returns '0' when read.

Async-HDLC/PPP Mode

Register Name: CSR Intel Hex Address: x'19
Register Description: Channel Status Motorola Hex Address: x'14

Default Value: x'00 Access: Byte Read/Write

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RxEn	RxFloff	RFram	Ridle	TxEn	TxFloff	TFram	Tidle

Bit 7 Receiver Enabled Status

When set, the receiver is enabled. When clear, the receiver is disabled.

Bit 6 Receive Flow Off Status

When set, Xoff has been transmitted as commanded in the STCR. RxFloff indicates that the remote station has been requested to stop transmission. RxFloff remains set until the host issues an STCR command to send an Xon, or when the receiver is enabled or disabled, or the channel is reset.

When clear, the remote station is not requested to stop transmission. RxFloff remains set until the host issues an STCR command to send an Xon.

Bit 5 Receive Frame Status

When set, a frame is being received. When clear, no frame is being received.

Bit 4 Receiver Idle Status

When set, the receiver input is idle. When clear, the receiver input is not idle.

Notice that RFram and RIdle are mutually exclusive.

Bit 3 Transmitter Enabled Status

When set, the transmitter is enabled. When clear, the transmitter is disabled.

Bit 2 Transmit Flow Off Status

This bit has no meaning unless TxIBE in COR2 is set.

When set, an Xoff has been received, and the transmitter has stopped sending data. When clear, the transmitter is able to transmit if there are characters to send.

Bit 1 Transmit Frame Status

When set, a frame is being transmitted. When clear, no frame is being transmitted.

Bit 0 Transmitter Idle Status

When set, the transmitter output is idle. When clear, the transmitter output is not idle. Note that TFram and TIdle are mutually exclusive.

CD2431 — Advanced Multi-Protocol Communications Controller

SLIP/MNP 4 Mode

SLIP, MNP 4, and Automatic In-Band Flow Control modes are only available on Revision B and *Note:*

later devices.

Register Name: CSR Intel Hex Address: x'19 Register Description: Channel Status

Default Value: x'00

Motorola Hex Address: x'1A

Access: Byte Read/Write

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RxEn	0	RFram	Ridle	TxEn	0	TFram	Tidle

Bit 7 Receiver Enabled Status

> When set, the receiver is enabled. When clear, the receiver is disabled.

Bit 6 Reserved – must be '0'.

Bit 5 Receive Frame Status

> When set, a frame is being received. When clear, no frame is being received.

Bit 4 Receiver Idle Status

> When set, the receiver input is idle. When clear, the receiver input is not idle.

Note that RFram and RIdle are mutually exclusive.

Bit 3 Transmitter Enabled Status

When set, the transmitter is enabled. When clear, the transmitter is disabled.

Bit 2 Reserved – must be '0'.

Bit 1 **Transmit Frame Status**

> When set, a frame is being transmitted. When clear, no frame is being transmitted.

Transmitter Idle Status Bit 0

> When set, the transmitter output is idle. When clear, the transmitter output is not idle. Note that TFram and TIdle are mutually exclusive.

8.4.4 Modem Signal Value Registers (MSVR)

8.4.4.1 Modem Signal Value Register (MSVR-RTS)

Register Name: MSVR-RTS Register Description: Modem Signal Value - RTS Default Value: x'00 Access: Byte Read/Write							Address: x'DC Address: x'DE
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DSR CD CTS DTRop 0 0 DTR						DTR	RTS

8.4.4.2 Modem Signal Value Register (MSVR-DTR)

Register Name: MSVR-DTR Register Description: Modem Signal Value - DTR Default Value: x'00 Access: Byte Read/Write							Address: x'DD Address: x'DF
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DSR CD CTS DTRop 0 0 DTR R							RTS

Either of these registers is read to determine the current input levels on the input modem pins. Note that the pin definitions for these signals is negative true while the register values are positive-true. Two registers are provided for control of the outputs — DTR* and RTS*. Writing to the MSVR-DTR register affects only the DTR* pin. Writing to the MSVR-RTS register affects only the RTS* pin.

	This bit reflects the current state of DSR*.
Bit 6	Carrier Detect This bit reflects the current state of CD*.

Bit 5 Clear To Send
This bit reflects the current state of CTS*.

Data Set Ready

Bit 4 DTR Option (written by MSVR-DTR register)
0 = value of DTR bit is output on TXCOUT/DTR* pin
1 = Transmit clock is output on TXCOUT/DTR* pin

Note: If the transmit clock source is a 1× clock on the TXCIN pin, this signal cannot be driven on TXCOUT/DTR*.

Bit 3 Reserved – must be '0'.

Bit 7

Bit 2 Reserved – returns '0' when read; writing has no effect.

CD2431 — Advanced Multi-Protocol Communications Controller

Bit 1 Data Terminal Ready

This bit reflects the current state of DTR*.

Bit 0 Request To Send

This bit reflects the current state of RTS*.

8.5 Interrupt Registers

8.5.1 General Interrupt Registers

8.5.1.1 Local Interrupt Vector Register (LIVR)

Register Name: LIVR Register Description: Local Interrupt Vector Default Value: x'00 Access: Byte Read/Write							Address: x'0A Address: x'09
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Х	X X X X X Y 1T1						IT0

The host effectively controls bits 7:2; the device provides bits 1:0 within an interrupt acknowledge context.

The CD2431 has one Local Interrupt Vector register per channel, each with six host-defined bits. The host can opt to embed the channel number and the protocol in use on the channel in the channel vector. The CD2431 supplies two modified bits signifying the type of interrupt service required.

Bits 7:2 User-defined. These six bits can be used as the CD2431 device ID number.

Bits 1:0 Interrupt type. These two bits indicate the group/type of interrupt occurring.

IT[1:0]	Group/Type						
01	Group 1 — modem signal change interrupt/general timer interrupt.						
10	Group 2 — transmit data interrupt.						
11	Group 3 — receive data interrupt.						
00	Group 3 — eceive exception interrupt.						

Note that because the CD2431 provides a unique Local Interrupt Vector register for each channel, the host has the option to include the channel number within the interrupt vector.

8.5.1.2 Interrupt Enable Register (IER), Non-PPP Modes

Register Name: IER Intel Hex Address: x'12 Register Description: Interrupt Enable Motorola Hex Address: x'11 Default Value: x'00 Access: Byte Read/Write Bit 5 Bit 7 Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Mdm 0 RET 0 RxD**TIMER** TxMpty TxD

Bit 7 Modem Pin Change Detect Enable

This is the aster interrupt enable for modem change detect functions. The host can select which modem pins are monitored for input change and select either or both directions of change by programming the change detect option bits in COR4 and COR5. A Group1-type interrupt (see the LIVR description on the previous page) is generated from this enable.

Bit 6 Reserved – must be '0'.

Bit 5 RET (Async)

In Asynchronous mode, this bit enables a group 3 receive exception timeout interrupt when a receive data timeout occurs with an empty receive FIFO. This provides a mechanism for the host to manage a partially full receive buffer when receive data stops.

Bit 4 Reserved – must be '0'.

Bit 3 Rx data

The receive FIFO threshold has been reached in Interrupt Transfer mode, causing a Group 3 receive data interrupt. Any receive exception causes a Group 3 receive exception interrupt.

Bit 2 General Timer(s) Timeout Enable

In Synchronous mode, this bit enables a Group 1 interrupt when either timer reaches '0'.

Bit 1 Tx Mpty

Transmitter empty. If enabled, a Group 2 interrupt is generated when the channel is completely empty of transmit data.

Bit 0 Tx Data

Any transmit exception or transmit FIFO threshold reached in Interrupt Transfer mode. Group 2 interrupts are generated at the end of transmit DMA buffers or when the FIFO threshold is reached in Interrupt Transfer mode.

8.5.1.3 Interrupt Enable Register (IER), PPP Mode

Register Name: IER Register Description: Interrupt Enable Default Value: x'00 Access: Byte Read/Write							Address: x'12 Address: x'11
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mdm	Mdm 0 0 0 RxD TIMER TxMpty T						TxD

Bit 7 Modem Pin Change Detect

> Master interrupt enable for modem change detect functions. The host can select which modem pins are watched for input change and select either or both directions of change by programming the change detect option bits in COR4 and COR5. A group1 type interrupt (see LIVR description) is generated from this enable.

Bit 6:4 Reserved – must be '0'.

Bit 3 Rx data

> The receive FIFO threshold has been reached in Interrupt Transfer mode, causing a group 3 receive data interrupt. Any receive exception causes a group 3 receive exception interrupt.

Bit 2

General timer(s) timeout

In Synchronous mode, this bit enables a group 1 interrupt when either timer reaches

Bit 1 Transmitter empty

If enabled, a group 2 interrupt is generated when the channel is completely empty of

transmit data.

Bit 0 Tx Data

> Any transmit exception or transmit FIFO threshold reached in Interrupt Transfer mode. Group 2 interrupts are generated at the end of transmit DMA buffers or when

the FIFO threshold is reached in Interrupt Transfer mode.

8.5.1.4 **Local Interrupting Channel Register (LICR)**

Register Name: LICR Register Description: Local Interrupting Channel Default Value: C1:C0 contain channel number Access: Byte Read/Write							Address: x'25 Address: x'26	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Х	Х	Х	Х	C1	C0	Х	Х

These per-channel registers are initialized with each channel number. The locations are RAM registers and can be used for any purpose.

Bits 7:4 User-defined

Bits 3:2 Defines the interrupting channel number

C1	CO	Channel Number			
0	0	Channel 0			
0	1	Channel 1			
1	0	Channel 2			
1	1	Channel 3			

Bits 1:0 User-defined

8.5.1.5 Interrupt Stack Register (STK)

Register Name: STK Register Description: Interrupt Stack Default Value: x'00 Access: Byte Read only							Address: x'E0 Address: x'E2
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLvl [1] MLvl [1] TLvl [1] 0 0 TLvl [0] MLvl [0] CLvl [0]							CLvl [0]

This register is a 4-bit-deep by 2-bit-wide stack that contains the internal interrupt nesting history. The stack is pushed from bits 7 and 0 toward the center during an interrupt acknowledge cycle, and popped from the center during a write to an end of interrupt register.

Bits 7, 0 CLvl [1:0] These bits provide the currently active interrupt level.

CLvI [1]	CLvI [0]	
0	0	No interrupt active; CAR provides the current channel number
0	1	Currently in a modem interrupt service, MIR provides the
		current channel number.
1	0	Currently in a transmit interrupt service, TIR provides the
		current channel number.
1	1	Currently in a receive interrupt service, RIR provides the
		current channel number.

Bits 6, 1 MLvl [1:0]These bits hold a previously active interrupt now nested.

Bits 5, 2 TLvl [1:0]These bits hold the oldest interrupt now nested 2 bits deep.

8.5.2 Receive Interrupt Registers

8.5.2.1 Receive Priority Interrupt Level Register (RPILR)

Register Name: RPILR Register Description: Receive Priority Interrupt Match Default Value: x'00 Access: Byte Read/Write							Address: x'E3 Address: x'E1
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		U	lser-assigned pr	iority match valu	e		

This register must be initialized by the host to contain the codes that are presented on the address bus by the host system to indicate which of the three CD2431 interrupt types (modem, transmit, or receive) is being acknowledged when IACKIN* is asserted. The CD2431 compares bits 0–6 in this register with A[0–6] to determine if the acknowledge level is correct. The value programmed in the MSB of the register has no effect on the IACK cycle.

RPILR must contain the code used to acknowledge receive interrupts.

Note:

Bit 7 of this register always reads back as '0'. When each of the three Priority Interrupt Level registers is programmed with the same value, they are internally prioritized, with receive as the highest priority, followed by transmit and modem.

8.5.2.2 Receive Interrupt Register (RIR)

Register Name: RIR Register Description: Receive Interrupt Default Value: x'00 Access: Byte Read only						Address: x'EF Address: x'ED	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Ren	Ract	Reoi	0	Rvct [1]	Rvct [0]	Rcn [1]	Rcn [0]

Bit 7 Receive Enable

This bit is set by the CD2431 to initiate a receive interrupt request sequence. It is cleared during a valid receive interrupt acknowledge cycle.

Bit 6 Receive Active

This bit is set automatically when Ren is set, and the Fair Share logic allows the assertion of a receive interrupt request. It is cleared when the host CPU writes to the Receive End of Interrupt register.

Bit 5 Receive End of Interrupt

This bit is set automatically when the host CPU writes to the Receive End of Interrupt register while in a receive interrupt routine.

Ren	Ract	Reoi	Sequence of Events
0	0	0	Idle.
1	0	0	Receive interrupt requested, but not asserted.
1	1	0	Receive interrupt asserted.
0	1	0	Receive interrupt acknowledged.
0	0	1	Receive interrupt service routine completed.

Bit 4 Reserved – always returns '0' when read.

Bits 3:2 Receive Vector [1:0]

These bits are set by the CD2431 to provide the lower two bits of the vector supplied to the host CPU during an interrupt acknowledge cycle.

The receive good data vector is decoded as follows: Rvct [1] = 1, and Rvct [0] = 1. The receive exception vector is decoded as follows: Rvct [1] = 0, and Rvct [0] = 0.

Bits 1:0 Receive Channel Number [1:0]

These bits are set by the CD2431 to indicate the channel requiring receive interrupt service.

8.5.2.3 Receive Interrupt Status Register (RISR)

Register Nan Register Des Default Value Access: Wo	cription: Receive: x'00		Address: x'8A Address: x'88						
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
	RISR High								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
			RISF	R Low					

This register reports the status of the channel during the receive interrupt service. It is a 16-bit register, with the lower byte displaying current receive character oriented status while the upper byte displays current DMA interrupt status. The upper byte is not used if DMA mode is not active.

RISRI — HDLC Mode

Register Name: RISRI Register Description: Receive Interrupt Status — low Default Value: x'00 Access: Byte Read only							Address: x'8A Address: x'89
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1						Bit 0
0 EOF RxAbt CRC OE Resind 0 Cirl							

If RxData in IER is set, these interrupts are enabled.

Bit 7 Reserved – always returns '0' when read.

Bit 6 End of Frame

This bit indicates that a valid end of frame was received, and a data frame is essentially complete.

Bit 5 Receive Abort

This bit indicates that an abort sequence terminating the frame was received.

Bit 4 CRC error on current frame.

Bit 3 Overrun Error

This bit indicates that new data has arrived, but the CD2431 FIFO or holding registers are full. The new data is lost, and the overrun indication is flagged on the last character received before the overrun occurred. In HDLC and Bisync modes, the remainder of a frame, following an overrun, is discarded.

Bit 2 Residual Indication

This bit indicates that the last character of the frame was a partial character.

Bit 1 Reserved – always returns '0' when read.

Bit 0 Clear Detect

This bit indicates an X.21 data transfer phase clear signal has been detected. This is defined as two consecutive all-zero receive characters with the CTS* pin high. Clear Detect mode is enabled by COR1.

During an interrupt service routine, the host can use this register to provide a timer value as detailed in the Receive End of Interrupt register. The host can only load one of the two timers in the interrupt service routine.

RISRI — Asynchronous Mode

Register Name: RISRI Register Description: Receive Interrupt Status — Low Default Value: x'00 Access: Byte Read only							Address: x'8A Address: x'89
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Timeout SCdet2 SCdet1 SCdet0 OE PE FE Break							

If RxData in IER is set, these interrupts are enabled.

Bit 7 Timeout

This bit indicates that the receive FIFO is empty, and no data has been received within the receive timeout period. There is no data character associated with this status, and no other status bits are valid if the timeout bit is set.

Bits 6:4 Special Character Detect

SCdet[2:0]	Status
000	None detected
001	Special Character 1 matched
010	Special Character 2 matched
011	Special Character 3 matched (only if ESCDE is enabled in COR3)
100	Special Character 4 matched (only if ESCDE is enabled in COR3)
111	Character is within the inclusive range of the characters in the Special Character Range low and high registers (only if RngDE is enabled in COR3).
Special character match	can be enabled for error characters by COR7.

Bit 3 Overrun Error

This bit iindicates that new data has arrived, but the CD2431 FIFO or holding registers are full. The new data is lost and the overrun indication is flagged on the last character received before the overrun occurred.

Bit 2 Parity Error

This bit indicates that a parity error has occurred.

Bit 1 Framing Error

This bit indicates that a bad Stop bit was detected.

Bit 0 Break

This bit iindicates that a break was detected.

RISRI — Async-HDLC / PPP / MNP 4 Mode

Register Name: RISRI Intel Hex Address: x'8A Register Description: Receive Interrupt Status — Low Motorola Hex Address: x'89 Default Value: x'00 Access: Byte Read only Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 **EOF** RxAbt CRC OE FΕ 0 Break

If RxData in IER is set, these interrupts are enabled.

Bit 7 Reserved – always returns '0' when read.

Bit 6 End of Frame

The EOF bit indicates that a valid end of frame (7E) character has been received, and the 7E was not preceded by a 7D.

Bit 5 Receive Abort

The RxAbt bit indicates that an abort sequence (7D–7E) has been received.

Bit 4 Receive CRC Error

(The terms CRC and FCS are used interchangeably in this document.)

The CRC bit indicates that a frame with a valid end of frame has been received, but

the FCS was not correct. CRC is set only if EOF is set.

Bit 3 Overrun Error

The OE bit indicates that the receiver buffer and FIFO have been overrun. At least one new character has been received, but lost since there was no room available in

the receiver buffer and/or FIFO.

Bit 2 Framing Error

The FE bit indicates that a character has been received with an incorrect Stop bit. The

stop bit was '0'; it should have been '1'.

Bit 1 Reserved – always returns '0' when read.

Bit 0 BREAK Detection

The Break bit indicates that a break has been received. A break is a continuous

sequence of at least ten '0' bits.

Note: 0E, FE, and BREAK are cumulative over the entire packet in PPP mode. This means that the

respective error occurred somewhere in the packet, but did not cause an immediate interrupt.

The table below defines the encoding of RxABT and FE for an aborted receive frame:

RxABT	FE	Error			
0	0	None			
0	1	Not used			
1	0	Received aboft sequence: x'7D, x"7E			
1	1	Framing error caused a frame abort			

SLIP Mode

Register Name: RISRI Register Description: Receive Interrupt Status — Low Default Value: x'00 Access: Byte Read only							Address: x'8A Address: x'89
Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1						Bit 0
0 EOF RxAbt 0 OE FE 0 Bre							

If RxData in IER is set, these interrupts are enabled.

Bit 7 Reserved – always returns '0' when read.

Bit 6 End of Frame

The EOF bit indicates that a valid end of frame (7E) character has been received, and

the 7E was not preceded by a 7D.

Bit 5 Receive Abort

The RxAbt bit indicates that an abort sequence (7D–7E) has been received.

Bit 4 Reserved – always returns '0' when read.

Bit 3 Overrun Error

The OE bit indicates that the receiver buffer and FIFO have been overrun. At least one new character has been received, but lost since there was no room available in

the receiver buffer and/or FIFO.

Bit 2 Framing Error

The FE bit indicates that a character has been received with an incorrect Stop bit. The Stop bit was '0'; it should have been '1'.

Bit 1 Reserved – always returns '0' when read.

Bit 0 BREAK Detection

The Break bit indicates that a break has been received. A break is a continuous

sequence of at least ten '0' bits.

Note: 0E, FE, and break are cumulative over the entire packet in PPP mode. This means that the respective error occurred somewhere in the packet, but did not cause an immediate interrupt.

Receive Interrupt Status Register — High (RISRh) 8.5.2.4

Register Name: RISRh Intel Hex Address: x'8B Register Description: Receive Interrupt Status — High Motorola Hex Address: x'88 Default Value: x'00 Access: Byte Read only Bit 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 0 Berr **EOF EOB** 0 BA/BB 0 0 0

This register is used in DMA mode only.

Bit 7 Bus Error (written by CD2431)

0 = no bus error

1 = bus error was detected on the last transfer

The actual address at which the error occurred is available in the Receive Current Buffer Address register. In response to a bus error status, the host has two possible options:

1)Retry from the next position in the buffer.

2) Terminate this buffer by setting TermBuff bit (REOIR[7]) and move onto the next.

Bit 6 End of Frame

Reception of a data frame is complete (Sync DMA mode only).

Bit 5 End of Buffer

The end of a receive buffer was reached (used only for DMA supported transmis-

sion). The end of one of the host-supplied receive buffers was reached.

Bit 4 Reserved – always returns '0' when read.

Bit 3 Status during buffer A or buffer B data transfer.

> 0 =buffer A 1 = buffer B

Bits 2:0 Reserved – always returns '0' when read.

8.5.2.5 Receive FIFO Output Count Register (RFOC)

Register Name: RFOC Intel Hex Address: x'33 Register Description: Receive FIFO Output Count Motorola Hex Address: x'30 Default Value: x'00 Access: Byte Read only Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 RxCt4 RxCt3 RxCt2 RxCt1 RxCt0

Bits 7:5 Reserved – always returns '0' when read.

Advanced Multi-Protocol Communications Controller — CD2431

Bits 4:0 Receive Data Count [4:0]

If the receive channel is interrupt driven, a non-zero value in this bit field is the number of data characters available for transfer within the current receive interrupt.

8.5.2.6 Receive Data Register (RDR)

Register Name: RDR Register Description: Receive Data Default Value: x'00 Access: Byte Read only							Address: x'F8 Address: x'F8
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7 D6 D5 D4 D3 D2 D1 D0							D0

This Virtual register accesses the receive data FIFO of a channel interrupting for receive data transfer. This register address is used for all channels to transfer receive FIFO data to the host (if programmed in Interrupt Transfer mode). Data must be read as bytes, and follows the rules listed in Section 8.3 for the positioning of valid data on the bus. If the BYTESWAP pin is high, data is valid on A/D[7:0], if BYTESWAP is low, data is valid on A/D[15:8]. This is true because the RDR is on an even address.

8.5.2.7 Receive End of Interrupt Register (REOIR)

Asynchronous and HDLC Modes

Register Des Default Value	Register Name: REOIR Register Description: Receive End of Interrupt Default Value: x'00 Access: Byte Write only						Address: x'87 Address: x'84
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TermBuff DiscExc SetTm2 SetTm1 NoTrans Gap2 Gap1 Gap0							

The CD2431 interprets values written to this register at the completion of all receive interrupts.

Bit 7 Terminate Current DMA Buffer

If this bit is set, the current receive buffer is terminated and data transfer is switched to the other buffer. This bit should only be set in response to an Async Exception interrupt. If the buffer is terminated in response to an exception character (that is, parity error) interrupt and the discard exception character bit is not set, the exception character is written at the start of the next buffer.

Before writing the terminate buffer command to REOIR, a new buffer descriptor can be written to the current buffer.

Bit 6 Discard Exception Character (DMA mode only)

When this bit is set in response to an async exception interrupt, the exception character is not transferred to memory.

CD2431 — Advanced Multi-Protocol Communications Controller

Bit 5 Set General Timer 2 in Synchronous modes

0 = do not set general timer

1 = load the value, to general timer 2, provided in RISRI.

Bit 4 Set General Timer 1 in Synchronous modes

0 = do not set general timer 1

1 = load the value provided in RISR1 to the high byte of general timer 1.

At the end of an interrupt service routine, the user can set a timer by setting a timer value in the Receive Interrupt Status register. When the timer reaches '0', the CD2431 generates a modem/timer group interrupt to the host.

Bit 3 No Transfer of Data

This bit must be set by the host, if no data is transferred from the receive FIFO during

a receive interrupt.

Bits 2:0 Gap2, Gap1, Gap0

These bits set the size of the optional gaps to be left in DMA buffer (starting at the current location) before resuming data transfer. The CD2431 moves forward its buffer address pointer to the selected number of bytes. It does not write to any location 'in the gap'. If the gap is large enough to complete, or extend beyond the end of the current buffer, it is complete, and the gap continues in the other receive buffer. If the discard exception character is not selected, the character where the exception occurred is written to the buffer following the gap.

Async-HDLC / PPP / SLIP / MNP 4 Mode

Register Name: REOIR Register Description: Receive End of Interrupt Default Value: x'00 Access: Byte Write only							Address: x'87 Address: x'84
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TermBuff	DiscExc	SetTm2	SetTm1	NoTrans	0	0	0

The CD2431 interprets values written to this register at the completion of all receive interrupts.

Bit 7 Terminate Current DMA Buffer

If this bit is set, the current receive buffer is terminated and data transfer is switched to the other buffer. This bit should only be set in response to an async exception interrupt. If the buffer is terminated in response to an exception character (that is, parity error) interrupt and the discard exception character bit is not set, the exception character is written at the start of the next buffer.

acter is written at the start of the next burier.

Before writing the terminate buffer command to REOIR, a new buffer descriptor can be written to the current buffer.

Bit 6 Discard Exception Character (DMA mode only)

When this bit is set in response to an async exception interrupt, the exception character is not transferred to memory.

Advanced Multi-Protocol Communications Controller — CD2431

Bit 5 Set General Timer 2 in Synchronous modes

0 = do not set general timer

1 = load the value, to general timer 2, provided in RISRI.

Bit 4 Set General Timer 1 in Synchronous modes

0 = do not set general timer 1

1 = load the value, to the high byte of general timer 1, provided in RISR1.

At the end of an interrupt service routine, the user can set a timer by setting a timer value in the Receive Interrupt Status register. When the timer reaches '0', the

CD2431 generates a modem/timer group interrupt to the host.

Bit 3 No Transfer of Data

This bit must be set by the host, if no data is transferred from the receive FIFO during

a receive interrupt.

Bits 2:0 Reserved – always returns '0' when read.

8.5.3 **Transmit Interrupt Registers**

8.5.3.1 Transmit Priority Interrupt Level Register (TPILR)

Register Des Default Value	Register Name: TPILR Register Description: Transmit Priority Interrupt Match Default Value: x'00 Access: Byte Read/Write						x Address: x'E2 x Address: x'E0	
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Bit 0	
	User-assigned priority match value							

This register must be initialized by the host to contain the codes that are presented on the address bus by the host system to indicate which of the three CD2431 interrupt types (modem, transmit, or receive) is being acknowledged when IACKIN* is asserted. The CD2431 compares bits 0-6 in this register with A[0-6] to determine if the acknowledge level is correct. The value programmed in the MSB of this register has no effect on the IACK cycle.

The TPILR must contain the code used to acknowledge transmit interrupts.

Bit 7 of this register is always read back as '0'. When each of the three Priority Interrupt Level registers are programmed with the same value, they are internally prioritized, with receive as the highest priority, followed by transmit and modem.

8.5.3.2 Transmit Interrupt Register (TIR)

Register Name: TIR
Register Description: Transmit Interrupt
Default Value: None, value varies
Access: Byte Read only

Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Ten	Tact	Teoi	0	Tvct [1]	Tvct [0]	Tcn [1]	Tcn [0]

Bit 7 Transmit Enable

This bit is set by the CD2431 to initiate a transmit interrupt request sequence. It is cleared during a valid transmit interrupt acknowledge cycle.

Bit 6 Transmit Active

This bit is set automatically when Ten is set, and the Fair Share logic allows the assertion of a transmit interrupt request. It is cleared when the host CPU writes to the Transmit End of Interrupt register.

Bit 5 Transmit End of Interrupt

This bit is set automatically when the host CPU writes to the Transmit End of Interrupt register while in a transmit interrupt routine.

Ten	Tact	Teoi	Sequence of Events
0	0	0	Idle
1	0	0	Transmit interrupt requested, but not asserted
1	1	0	Transmit interrupt asserted
0	1	0	Transmit interrupt acknowledged
0	0	1	Transmit interrupt service routine completed

Bit 4 Reserved – always returns '0' when read.

Bits 3:2 Transmit Vector [1:0]

These bits are set by the CD2431 to provide the lower two bits of the vector supplied to the host CPU during an interrupt acknowledge cycle. Transmit vector is decoded as follows: Tvct [1] = 1, and Tvct [0] = 0.

Bit 1:0 Transmit Channel Number [1:0]

These bits are set by the CD2431 to indicate the channel requiring transmit interrupt service.

8.5.3.3 Transmit Interrupt Status Register (TISR)

Register Name: TISR Register Description: Transmit Interrupt Status Default Value: x'00 Access: Byte Read only							Address: x'89 Address: x'8A
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Berr	EOF	ЕОВ	UE	BA/BB	0	TxEmpty	TxDat

When the host receives a transmit interrupt, the following status is provided in this register:

Bit 7 Bus Error (written by the CD2431)

0 = no bus error

1 = bus error detected on the last transfer

Bit 6 Transmit End of Frame Indication in DMA mode

This interrupt occurs when the final data character of a transmit frame is transferred

to the transmit FIFO.

Bit 5 Transmit End of Buffer Indication in DMA mode

Bit 4 Transmit underrun error (HDLC only), otherwise '0' (Async, PPP, SLIP, and MNP

4).

Bit 3 BA/BB – Applicable buffer for the register interrupt

0 = transmit buffer A 1 = transmit buffer B

Bit 2 Reserved – always returns '0' when read.

Bit 1 Transmitter Empty

All characters were completely transmitted, and the serial output is idle.

Bit 0 Transmit Data

This bit indicates that the number of characters in the FIFO is below the threshold.

8.5.3.4 Transmit FIFO Transfer Count Register (TFTC)

Register Nan Register Des Default Value Access: Byte	cription: Transme: x'00	nit FIFO Transfer	· Count				Address: x'83 Address: x'80
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	TxCt4	TxCt3	TxCt2	TxCt1	TxCt0

Bits 7:5 Reserved – always returns '0' when read.

CD2431 — Advanced Multi-Protocol Communications Controller

Bits 4:0 Transmit Data Count [4:0]

If the Transmit channel is interrupt driven, a non-zero value is a request for data. These bits give the number of spaces available in the transmit FIFO.

8.5.3.5 Transmit Data Register (TDR)

Register Nan Register Des Default Value Access: Byte	cription: Transme: x'00	nit Data					Address: x'F8 Address: x'F8
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

This register accesses the transmit data FIFO of a channel, interrupting for transmit data transfer. This register address is used for all channels to transfer transmit FIFO data to the host, if programmed in Interrupt Transfer mode. Data must be written as bytes, and follows the rules listed in Section 7.4 for positioning valid data on the bus. If the BYTESWAP pin is high, data must be valid on A/D[7:0]; if BYTESWAP is low, data must be valid on A/D[15:8] because the TDR is on an even address.

8.5.3.6 Transmit End of Interrupt Register (TEOIR)

Register Nan Register Des Default Value Access: Byte	cription: Transn e: x'00	nit End of Interru	pt				Address: x'86 Address: x'85
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TermBuff	EOF	SetTm2	SetTm1	Notrans	0	0	0

The Transmit End of Interrupt register must be written to by the corresponding host interrupt service routine to signal to the CD2431 that the current interrupt service is concluded. This must be the last access to the CD2431 during an interrupt service routine. Writing to this register generates an internal end of interrupt signal which pops the CD2431 interrupt context stack.

Depending on the circumstances of an individual interrupt service, the host can be required to pass a parameter to the CD2431 through these registers.

Bit 7 1 = Terminate buffer in DMA mode forces the current buffer to be discarded.

Note: If current interrupt is a transmit end-of-buffer interrupt, setting this bit at the end of the service routine causes the next buffer to be terminated also.

Bit 6 End of Frame in Synchronous modes using interrupt-driven data transfer

0 = this data transfer does not complete the frame/block. 1 = this data transfer does complete the frame/block.

Advanced Multi-Protocol Communications Controller — CD2431

Bit 5 Set General Timer 2 in Synchronous modes

0 = do not set general timer 2.

1 = load the value, provided in TISR, to general timer 2.

Bit 4 Set general timer 1 in Synchronous modes

0 = do not set general timer 1.

1 = load the value, provided in TISR, to the high byte of general timer 1.

At the end of an interrupt service routine, the user can set a timer by setting a timer value in the Transmit Interrupt Status register. When the timer reaches '0', the

CD2431 generates a modem/timer group interrupt to the host.

Bit 3 No Transfer of Data

This bit must be set by the host if no data is transferred to the transmit FIFO during

a data transfer interrupt.

Bits 2:0 Reserved – must be '0'.

8.5.4 **Modem Interrupt Registers**

8.5.4.1 Modem Priority Interrupt Level Register (MPILR)

Register Name: MPILR Register Description: Modem Priority Interrupt Match Default Value: x'00 Access: Byte Read/Write							Address: x'E1 Address: x'E3
Bit 7	Bit 6	Bit 2	Bit 1	Bit 0			
User-assigned priority match value							

This register must be initialized by the host to contain the codes that are presented on the address bus by the host system to indicate which of the three CD2431 interrupt types (modern, transmit, or receive) is being acknowledged when IACKIN* is asserted. The CD2431 compares bits 0-6 in this register with A[6:0] to determine if the acknowledge level is correct. The value programmed in the MSB of the register has no effect on the IACK cycle.

The MPILR must contain the code used to acknowledge modem/timer interrupts.

Bit 7 of this register always reads back as '0'. When each of the three Priority Interrupt Level registers is programmed with the same value, they are internally prioritized, with receive as the highest priority, followed by transmit and modem.

8.5.4.2 Modem Interrupt Register (MIR)

Register Name: MIR
Register Description: Modem Interrupt
Intel Hex Address: x'ED
Motorola Hex Address: x'EF

Default Value: x'00
Access: Byte Read on

Access: Byte Read only							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Men	Mact	Meo	0	Mvct [1]	Mvct [0]	Mcn [1]	Mcn [0]

Bit 7 Modem Enable

This bit is set by the CD2431 to initiate a modem interrupt request sequence. It is cleared during a valid modem interrupt acknowledge cycle.

Bit 6 Modem Active

This bit is set automatically when Mer is set, and the Fair Share logic allows the assertion of a modem interrupt request. This bit is cleared when the host CPU writes to the Modem End of Interrupt register.

Bit 5 Modem End of Interrupt

This bit is set automatically when the host CPU writes to the Modem End of Interrupt register while in a modem interrupt routine.

Mer	Mact	Meo	Sequence of Events
0	0	0	Idle
1	0	0	Modem interrupt requested, but not asserted
1	1	0	Modem interrupt asserted
0	1	0	Modem interrupt acknowledged
0	0	1	Modem interrupt service routine completed

Bit 4 Reserved – always returns '0' when read.

Bits 3:2 Modem Vector [1:0]

These bits are set by the CD2431 to provide the lower two bits of the vector supplied to the host CPU during an interrupt acknowledge cycle. Modem vector is decoded as follows: Mvct [1] = 0, and Mvct [0] = 1.

Bit 1:0 Modem Channel Number [1:0]

These bits are set by the CD2431 to indicate the channel requiring modem interrupt service.

8.5.4.3 Modem (/Timer) Interrupt Status Register (MISR)

Register Name: MISR Register Description: Modem Interrupt Status Default Value: x'00 Access: Byte Read/Write							Address: x'88 Address: x'8B
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DSRChg	CDChg	CTSChg	0	0	0	Timer2	Timer1

When the host receives a modem interrupt, the following status is provided in this register:

Bit 7 DSR Changed

1 = a change was detected on the DSR* input. The change detect is programmed in

COR4 and COR5.

Bit 6 CD Changed

1 = a change was detected on the CD* input. The change detect is programmed in

COR4 and COR5.

Bit 5 CTS Changed

1 = a change was detected on the CTS* input. The change detect is programmed in

COR4 and COR5.

Bits 4:2 Unused; returns '0' when read.

Bit 1 General Timer 2 Timed Out

The count reached '0' before being reset or disabled.

Bit 0 General Timer 1 Timed Out

The count reached '0' before being reset or disabled.

During an interrupt service routine, the host can use this register to provide a binary timer value to one of the timers (Sync modes only), as detailed in the Modem End of Interrupt register. The host can only load one of the two timers in each interrupt service routine.

8.5.4.4 Modem End of Interrupt Register (MEOIR)

Register Name: MEOIR Register Description: Modem End of Interrupt Default Value: x'00 Access: Byte Write only							Address: x'85 Address: x'86			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 2 Bit 1 Bit 0				
0	0	SetTm2	SetTm1	0	0	0	0			

Bits 7:6 Reserved – always returns '0' when read.

CD2431 — Advanced Multi-Protocol Communications Controller

Bit 5 Set General Timer 2 (Synchronous modes)

0 = do not set general timer 2.

1 = load the value, provided in MISR, to general timer 2.

Bit 4 Set General Timer 1 (Synchronous modes)

0 =do not set general timer 1.

1 = load the value, provided in MISR, to the high byte of general timer 1.

At the end of an interrupt service routine, the user can set the timer by setting a timer value in the Modem Interrupt Status register. When the timer reaches '0', the CD2431 generates a modem/timer group interrupt to the host.

Bits 3:0 Reserved – always returns '0' when read.

8.6 DMA Registers

8.6.1 DMA Mode Register (DMR)

Register Nan Register Des Default Value Access: Byte	cription: DMA Me: x'00			Address: x'F4 Address: x'F6			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EnSync	0	0	0	ByteDMA	0	0	0

This register is write only. No misoperation occurs if the register is read, but the read value is not consistent.

Bits 7 Internal DTACK* Synchronization Enable

If external synchronization of DTACK* with BUSCLK is not provided, an internal synchronization can be enabled by setting this bit (Revision D and later)

synchronization can be enabled by setting this bit (Revision D and later).

Bits 6:4 Reserved – always returns '0' when read.

Bit 3 Byte DMA

0 = The CD2431 attempts to perform 16-bit data transfers whenever possible, and 8-bit data transfers only when necessary (when only one byte is available or there are odd address boundaries).

1 =The CD2431 always performs 8-bit DMA transfers, the position of the data on the bus still follows the normal rules relating to the BYTESWAP pin.

Bits 2:0 Reserved – always returns '0' when read.

8.6.1.1 Bus Error Retry Count (BERCNT)

			Address: x'8D Address: x'8E						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Binary value									

When this register is programmed to '0', any bus error causes a receive/transmit interrupt to be generated and DMA operations suspended to the buffer in error, until the interrupt is processed by the host CPU.

When this register contains a non-zero value and a bus error occurs, the CD2431 retries the same DMA operation and decrements the register value by one. When the value reaches zero, the next bus error causes an interrupt, at that time a new count can be loaded by the host CPU.

8.6.1.2 DMA Buffer Status Register (DMABSTS)

Register Name: DMABSTS Register Description: DMA Buffer Status Default Value: x'00 Access: Byte Read only							Address: x'1A Address: x'19
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TDAlign	RstApd	CrtBuf	Append	Ntbuf	Tbusy	Nrbuf	Rbusy

When the CD2431 requires an external buffer for DMA transfers, it checks Ntbuf/Nrbuf bits to decide which buffer to use. Once the CD2431 starts using the buffer, it toggles Ntbuf/Nrbuf bits, and sets Tbusy/Rbusy bits. At system initialization, Ntbuf and Nrbuf bits are set to buffer A.

Bit 7	Transmit Data Align This status bit is used internally to manage data alignment in the transmit FIFO.
Bit 6	Reset Append Mode This bit is set after the terminate append buffer command in STCR is recognized, and is cleared after the remaining data is flushed from the buffer.
Bit 5	Current Transmit Buffer This bit is used internally to mark the actual buffer in use.
Bit 4	Append (only buffer A can be used as an append buffer) This bit is the transmit append buffer usage indicator. 0 = append buffer is not in use.

Datasheet 147

1 =append buffer is in use.

CD2431 — Advanced Multi-Protocol Communications Controller

Bit 3 Next Transmit Buffer

0 = buffer A is the next transmit buffer. 1 = buffer B is the next transmit buffer.

This bit is toggled when transmission starts from a buffer (that is, when data is first read from buffer A). This bit is set to indicate that buffer B is next.

Bit 2 Current Transmit Buffer Busy

0 =No buffer is in use.

1 = Current transmit buffer is in use.

Bit 1 Next Receive Buffer

0 = buffer A is the next receive buffer. 1 = buffer B is the next receive buffer.

This bit is toggled when receive data is first written to a buffer (that is, when data is first written to buffer A). This bit is set to indicate that buffer B is next.

Bit 0 Current Receive Buffer Busy

0 =No buffer is in use.

1 = Current receive buffer is in use.

8.6.2 DMA Receive Registers

8.6.2.1 A Receive Buffer Address Lower (ARBADRL)

Register Des Default Valu	ne: ARBADRL scription: Receiv e: x'0000 rd Read/Write	Intel Hex Address: x'40 Motorola Hex Address: x'42					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Binary	address value, 3	32-bit address, b	its 15:8		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1	Binary	address value,	32-bit address, b	oits 7:0	1	

8.6.2.2 A Receive Buffer Address Upper (ARBADRU)

Register Des Default Value	me: ARBADRU scription: Receive e: x'0000 rd Read/Write	Intel Hex Address: x'42 Motorola Hex Address: x'40					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Binary a	address value, 3	2-bit address, bit	ts 23:16		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6			2-bit address, bit		Bit 1	Bit

8.6.2.3 B Receive Buffer Address Lower (BRBADRL)

Register Des Default Value	ne: BRBADRL cription: Receiv e: x'0000 rd Read/Write	Intel Hex Address: x'44 Motorola Hex Address: x'46								
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8										
	Binary address value, 32-bit address, bits 15:8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Binary	address value,	32-bit address, t	oits 7:0					

8.6.2.4 B Receive Buffer Address Upper (BRBADRU)

Register Des Default Valu	me: BRBADRU scription: Receiv e: x'0000 rd Read/Write	Intel Hex Address: x'46 Motorola Hex Address: x'44								
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8										
	Binary address value, 32-bit address, bits 23:16									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Binary a	address value, 3	2-bit address, bi	ts 31:24					

CD2431 — Advanced Multi-Protocol Communications Controller

This register contains the start addresses of two external buffers that are used by the CD2431 to store the next two receive data blocks. This register is written to by the host and copied internally to control the data transfer to the memory.

8.6.2.5 A Buffer Receive Byte Count Register (ARBCNT)

Register Des Default Value	ne: ARBCNT cription: Receiv e: x'0000 rd Read/Write	Intel Hex Address: x'48 Motorola Hex Address: x'4A								
Bit 15	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8									
	Binary count value, 16-bit count, bits 15:8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Binary count value, 16-bit count, bits 7:0									

8.6.2.6 B Buffer Receive Byte Count Register (BRBCNT)

Register Des Default Value	ne: BRBCNT cription: Receive e: x'0000 rd Read/Write	e Buffer 'B' Byte	Count				Address: x'4A Address: x'48		
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8									
		Bina	ry count value, 1	6-bit count, bits	15:8				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		Bina	ary count value,	16-bit count, bits	s 7:0				

These registers contain the number of bytes stored in the external data buffers by the CD2431. The count is updated after a block of data is moved to memory and the buffer is terminated. As initially written by the host, the register contains the number of bytes that the buffer can hold.

A Receive Buffer Status Register (ARBSTS)

				Address: x'4C Address: x'4F				
Bit 7	it 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1							
Berr EOF EOB 0 0 0							2431own	

8.6.2.7 B Receive Buffer Status Register (BRBSTS)

				Address: x'4D Address: x'4E				
Bit 7	7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1							
Berr EOF EOB 0 0 0						0	2431own	

These registers contain the current status of associated receive buffers and enable the buffers to be passed between the host and CD2431. Status bits are defined as follows:

Bit 7 Bus Error (set by the CD2431 and cleared by the host CPU)

0 = no bus error

1 = bus error occurred on the last transfer; the suspect address is available in

RCBADR.

Bit 6 End of Frame (set by the CD2431 and cleared by the host CPU)

0 =this buffer does not terminate a frame.

1 = this buffer terminates a frame.

Bit 5 Buffer Complete (set by the CD2431 and cleared by the host CPU)

0 = buffer not complete. 1 = buffer complete.

Bits 4:1 Reserved – must be '0'.

Bit 0 Ownership of the Transfer Buffer (set by the host CPU and cleared by the CD2431)

0 = buffer not free to be used by CD2431. 1 = buffer free to be used by CD2431.

When the Buffer Complete bit is set by the CD2431, the buffer is free for the host to process. (RBCNT information is updated to the number of bytes available in the buffer, and a new buffer can be allocated.)

8.6.2.8 Receive Current Buffer Address — Lower (RCBADRL)

Register Des Default Value	ne: RCBADRL scription: Current e: x'0000 rd Read Only	Intel Hex Address: x'3 Motorola Hex Address: x'3								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			
	Binary address value, 32-bit address, bits 15:8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Binary	address value,	32-bit address, I	oits 7:0					

8.6.2.9 Receive Current Buffer Address — Upper (RCBADRU)

Register Des Default Value	me: RCBADRU scription: Current e: x'0000 rd Read Only	Intel Hex Address: x'3E Motorola Hex Address: x'3C					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Binary a	address value, 3	2-bit address, bi	ts 31:24		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Binary a	address value, 3	2-bit address, bi	ts 23:16	•	•

These registers contain the address of the current DMA buffer being used for receive data, updated at the end of receive data transfers. These registers are only for the CD2431 to use for managing DMA transfers. In Asynchronous mode, the host can read this register during a receive exception interrupt to determine how much data is in the buffer. The address is the location of the next character to be transferred to the buffer. The host needs this information to process newly arrived data in the buffer if used in Append mode, and the data timeout has occurred. The address is also needed if an exception has occurred, and a gap is to be left in the DMA buffer (see the description of the Gap[x] bits in Section 8.5.2.7 on page 137 for the insertion of status information by the host. For a bus error during receive data transfer, this register provides the start address of the transfer causing the bus error.

8.6.3 DMA Transmit Registers

8.6.3.1 A Transmit Buffer Address Lower (ATBADRL)

Register Des Default Value	ne: ATBADRL cription: Transm e: x'0000 rd Read/Write	Intel Hex Address: x'50 Motorola Hex Address: x'52								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			
	Binary address value, 32-bit address, bits 15:8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Binary	address value,	32-bit address,	oits 7:0					

8.6.3.2 A Transmit Buffer Address Upper (ATBADRU)

Register Des Default Value	ne: ATBADRU cription: Transn e: x'0000 rd Read/Write		Address: x'52 Address: x'50						
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 E									
	Binary address value, 32-bit address, bits 23:16								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Binary address value, 32-bit address, bits 31:24								

8.6.3.3 B Transmit Buffer Address Register — Lower (BTBADRL)

Register Des Default Value	ne: BTBADRL cription: Transm e: x'0000 rd Read/Write	Intel Hex Address: x'54 Motorola Hex Address: x'56								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8			
	Binary address value, 32-bit address, bits 15:8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Binary	address value,	32-bit address, t	oits 7:0					

8.6.3.4 B Transmit Buffer Address Register — Upper (BTBADRU)

Register Des Default Value	ne: BTBADRU cription: Transme: x'0000 rd Read/Write	Intel Hex Address: x'5 Motorola Hex Address: x'5								
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8										
	Binary address value, 32-bit address, bits 23:16									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		Binary a	address value, 3	2-bit address, bi	its 31:24					

This register contains the start addresses of two external buffers that are used by the CD2431 to transmit the next data blocks. This is written to by the host and copied internally to control the data transfer from the memory to the CD2431 FIFO.

8.6.3.5 A Buffer Transmit Byte Count Register (ATBCNT)

Register Des Default Value	ne: ATBCNT cription: Transn e: x'0000 rd Read/Write	Intel Hex Address: x'58 Motorola Hex Address: x'58					
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Bina	ry count value, 1	16-bit count, bits	15:8		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bina	ary count value,	16-bit count, bits	s 7:0		

8.6.3.6 B Buffer Transmit Byte Count Register (BTBCNT)

Register Des Default Value	ne: BTBCNT cription: Transn e: x'0000 rd Read/Write		Address: x'5A Address: x'58							
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8										
	Binary count value, 16-bit count, bits 15:8									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Binary count value, 16-bit count, bits 7:0									

These registers contain the count of the bytes in the buffers to be transmitted.

8.6.3.7 A Transmit Buffer Status Register (ATBSTS) — Async-HDLC/PPP Mode

Register Name: ATBSTS Register Description: Transmit Buffer 'A' Status Default Value: x'00 Access: Byte Read/Write							Address: x'5C Address: x'5F	
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1							
Berr EOF EOB 0 0						INTR	2431own	

8.6.3.8 B Transmit Buffer Status Register (BTBSTS) — Async-HDLC/PPP Mode

Register Name: BTBSTS Intel Hex Address: x'5I Register Description: Transmit Buffer 'B' Status Motorola Hex Address: x'5I Default Value: x'00 Access: Byte Read/Write								
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bi								
Berr EOF EOB 0 0 map32 INTR 2431c								

Bit 7 Bus Error (set by the CD2431, and cleared by the host)

0 = No bus error

1 = Bus error was detected on the last transfer

Bit 6 End of Frame (set and cleared by the host)

0 = This buffer is not the last in frame/block. 1 = This buffer is the last in frame/block.

Bit 5 End of a Transmit Buffer (set by the CD2431, and cleared by the host).

The end of a host supplied transmit buffer has been reached.

CD2431 — Advanced Multi-Protocol Communications Controller

Bits 4:3 Reserved – must be '0'.

Bit 2 map32 – Map all transmit characters from 00–1F (set and cleared by the host)

0 =Use the normal TXACCM map.

1 = Map all characters in the range from 00-1F.

Bit 1 Interrupt

0 = No interrupt required after the buffer is transmitted. 1 = Interrupt required after the buffer is transmitted.

Bit 0 2431own – Ownership of the transmit buffer (set by the host and cleared by the

CD2431)

0 = Buffer is owned by the host, and not ready for use by the CD2431. 1 = Buffer is owned by the CD2431, and is ready for use by the CD2431.

To start transmission of a buffer, the host must set the A/BTBADR (Transmit Buffer Address) and A/BTBCNT (Transmit Buffer Count) registers, and then set the 2431own bit. If the CD2431 is to generate and send the CRC for the frame, the FCSApd bit (COR2[6]) must be set. If the buffer contains the end of a frame, the EOF bit must also be set. When the buffer has been sent, the EOB bit is set by the CD2431, and 24310WN is reset, allowing a new buffer to be allocated.(cont.)

Setting the Append bit allows data to be added to the buffer after transmission begins. In this mode, the host sets ATADR and ATCNT as normal, but when new data is appended to the buffer, the A/BTBCNT (Transmit Buffer Count) can be updated. When the A buffer is used in Append mode, the CD2431 does not set the EOB bit. When the host completes use of the buffer, it must issue the append complete command through STCR. The CD2431, upon transmitting the last characters from the buffer, sets EOB, thus allowing the host to allocate a new transmit buffer.

8.6.3.9 A Transmit Buffer Status Register (ATBSTS) — SLIP/MNP 4 Mode

Register Des Default Value	ne: ATBSTS cription: Transm e: x'00 e Read/Write			Address: x'5C Address: x'5F			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Berr	EOF	EOB	UE	0	0	INTR	2431own

8.6.3.10 B Transmit Buffer Status Register (BTBSTS) — SLIP/MNP 4 Mode

Register Name: BTBSTS Register Description: Transmit Buffer 'B' Status Default Value: x'00 Access: Byte Read/Write							Address: x'5D Address: x'5E
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Berr EOF EOB UE 0 0 INTR 2431							

Advanced Multi-Protocol Communications Controller — CD2431

Bit 7 Bus Error (set by the CD2431, and cleared by the host)

0 = no bus error.

1 = bus error was detected on the last transfer.

Bit 6 End of Frame (set and cleared by the host)

0 = this buffer is not the last in frame/block. 1 = this buffer is the last in frame/block.

Bit 5 End of a Transmit Buffer (set by the CD2431 and cleared by the host)

The end of a host supplied transmit buffer was reached.

Bit 4 Transmit underrun occurred as the buffer was not available, and it applies to this

buffer.

Bits 3:2 Reserved – must be '0'.

Bit 1 Interrupt

0 = no interrupt required after the buffer is transmitted. 1 = interrupt required after the buffer is transmitted.

Bit 0 2431own – Ownership of the transmit buffer (set by the host and cleared by the

CD2431)

0 = buffer is owned by the host, and not ready for use by the CD2431. 1 = buffer is owned by the CD2431, and is ready for use by the CD2431.

8.6.3.11 A Transmit Buffer Status Register (ATBSTS) — HDLC Mode

Register Name: ATBSTS Register Description: Transmit Buffer 'A' Status Default Value: x'00 Access: Byte Read/Write							Address: x'5C Address: x'5F
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Berr EOF EOB UE 0 0 INTR 2431							

8.6.3.12 B Transmit Buffer Status Register (BTBSTS) — Async and HDLC Mode

Register Nan Register Des Default Value Access: Byte	cription: Transme: x'00	nit Buffer 'B' Stat	us				Address: x'5D Address: x'5E	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Ì
Berr	EOF	EOB	UE	0	0	INTR	2431own	

This register contains the status of the associated transmit buffer, and it enables successive buffers to be passed between the host and the CD2431. Status bits within the register are defined as:

CD2431 — Advanced Multi-Protocol Communications Controller

Bit 7 Bus Error (set by the CD2431 and cleared by the host CPU)

0 =No bus error.

1 = Bus error occurred on the last transfer; the suspect address is available in

TCBADR.

Bit 6 End of Frame (set and cleared by host CPU)

0 = This buffer is not the last in frame/block. 1 = This buffer is the last in frame/block.

Bit 5 End of a Transmit Buffer has been reached.

This bit is used only for DMA supported transfer. The end of one of the host supplied transmit buffers has been reached. This bit is set by the CD2431 and cleared by the

host CPU.

Bit 4 Underrun

Transmit underrun occurred as the buffer was not available, and it applies to this

buffer (only in HDLC mode).

Bits 3:2 Reserved – must be '0'.

Bit 1 Interrupt

0 = No interrupt required after the buffer is sent.

1 = Interrupt required after the buffer is sent.

Bit 0 Ownership of the transfer buffer (set by the host CPU and cleared by the CD2431)

0 = Buffer not ready to be used by CD2431. 1 = Buffer is ready for CD2431 to transmit.

8.6.3.13 A Transmit Buffer Status Register (ATBSTS) — Async Mode

Register Name: ATBSTS Register Description: Transmit Buffer 'A' Status Default Value: x'00 Access: Byte Read/Write							Address: x'5C Address: x'5F
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Berr	EOF	EOB	0	Append	0	INTR	2431own

8.6.3.14 B Transmit Buffer Status Register (BTBSTS) — Async and HDLC Mode

Register Name: BTBSTS Register Description: Transmit Buffer 'B' Status Default Value: x'00 Access: Byte Read/Write							Address: x'5D Address: x'5E	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Berr	EOF	ЕОВ	0	0	0	INTR	2431own

intط

Advanced Multi-Protocol Communications Controller — CD2431

This register contains the status of the associated transmit buffer, and it enables successive buffers to be passed between the host and the CD2431. Status bits within the register are defined as:

Bit 7 Bus Error (set by the CD2431 and cleared by the host CPU)

0 = no bus error.

1 = bus error occurred on the last transfer; the suspect address is available in

TCBADR.

Bit 6 End of Frame (set and cleared by host CPU)

0 =this buffer is not the last in frame/block.

1 = this buffer is the last in frame/block.

Bit 5 End of a Transmit Buffer has been reached. This bit is used only for DMA supported

transfer. The end of one of the host-supplied transmit buffers has been reached. This

bit is set by the CD2431 and cleared by the host CPU.

Bit 4 Reserved – must be '0'.

Bit 3 Append (only buffer A)

0 = no data appended to the buffer

1 =data may be appended to the buffer after transfer starts.

Bit 2 Reserved – must be '0'.

Bit 1 Interrupt

0 = no interrupt required after the buffer is sent. 1 = interrupt required after the buffer is sent.

Bit 0 Ownership of the transfer buffer (set by the host CPU and cleared by the CD2431)

0 = buffer not ready to be used by CD2431. 1 = buffer is ready for CD2431 to transmit.

8.6.3.15 Transmit Current Buffer Address — Lower (TCBADRL)

Register Des Default Value	me: TCBADRL scription: Current e: x'0000 rd Read Only	t Transmit Buffer	Address, lower	word			Address: x'38 Address: x'3A
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Binary	address value, 3	32-bit address, b	its 15:8		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Binary	address value,	32-bit address, I	oits 7:0		

8.6.3.16 Transmit Current Buffer Address — Upper (TCBADRU)

Register Des Default Valu	me: TCBADRU scription: Curren e: x'0000 rd Read Only	t Transmit Buffei	Address, upper	r word			Address: x'3A Address: x'38
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
		Binary a	address value, 3	2-bit address, bi	ts 31:24		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Binary a	address value, 3	2-bit address, bi	ts 23:16		

This register contains the address of the current DMA buffer being used for transmit data, updated at the end of transmit data transfers. For bus errors during transmit data transfers, this register contains the start address of the transfer causing the bus error.

8.7 Timer Registers

8.7.1 Timer Period Register (TPR)

Register Nan Register Des Default Value Access: Byte	cription: Timer F e: x'FF			Address: x'D8 Address: x'DA					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	Binary value								

This register provides the initialization value for the timer prescaler that is itself clocked by a prescaled clock equal to system clock \div 2048. The timer prescaler establishes the clock for the various on-chip timers (including RTPR, TTR, and the general timers available to the host in the Synchronous modes). The minimum value loaded in this register to maintain accuracy in the timer is 0A hex.

8.7.2 Receive Timeout Period Register (RTPR) Async Mode Only

Default Value	cription: Receive			Address: x'26 Address: x'24			
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
			Binary valu	ue, bits 15:8			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Binary val	ue, bits 7:0			

8.7.2.1 Receive Timeout Period Register — Low (RTPRI) Async Mode Only

Default Value	cription: Receiv			Address: x'26 Address: x'25				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Binary value							

8.7.2.2 Receive Timeout Period Register — High (RTPRh) Async Mode Only

Register Name: RTPRh Register Description: Receive Timeout Period, high byte Default Value: x'00 Access: Byte Read/Write, ASYNC Mode only							Address: x'27 Address: x'24
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Binary value							

This value sets the receive data timeout period. As each character is moved to the receive FIFO or the last data is transferred from the FIFO to the host, the receive timer (an internal timer) is reloaded with the Receive Timeout Period register. The receive timer is decremented on each 'tick' of the prescaler counter, whose period is controlled by TPR. If the receive timer reaches '0', it causes a receive data interrupt.

8.7.3 General Timer 1 (GT1) Sync Modes Only

Register Nam Register Des Default Value Access: Wor	cription: Genera e: x'00	l Timer 1					x Address: x'28 x Address: x'2A
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Binary value, bits 15:8							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Binary value, bits 7:0							

8.7.3.1 General Timer 1— Low (GT1I) Sync Modes Only

Register Nan Register Des Default Value Access: Byte	cription: Genera e: x'00	ıl Timer 1, low by	⁄te				Address: x'28 Address: x'2B
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1				Bit 0			
Binary value							

8.7.3.2 General Timer 1— High (GT1h) Sync Modes Only

Register Name: GT1h Register Description: General Timer 1, high byte Default Value: x'00 Access: Byte Read/Write							Address: x'29 Address: x'2A
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1					Bit 0		
Binary value							

This 16-bit timer can be started by the user whenever it is inactive by writing a 16-bit timeout value to the register. When non-zero, it decrements on each prescaler clock 'tick'. When it reaches '0', a modem/timer group interrupt is generated to the host. The timer can be disabled by the Channel Command register.

During an interrupt, the user can reload a running timer (high byte only) by providing a reload value in the Interrupt Status register and a reload timer command in the End of Interrupt register for the interrupt being serviced. Only one general timer can be restarted this way in a single-interrupt routine.

8.7.4 General Timer 2 (GT2) Sync Modes Only

Register Name: GT2 Register Description: General Timer 2 Default Value: x'00 Access: Byte Read/Write							Address: x'2A Address: x'29
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 E					Bit 0		
Binary value							

This 8-bit timer can be started by the user whenever it is inactive by writing an 8-bit timeout value to the Timer register. When non-zero, it decrements on each prescaler clock 'tick'. When it reaches '0', a modem/timer group interrupt is generated to the host. The timer can be disabled by the Channel Command register if the timer's current value is greater than '1'. In addition, during a receive or transmit interrupt the user can reload a running timer by providing a reload value in the Interrupt Status register and a reload timer command in the End of Interrupt register for the interrupt being serviced. In a single-interrupt routine, only one general timer can be restarted this way.

8.7.5 Transmit Timer Register (TTR) Async Modes Only

Register Nan Register Des Default Value Access: Byte	cription: Transme: x'00	nit Timer					Address: x'2A Address: x'29
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1				Bit 0			
Binary value							

This Asynchronous mode timer is managed by the CD2431 to implement embedded transmit delays when that option is used by the host (see description of COR2). This register should not be modified by the host under any circumstances.

9.0 Electrical Specifications

Note: Verify with your local sales office that you have the latest datasheet before finalizing a design.

9.1 Absolute Maximum Ratings

Operating ambient temperature (T_A)0°C to 70°C

Storage temperature -65°C to 150°C

All voltages with respect to ground -0.5 V to V_{CC} +0.5 V (volts)

Supply voltage (V_{CC}) +7.0 V

Power dissipation 0.25 W (watt)

Note: Stresses above those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

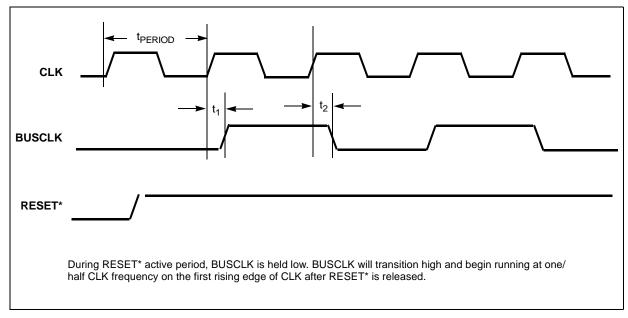
9.2 DC Electrical Characteristics

(@
$$V_{CC} = 5 \text{ V} \pm 5\%$$
, $T_A = 0^{\circ}\text{C}$ to 70°C)

Symbol	Parameter	MIN	MAX	Units	Test Conditions
V _{IL}	Input low voltage	-0.5	0.8	V	
V _{IH}	Input high voltage (all pins except CLK, RESET*, and BGIN*)	2.0		V _{CC}	V
V _{IH}	Input high voltage for CLK, RESET*, and BGIN*	2.7	V _{CC}	V	
V _{OL}	Output low voltage	0.4		V	$I_{OL} = 2.4 \text{ mA}$ (I_{OL} for OD pins = 10 ma)
V _{OH}	Output high voltage	2.4		V	$I_{OH} = -400 \mu A$
I _{IL}	Input leakage current	-10	10	μΑ	0 < V _{IN} < V _{CC}
I _{LL}	Data bus tristate leakage current	-10	10	μА	0 < V _{OUT} < V _{CC}
loc	Open-drain output leakage	-10	10	μΑ	0 < V _{OUT} < V _{CC}
I _{CC}	Power supply current		50	mA	CLK = 35 MHz
C _{IN}	Input capacitance		10	pF	
C _{OUT}	Output capacitance		10	pF	

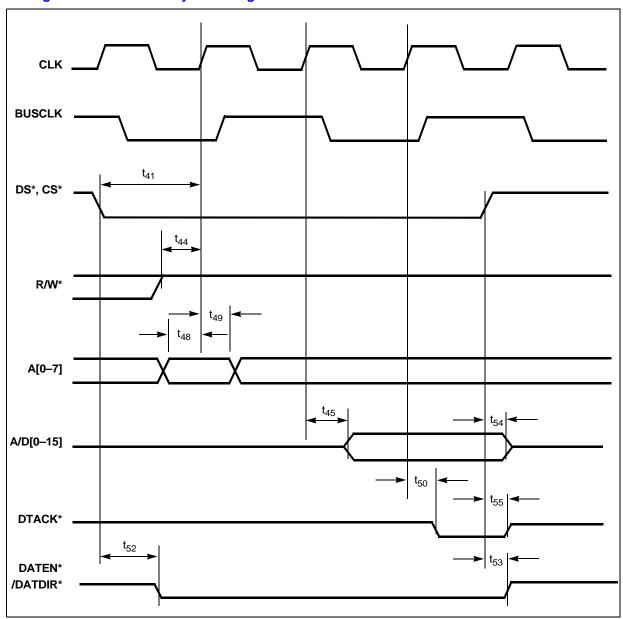
Note: The maximum CLK of 35 MHz applies to Revision D and later devices only; revisions prior to D remain specified at 33 MHz maximum. All values in the following tables apply to the 35-MHz specification.

9.3 AC Electrical Characteristics


Symbol	Parameter (Sheet 1 of 2)	MIN ¹	MAX ¹
t _{PERIOD}	Period of CLK input (35 MHz maximum)	28.57	
t ₁	CLK high to BUSCLK high		20
t ₂	CLK high to BUSCLK low		20
Bus Arbitration	1		
t ₁₁	CLK high to BGACK* tristate		25
t ₁₂	BGIN* low to address valid ²		40
t ₁₃	Address hold after CLK high	0	
t ₁₄	CLK high to address tristate		25
t ₁₅	CLK high to ADLD* low		25
t ₁₆	CLK high to ADLD* high		20
t ₁₇	Address setup to ADLD* high	15	
t ₁₈	CLK high to AEN*/DATEN*/DATDIR* high		25
t ₁₉	CLK high to AEN*/DATEN*/DATDIR* tristate		25
t ₂₀	CLK high to AEN*/DATEN*/DATDIR* low		25
DMA Read		-	•
t ₂₁	Data setup to CLK high	10	
t ₂₂	Data hold after CLK high	15	
t ₂₃	CLK high to address valid		30
t ₂₄	CLK low to AS* low		25
t ₂₅	CLK high to AS* high		20
t ₂₆	CLK low to DS* low		25
t ₂₇	CLK high to DS* high		20
t ₂₈	DTACK* low setup to CLK high	10	
t ₂₉	DTACK* high setup to CLK high (to avoid false termination)	50	
DMA Write		1	•
t ₃₁	CLK high to data valid		40
t ₃₂	Data hold after CLK high	0	
t ₃₃	CLK low to DS* low		25
t ₃₄	CLK high to DS* high		20
t ₃₅	DTACK* low setup to CLK high	10	
t ₃₆	DTACK* high setup to CLK high (to avoid false termination)	50	
Host Read/Wri	te		1
t ₄₁	DS* and CS* low setup to CLK high	7	
t ₄₂	Reserved		
t ₄₃	Reserved		

Symbol	Parameter (Sheet 2 of 2)	MIN ¹	MAX ¹
t ₄₄	R/W* setup to CLK high	5	
t ₄₅	CLK high to data valid		25
t ₄₆	Data setup time to CLK high	6	
t ₄₇	Data hold time after CLK high	15	
t ₄₈	Address setup time to CLK high	5	
t ₄₉	Address hold time after CLK high	15	
t ₅₀	CLK high to DTACK* low (read cycle)		25
t ₅₁	CLK high to DTACK* low (write cycle)		25
t ₅₂	(CS* and DS*) low to DATEN*/DATDIR* low		28
t ₅₃	DS* high to DATEN*/DATDIR* tristate		25
t ₅₄	DS* high to data bus tristate		25
t ₅₅	DS* high to DTACK* high-impedance		25
Interrupt Ackno	owledge		
t ₆₁	CLK high to IACKIN*, DS* setup	20	
t ₆₃	CLK high to data valid		35
t ₆₄	Address setup to IACKIN* low	0	
t ₆₅	Address hold after IACKIN* high	0	
t ₆₆	CLK high to DTACK* low		25
t ₆₇	(IACKIN* and DS*) low and BUSCLK high to DATEN* and DATDIR* low		40

^{1.} Units are expressed in nanoseconds (ns).


Figure 21. CLK / BUSCLK / RESET* TIming Relationship

^{2.} This timing assumes the following conditions: BGACK* high, DTACK* high, DS* high, and BUSCLK high.

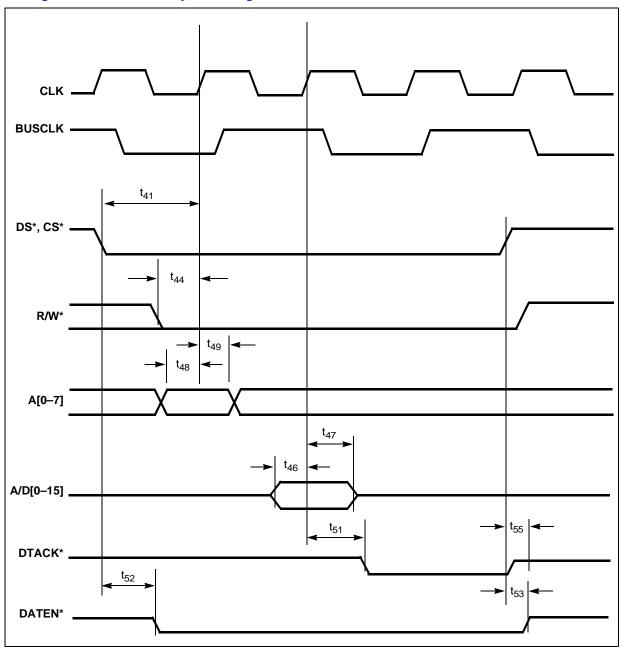


Figure 23. Slave Write Cycle Timing

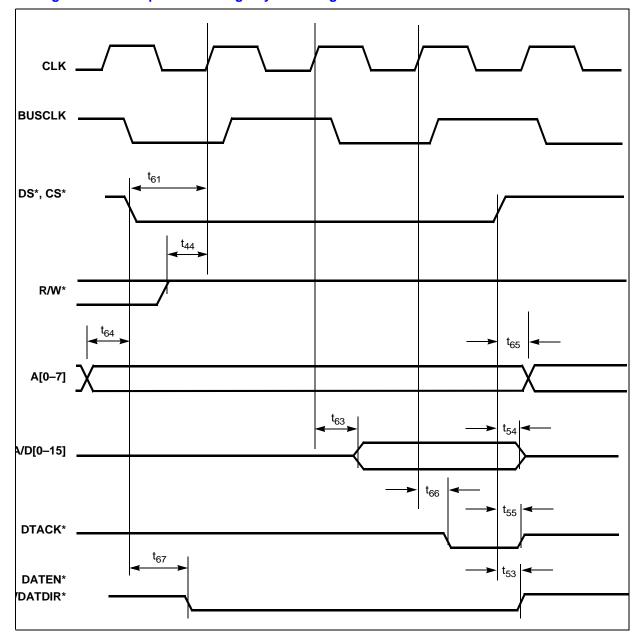


Figure 24. Interrupt Acknowledge Cycle Timing

Figure 25. Bus Arbitration Cycle Timing

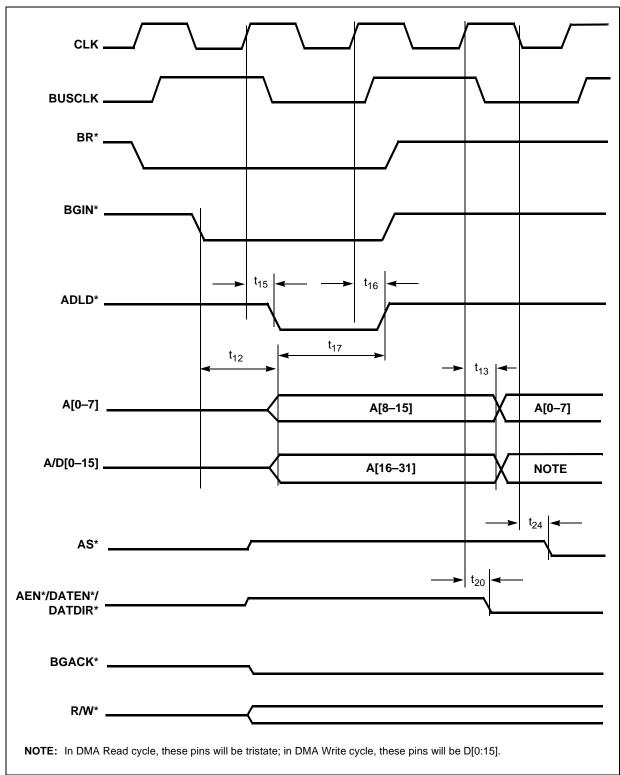
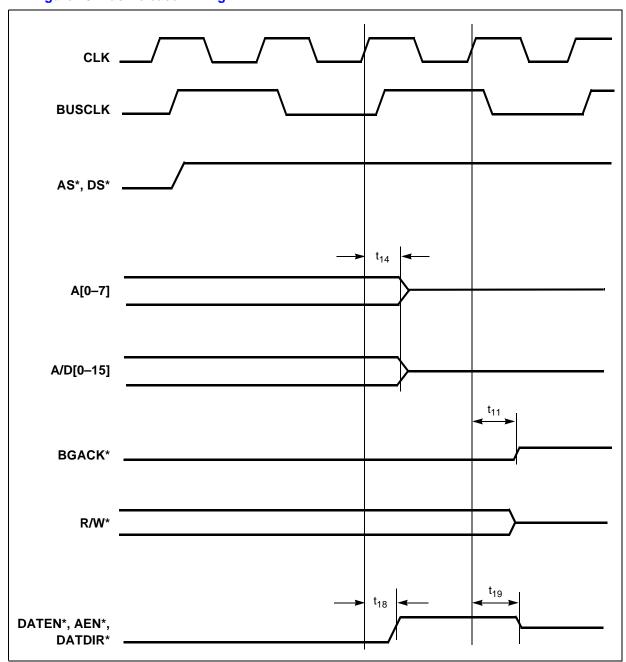
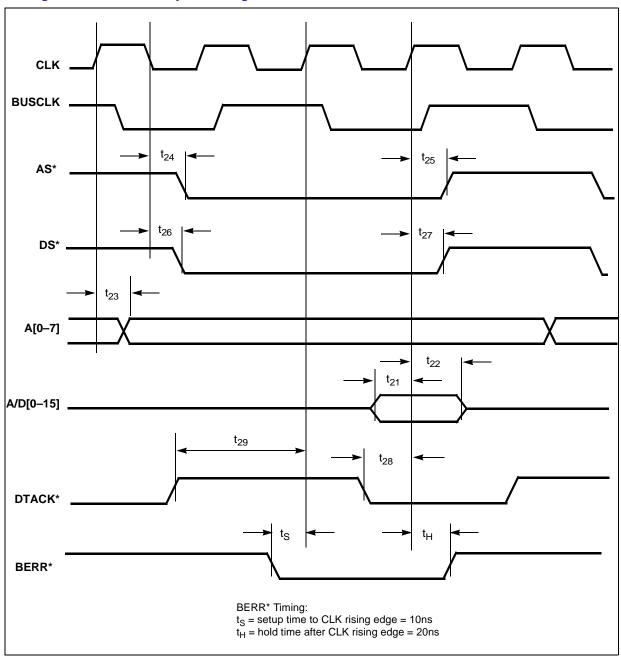


Figure 26. Bus Release Timing

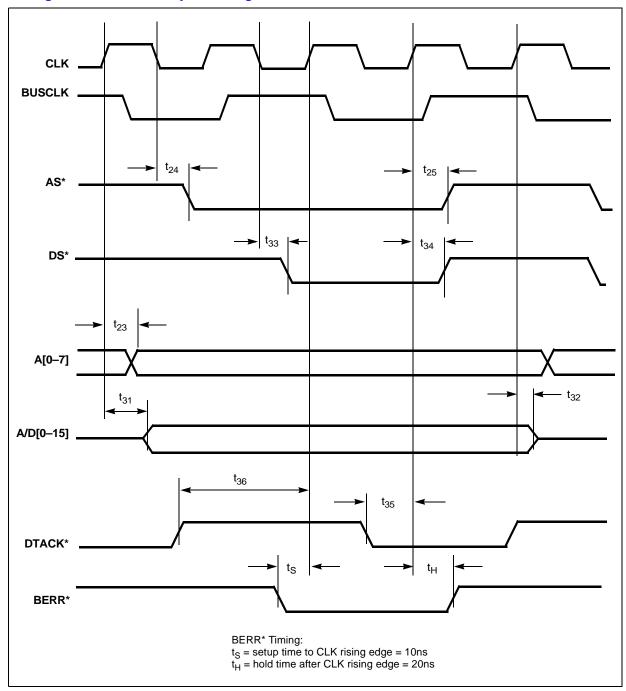
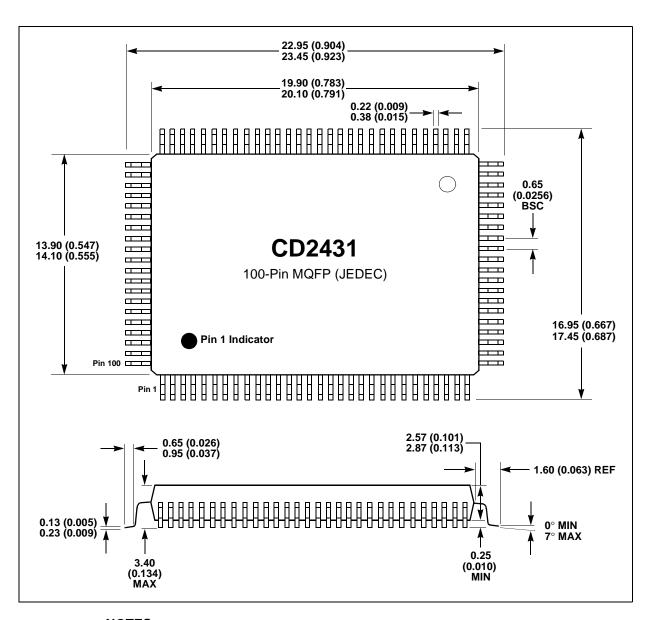
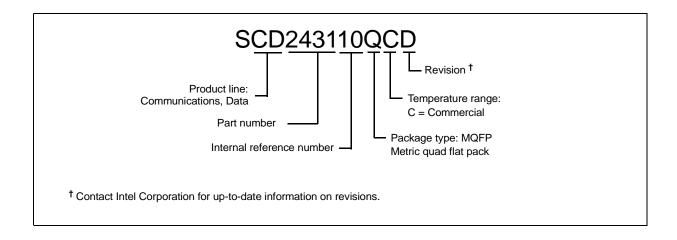


Figure 27. DMA Read Cycle Timing



10.0 Package Specifications



NOTES:

- 1. Dimensions are in millimeters (inches), and controlling dimension is millimeter.
- 2. Before beginning any new design with this device, please contact Intel for the latest package information.

11.0 Ordering Information

Numerics	C
32-bit data bus 65	Chain mode 47
	character format 69
A	CLK 166
A and C fields 69 abbreviations 13	CLK / BUSCLK / RESET* TIming Relationshi 166
absolute maximum ratings 164	Clock mode 19
AC electrical characteristics	contexts and channels 37
bus arbitration 165	cycles
DMA read 165	bus acquisition 43, 44
DMA write 165	hardware signals and IACK 39
host read/write 165	host read 35
interrupt acknowledge 166	host read and write 34
ACCM (async-control-character map) 70	host write 36
acronyms 14	interrupt acknowledge 38
Address Recognition mode 68	
Addressing mode 91	D
Append 158	data clock selection 64
Append mode 47, 55	data encoding 57, 63
async interrupt setup example 86	DC electrical characteristics 164
Async-HDLC/PPP mode 96, 118	DCE (data communications equipment) 66
Async-HDLC/PPP/MNP4 mode 134	DMA
Asynchronous DMA mode 56	data transfer 44
Asynchronous mode 19, 99, 122, 133	operation 42
Asynchronous/Async-HDLC/PPP mode 93	DMA connections 65
Autobaud mode 136	DMA read 165
	DMA write 165
В	DPLL mode 113
bit rate generation 57	DPLL operation 57
BRG operation 57	DTE (data terminal equipment) 65
buffer allocation 53	DTE and DCE interface 65
buffers and chaining 45	
bus acquisition cycle 43, 44	E
bus arbitration 165	electrical specifications 164
bus error handling 45	
byte and word transfers 36	F
	Fair Share scheme 40

FCS (frame check sequence) 67 FCS mode 98 FCT (flow control transparency) mode 100, 106 fields, A and C 69 FIFO and timer operations 41 Flag Hunt mode 68 Flag mode 67, 68 format	IACK cycles 39 keep and pass logic 40 registers 37 systems with interrupt controllers 40 transmit and interrupt service requests 39 K keep and pass logic 40 L Local Loopback mode 114
functional description 34	logic, keep and pass 40
G global initialization 85 H hardware configurations 32-bit data bus 65 DMA connections 65 DTE and DCE interface 65 hardware signals and IACK cycles 39 HDLC DMA channel setup examples 86 HDLC mode 91, 93, 98, 132 HDLC processing 67 High-Impedance mode 18 host interface 34 host read and write cycles 34 host read cycle 35 host read/write 165 host write cycle 36	mapped characters 00–1F 70 20 and above 70 7D and 7E 70 FCS field, in the 70 Mark mode 67, 68 memory map 20 MNP4 mode 97 MNP4/SLIP mode 95 modes Address Recognition mode 68 Addressing mode 91 Append mode 47, 55 Async-HDLC/PPP mode 96, 118 Async-HDLC/PPP/MNP4 mode 134 Asynchronous DMA mode 56 Asynchronous mode 19, 99, 122, 133 Asynchronous/Async-HDLC/PPP mode 93
Idle mode 98 initialization sequence for the CD2231 84 interrupt acknowledge 166 interrupt service requests 39 interrupts acknowledge cycle 38 contexts and channels 37 groups and types 38	Autobaud mode 136 Chain mode 47 Clock 19 DPLL mode 113 FCS mode 98 FCT (flow control transparency) mode 100, 106 Flag Hunt mode 68 Flag mode 67, 68

int_{el®}

HDLC mode 91, 93, 98, 132 High-Impedance mode 18	protocol processing 67
Idle mode 98	R
Idle-in Flag mode 98	read cycle, host 35
Idle-in Mark mode 98	receive buffer interrupts 55
Local Loopback mode 114	receive bus errors 56
Mark mode 67, 68	receive DMA interrupt service routine 87
MNP4 mode 97	receive DMA transfer 51
MNP4/SLIP mode 95	receive FIFO operation 41
Parity mode 92	receive time-out 56
Protocol mode 90 Receive Transfer mode 90	Receive Transfer mode 90
Remote Loopback mode 94, 95	receiver
SLIP mode 99, 135	A and B buffers 51
SLIP/MNP4 mode 119, 124	fixed operations 72
Syn/Flag Hunt mode 117	options 72
Synchronous mode 98	register definitions 25
Transmit Transfer mode 90	register descriptions, detailed 89
XON mode 94	register table 20
	registers
0	Bit Rate and Clock Option registers
_	RBPR 21, 27, 112
operations BGR 57	RCOR 21, 27, 113
DMA 42	TBPR 21, 27, 114 TCOR 21, 27, 114
DPLL 57	Channel Command and Status registers
FIFO and timer 41	CCR 22, 28, 115
receive FIFO 41	CSR 22, 28, 113
transmit FIFO 41	MSVR-DTR 22, 28, 125
ordering information example 175	MSVR-RTS 22, 28, 125
ordering information enumpre 170	STCR 22, 28, 118
P	DMA Receive registers
•	ARBADRL 23, 31, 148
package specifications 174	ARBADRU 23, 31, 149
Parity mode 92	ARBCNT 23, 31, 150
pin diagram CD2431 15	ARBSTS 23, 31, 151
pin functions	BRBADRL 23, 31, 149
CD2431 16	BRBADRU 23, 31, 149
pin information 15	BRBCNT 23, 31, 150
descriptions 16	BRBSTS 23, 31, 151
programming examples 84	RCBADRL 23, 32, 152
programming the PILR registers 39	RCBADRU 23, 32, 152
Protocol mode 90	DMA registers

intها_®

BERCNT 23, 31, 147	RXACCM1 21, 27, 111		
DMABSTS 23, 31, 147	RXACCM2 21, 27, 111		
DMR 23, 31, 146	RXACCM3 21, 27, 112		
DMA Transmit registers	SCHR1 21, 26, 104		
ATBADRL 24, 32, 153	SCHR2 21, 26, 105		
ATBADRU 24, 32, 153	SCHR3 21, 26, 105		
ATBCNT 24, 32, 154	SCHR4 21, 26, 106		
ATBSTS 24, 32, 155, 156, 157, 158	SCRh 21, 26, 106		
BTBADRL 24, 32, 153	SCRI 21, 26, 106		
BTBADRU 24, 32, 154	TSPMAP1 21, 27, 109		
BTBCNT 24, 32, 155	TSPMAP2 21, 27, 109		
BTBSTS 24, 32	TSPMAP3 21, 27, 109		
TCBADRL 24, 32, 159	TXACCM0 21, 27, 110		
TCBADRU 24, 32, 160	TXACCM1 21, 27, 110		
Global registers	TXACCM2 21, 27, 110		
CAR 20, 25, 89	TXACCM3 21, 27, 110		
GFRCR 20, 25, 89	Receive Interrupt registers		
Interrupt registers	RDR 22, 30, 137		
IER 22, 29, 127, 128	REOIR 22, 30, 137		
LICR 22, 29, 128	RFOC 22, 30, 136		
LIVR 22, 29, 126	RIR 22, 29, 130		
STK 22, 29, 129	RISR 22, 29, 131		
Modem Interrupt registers	RISRh 22, 30, 136		
MEOIR 23, 31, 145	RISRI 22, 29		
MIR 23, 31, 144	RPILR 22, 29, 130		
MISR 23, 31, 145	Timer registers		
MPILR 23, 31, 143	GT1 24, 33, 162		
Option registers	GT1h 24, 33, 162		
CMR 20, 25, 90	GT11 24, 33, 162		
COR1 20, 25, 91	GT2 24, 33, 163		
COR2 20, 25, 93	RTPR 24, 32, 161		
COR3 20, 25, 96	RTPRh 24, 33, 161		
COR4 20, 26, 100	RTPRI 24, 32, 161		
COR5 20, 26, 101	TPR 24, 32, 160		
COR6 21, 26, 102	TTR 24, 33, 163		
COR7 21, 26, 103	Transmit Interrupt registers		
CPSR 21, 27, 108	TDR 23, 30, 142		
LNXT 21, 26, 107	TEOIR 23, 30, 142		
RFAR1 21, 27, 107	TFTC 23, 30, 141		
RFAR2 21, 27, 107	TIR 22, 30, 140		
RFAR3 21, 27, 108	TISR 22, 30, 141		
RFAR4 21, 27, 108	TPILR 22, 30, 139		
RXACCM0 21, 27, 111	Remote Loopback mode 94, 95		

intel

S	external clock out 63		
service routine	transmit DMA buffers		
receive DMA interrupt 87	chained buffers 53		
transmit interrupt 88	DMA selection 54		
setup examples	interrupts 53		
async interrupt 86	transmit DMA transfer		
HDLC DMA channel 86	Append mode 47		
SLIP mode 99, 135	Chain mode 47		
SLIP/MNP4 mode 119, 124	transmit FIFO operation 41		
Syn/Flag Hunt mode 117	transmit interrupt service routine 88		
Synchronous mode 98	transmit service requests 39		
synchronous transmitter examples 48	Transmit Transfer mode 90		
-y	transmitter		
Т	fixed operations 71		
	framing error 72		
timers	options 71		
asynchronous protocols 42	transmission of abort 72		
synchronous protocols 42	transmitter A and B buffers 48		
transmit 42	transparency 70		
timing	- '		
bus arbitration cycle 170	V		
bus release 171	· · · · · · · · · · · · · · · · · · ·		
DMA read cycle 172	valid frame, definition 71		
DMA write cycle 173			
interrupt acknowledge cycle 169	W		
slave read cycle 167	word and byte transfers 36		
slave write cycle 168	write cycle, host 36		
transfers, byte and word 36			
transmit bus errors 55	X		
transmit data	XON mode 94		
external clock in 63	AUN IIIUUC 74		

int_{el}®

CRCNinv 93

Bit Index

Numerics CrtBuf 147 CTS 125 2431own 151, 155-158 CtsAE 93–95 CTSChg 145 Α CTSod 101 AbortTx 118-120 CTSzd 100 AdMd[1:0] 91 AFLO 91 D Alt1 98 D[7:0] 137, 142 AppdCmp 120 DiscExc 137-138 Append 147 DisRx 115 DisTx 115 B DpllEn 113 BA/BB 136, 141 Dpllmd[1:0] 113 Berr 136, 141, 151, 155–158 **DSR 125** Break 133–135 DsrAE 93-95 ByteDMA 146 DSRChg 145 DSRod 101 C DSRzd 100 **DTR 125** C[1:0] 89, 128 DTRop 125 CD 125 CDChg 145 CDod 101 Е **CDzd 100** EnRx 115 Char. 00-1F 110-111 EnSync 146 Chl[2:0] 92 EnTx 115 Chle 92 EOB 136, 141, 151, 155-158 chmd[2:0] 90 EOF 132, 134–136, 141, 142, 151, 155–158 ClkSel[2:0] 113, 114 ESCDE 99 ClrCh 115 ETC 93 ClrDct 132 Ext-1X 114 ClrDet 91 ClrRcv 117 F ClrT[2:1] 117 FCErr 103 ClrTx 117 FCS 98 CLvl [1:0] 129 FCSApd 93, 96-97 CRC 132, 134

Datasheet 183

FCSPre 98

int_{el}®

FCT 99 NoTrans 137-138 FE 133-135 Notrans 142 FIFO threshod 100 npad[2:0] 96-99 Flag[3:0] 91 npad[3:0] 96-97 Frame 118-119 npad3 99 Frame Qualification Address [4:0] 107 Nrbuf 147 Ntbuf 147 G 0 Gap[2:0] 137 OCRNL 103 OE 132-135 ONLCR 103 ICRNL 102 idle 98 P IgnBrk 102 IgnCR 102 ParInt 102 Ignore 92 Parity 92 In/Out 101 ParM0 92 InitCh 115 ParM1 92 INLCF 102 ParMrk 102 INPCK 102 PE 133 **Poly 108** INTR 155-158 IStrip 103 IT[1:0] 126 R IXM 93 **Ract 130** Rbusy 147 L Rcn [1:0] 130 LLM 114 Receive Bit Rate Period (Divisor) 112 LNE 103 Ren 130 Reoi 130 Reslnd 132 M **RET 127** Mact 144 RFram 123-124 map32 155 Ridle 123–124 Mcn [1:0] 144 RISR High, Low 131 Mdm 127–128 RLM 93-95 Men 144 RngDE 99 Meo 144 RstAll 115 MLvl [1:0] 129 RstApd 147 Mvct [1:0] 144 **RTS 125** RtsAO 93-95 N Rvct [1:0] 130

184 Datasheet

Rx flow control threshold 101

NBrkInt 102

intel

TIMER 127-128

RxAbt 132, 134–135 Timer[2:1] 145 RxChk 96–97 TLVal 113 RxCt[4:0] 136 TLvl [1:0] 129 RxD 127-128 Transmit Bit Rate Period (Divisor) 114 RxEn 121-124 Tvct [1:0] 140 TxCt[4:0] 141 RxFlag 121 RxFloff 122–123 TxD 127-128 RxFlon 122 TxDat 141 RxFrame 121 TxEmpty 141 RxMark 121 TxEn 121–124 RxMode 90 TxFlag 121 TxFloff 122-123 TxFlon 122 TxFrame 121 SCDE 99 TxGen 96–97 SCdet[2:0] 133 TxIBE 93 SetTm[1:0] 137–138, 142, 145 TxMark 121 sndpad 98 TxMode 90 SndSpc 118–120 TxMpty 127–128 Splstp 99 SSPC[2:0] 120 U Stop[1:0] 99 Stop2 96–97, 99 UE 141, 156, 157 User-assigned priority match value 130, 139, 143 т User-defined literal next character 107 Tact 140 User-defined mapped transmit character 109 Tbusy 147 User-defined special character 105 Tcn [1:0] 140 User-defined special character detect range, TDAlign 147 high 106 Ten 140 User-defined special character detect range, Teoi 140 low 106 TermBuff 137–138, 142 TFram 123–124 X Tidle 123–124 Xoff 118 Timeout 133

Datasheet 185

Xon 118