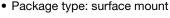
VEMD2520X01

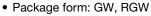
VEMD2500X01, VEMD2520X01

Vishay Semiconductors

AUTOMOTIVE

RoHS COMPLIANT


GREEN (5-2008)**


Silicon PIN Photodiode

VEMD2500X01

FEATURES

- · High radiant sensitivity
- · Suitable for visible and near infrared radiation
- Fast response times
- Angle of half sensitivity: $\varphi = \pm 15^{\circ}$
- Package matched with IR emitter series VSMB2000X01
- Floor life: 4 weeks, MSL 2a, acc. J-STD-020
- · Lead (Pb)-free reflow soldering
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

	APPLICATIONS		
	 High speed photo detector 		
PRODUCT SUMMARY			

PRODUCT SUMMARY				
COMPONENT	I _{ra} (μA)	φ (deg)	λ _{0.1} (nm)	
VEMD2500X01	12	± 15	350 to 1120	
VEMD2520X01	12	± 15	350 to 1120	

Note

16758-11

DESCRIPTION

· Test conditions see table "Basic Characteristics"

sensitive area of the chip is 0.23 mm².

VEMD2500X01 and VEMD2520X01 are high speed and high sensitive PIN photodiodes in a clear epoxy, miniature

surface mount package (SMD) with dome lens. The photo

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
VEMD2500X01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Reverse gullwing		
VEMD2520X01	Tape and reel	MOQ: 6000 pcs, 6000 pcs/reel	Gullwing		

Note

· MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	60	V
Power dissipation	T _{amb} ≤ 25 °C	P _V	215	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 40 to + 100	°C
Soldering temperature	Acc. reflow solder profile fig. 7	T _{sd}	260	°C
Thermal resistance junction/ambient	Acc. J-STD-051	R _{thJA}	250	K/W

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 50 mA	V _F		1		V
Breakdown voltage	I _R = 100 μA, E = 0	V _(BR)	32			V
Reverse dark current	V _R = 10 V, E = 0	I _{ro}		1	10	nA
Diada canacitanas	V _R = 0 V, f = 1 MHz, E = 0	C _D		4		pF
Diode capacitance	$V_R = 5 V, f = 1 MHz, E = 0$	C _D		1.3		pF
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	Vo		350		mV
Temperature coefficient of Vo	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{Vo}		- 2.6		mV/K
Short circuit current	$E_{e} = 1 \text{ mW/cm}^{2}, \lambda = 950 \text{ nm}$	l _k		11		μΑ
Temperature coefficient of I _k	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{lk}		0.1		%/K
Reverse light current	$E_e = 1 \text{ mW/cm}^2$, $\lambda = 950 \text{ nm}$, $V_R = 5 \text{ V}$	I _{ra}	8.5	12	17	μΑ
Angle of half sensitivity		φ		± 15		deg
Wavelength of peak sensitivity		λ_{p}		900		nm
Range of spectral bandwidth		λ _{0.1}		350 to 1120		nm
Rise time	V_R = 10 V, R_L = 1 k Ω , λ = 820 nm	t _r		100		ns
Fall time	V_R = 10 V, R_L = 1 k Ω , λ = 820 nm	t _f		100		ns

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

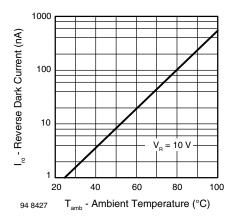


Fig. 1 - Reverse Dark Current vs. Ambient Temperature

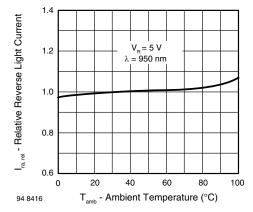


Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

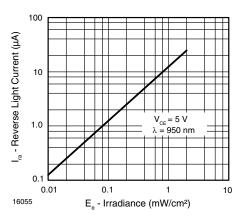


Fig. 3 - Reverse Light Current vs. Irradiance

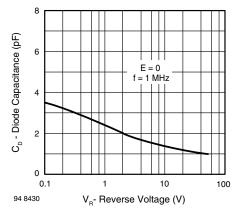


Fig. 4 - Diode Capacitance vs. Reverse Voltage

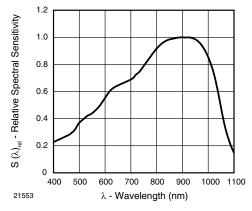


Fig. 5 - Relative Spectral Sensitivity vs. Wavelength

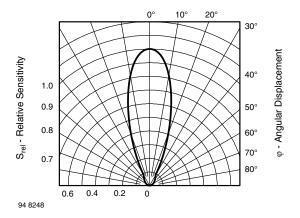


Fig. 6 - Relative Radiant Sensitivity vs. Angular Displacement

REFLOW SOLDER PROFILE

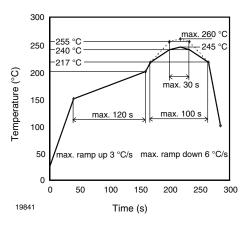


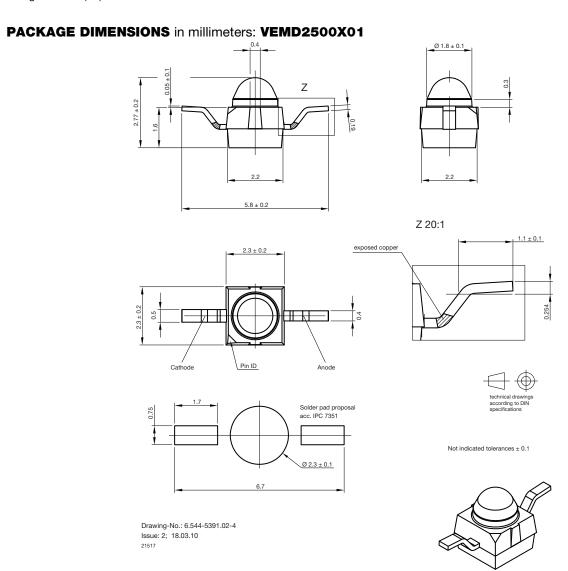
Fig. 7 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020D

DRYPACK

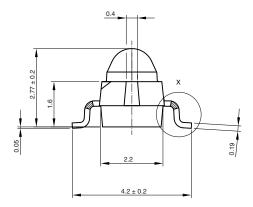
Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

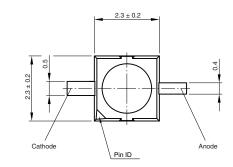
FLOOR LIFE

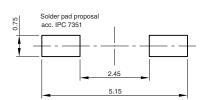
Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

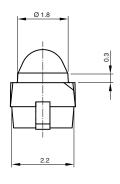

Floor life: 4 weeks

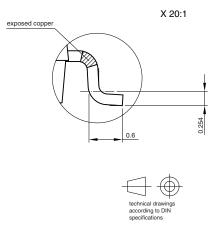
Conditions: T_{amb} < 30 °C, RH < 60 %

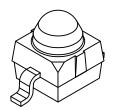

Moisture sensitivity level 2a, acc. to J-STD-020.


DRYING

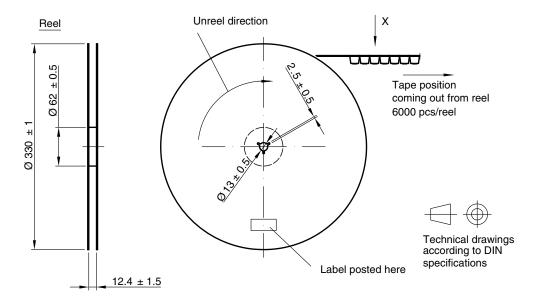

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M.

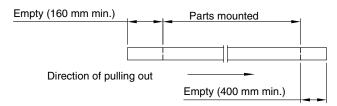

PACKAGE DIMENSIONS in millimeters: VEMD2520X01



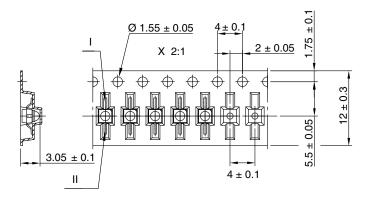


Drawing-No.: 6.544-5383.02-4 Issue: 4; 18.03.10




Not indicated tolerances ± 0.1

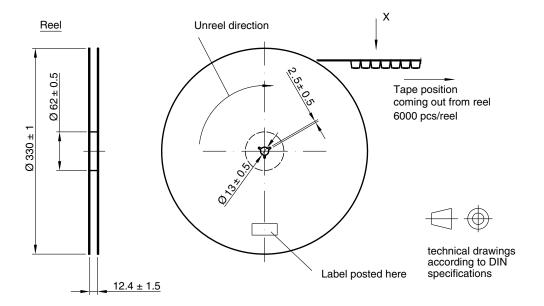
TAPING AND REEL DIMENSIONS in millimeters: VEMD2500X01



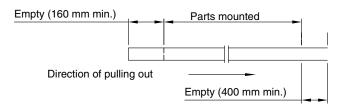
Leader and trailer tape:

Terminal position in tape

Lead I	Lead II	
Collector	Emitter	
Cathada	Anode	
Calriode	Anode	
Anode	Cathode	
	Collector	

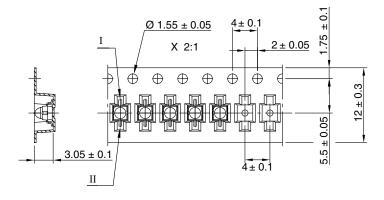


Drawing-No.: 9.800-5100.01-4


Issue: 2; 18.03.10

21572

TAPING AND REEL DIMENSIONS in millimeters: VEMD2520X01



Leader and trailer tape:

Terminal position in tape

Devicce	Lead I	Lead II
VEMT2020		
VEMT2520	Collector	Emitter
VSMB2020		
VSMG2020	Cathode	Anode
VEMD2020	Cathode	Anode
VEMD2520		
VSMY2850G	Anode	Cathode

Drawing-No.: 9.800-5091.01-4

Issue: 3; 18.03.10

21571

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.