Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

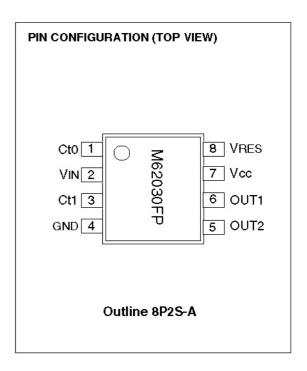
VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

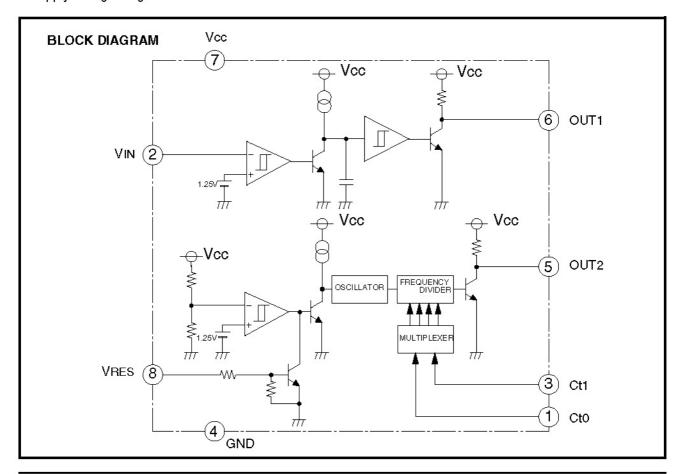
GENERAL DESCRIPTION

The M62030FP is a voltage threshold detector designed for detection of an input voltage/supply voltage and generation of a system reset pulse for almost all logic circuits such as microcontroller.

It contains a delay circuit which provides 200µs (typ) delay and 4 modes of delays [25ms, 50ms, 100ms, 200ms (typ)] in the input voltage detection type and in the supply voltage detection type, respectively.

FEATURES


- · Built-in 2 functional circuits for detecting voltage
- Built-in delay circuit to provide long delay time (without external delay capacitors)
- Selectable 4 modes of delay time
 [25msec, 50msec, 100msec, 200msec(typ)]
- · Few external components
- · Small 8-pin SOP package


APPLICATION

· Reset circuits of MCU, MPU and logics

RECOMMEND OPERATING CONDITION

• Supply voltage range 2V to 10V

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 to 10	V
ISINK1,2	Output Sink Current	Output1,2	8.0	mA
Vo	Output voltage		-0.3 to 10	V
VRES	Self reset input voltage		-0.3 to 10	٧
Pd	Power dissipation		300	m₩
K theta	Thermal Derating	Ta ≥ 25°C	3.0	mW/°C
Topr	Operating temperature		-20 to 75	°C
Tstg	Storage temperature		-40 to 125	°C

ELECTRICAL CHARACTERISTICS (Ta = -20 to 75°C, unless otherwise noted)

< Reset circuit 1 >

Symbol	Parameter	Test Conditions	Limits			Unit	
	raiailletei	l est Collabolis	Min	Тур	Max	Oill	
Vs1	Detecting voltage 1	Ta= 25°C	1.20	1.25	1.30	V	
∆Vs1	Hysteresis voltage 1	Ta= 25°C	9)	15	23	m∀	
TPLH1	Output "L to H" propagation delay time 1	CL=100pF,Ta= 25°C	80	200	500	μs	
VOL1	Low output voltage 1	VIN<1.2V, IOL=5mA, Vcc=5V		0.2	0.4	V	
VIN	Input voltage	Vcc ≤ 7V	-0.3		Vcc	V	
		Vcc > 7V	-0.3		7.0	V	
lin	Input Current	VIN=1.25V		100	500	nA	

< Reset circuit 2 >

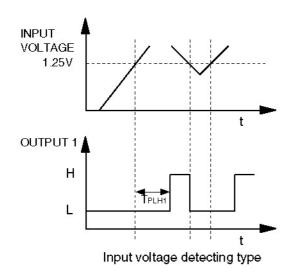
O: ll	Doromotor		Test Conditions		Limits			I In it
Symbol).	Parameter	i est Conditi	Min	Тур	Max	Unit	
VS2	Detectir	ng voltage 2	Ta= 25°C		4.0	4.2	4.4	٧
ΔVS2	Hysteresis voltage 2		Ta= 25°C		30	50	100	m∀
			Ct0 ="L", Ct1="H"			25		ms
TPLH2	Output "L to	H" propagation delay time 2	Ct0 ="H", Ct1="L"	CL=100pF		50		ms
			Ct0 ="H", Ct1="H" or opening	Ta= 25°C		100		ms
			Ct0="L", Ct1="L"			200		ms
VOL2	Low output voltage 2		Vcc=4.0V,IOL=5mA		,	0.2	0.4	٧
VRESH	Calf	Input High voltage		Ta= 25°C	2		Vcc	٧
IRESH	Self Reset	Input High current	VRES=2V	Ta= 25°C			80	μΑ
VRESL		Input Low voltage		Ta= 25°C	-0.3		0.8	٧
VCt0,1H		Input High voltage		Ta= 25°C	1.4			٧
VCt0,1L	Ct0	Input Low voltage		Ta= 25°C			0.6	٧
ICt0,1H	Ct1	Input High current		Ta= 25°C		75		μΑ
ICt0,1L		Input Low current		Ta= 25°C		75	3	μA

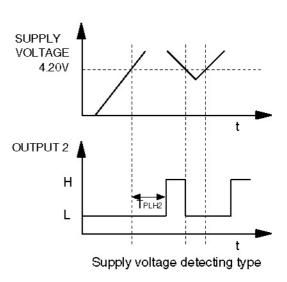
VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

ELECTRICAL CHARACTERISTICS (Ta = -20 to 75°C,unless otherwise noted)

< Common specification >

Symbol	Doromotor	Took Conditions	Limits			I lock
	Parameter	Test Conditions	Min	Тур	Max	Unit
Vcc	Supply Voltage		2	61.0.00	10	V
lcc1	Circuit Current in OFF	Vcc=5V		1.0	2.0	mA
lcc2	Circuit Current in ON	Both circuit "ON" state. Contain pull-up resistor		2.0	4.0	mA
Vs/∆T	Detecting Voltage Temperature Coefficient			0.01		%/°C
ΔVs/ΔT	The hysteresis voltage temperature coefficient			0.01		%/°C
TPLH/∆T	Propagation delay time temperature coefficient			0.10		%/°C
Vон	Output High Voltage	IOH = -40μA	Vcc-0.6	Vcc-0.4	Vcc-0.2	٧
T PHL	Output "H to L" propagation delay time	CL = 100pF		10		μs
VOPL*1	Threshold Operating Voltage	Ta = 25°C		0.67	0.8	V
R	Built-in pull-up resistor		5	10	15	kΩ

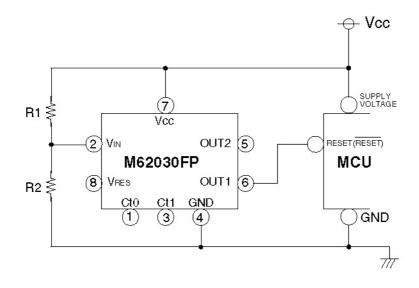

Note*1: Minimum supply voltage to keep output low


PIN DESCRIPTION

Terminal No.	Symbol	Functional Description						
_	1 Cto	Setting delay time. It is possible to set 4 kinds of delay times by inputting "H" or "L" into		25ms	50ms	100ms	200ms	
-			Ct0	L	Ι	Ι	L	
3	Ct1		Ct1	Н	┙	Η	L	
3	Cti	these two terminal.			775		5-50	
2	VIN	Detecting voltage input						
4	GND	Ground						
6	OUT1	Output terminal 1 (Delay time 200µs settlement output)						
5	OUT2	Output terminal 2 (Delay time variable type output)						
7	Vcc	Supply voltage						
8	VRES	It outputs "L"and "H" to OUT2 terminal when the VRES input is "H" and "L", respectively.						

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

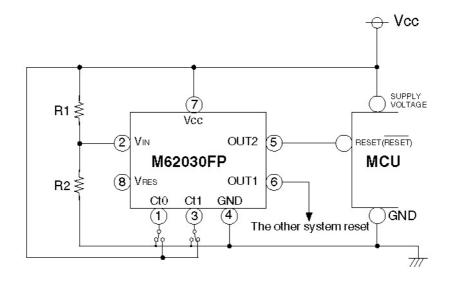
FUNCTION DIAGRAM


EXAMPLE OF APPLICATION CIRCUIT

- 1) The application to microprocessor system
 - Note 1. The Input voltage detection type can be used as the voltage supervisor of microprocessor system like the following circuit.

In this case, a detection power supply voltage is approximately 1.25 x (R1+R2)/ R2 (v).

The detecting supply voltage can be set between 2V and 10V.


- Note 2. The detecting voltage can be adjusted by changing R1 and/or R2 in the following circuit. The detection accuracy is ±4%.
- Note 3. It has a delay capacitor and the delay time is about 200µs.

VOLTAGE DETECTING, SYSTEM RESETTING IC SERIES

2) The Variable setup time type

Note 1. A delay time of the supply voltage detection type can be set to one among 25ms, 50ms, 100ms and 200ms by the combination of pin 1 and pin 3.

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit design,in order to prevent fires from spreading, redundancy, malfunction or other mishap.