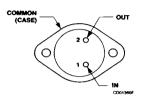


A Schlumberger Company

MIL-STD-883 July 1986—Rev 2⁵

Description


The μ A7805QB 3-Terminal Positive Voltage Regulator is constructed using the Fairchild Planar Epitaxial process. This regulator employs internal current-limiting, thermal shutdown and safe-area compensation making it essentially indestructible. If adequate heat sinking is provided, it can deliver over 1 A output current. It is intended as a fixed voltage regulator in a wide range of applications including local, on-card regulation for elimination of distribution problems associated with single point regulation. In addition to use as a fixed voltage regulator, this device can be used with external components to obtain adjustable output voltages and currents. §

- Output Current in Excess Of 1 A
- No External Components
- Internal Thermal Overload Protection
- Internal Short Circuit Current-Limiting
- Output Transistor Safe-Area Compensation

μA7805QB 3-Terminal Positive Voltage Regulator

Aerospace and Defense Data Sheet Linear Products

Connection Diagram 2-Lead TO-3 Can (Top View)

Order Information

	Case/	Package Code				
Part No.	Finish	Mil-M-38510, Appendix C				
μA7805KMQB	YC	2-Lead Can				

JAN Product Available

10706	BYA	2-Lead Can
10706	BYC	2-Lead Can

μA7805QB

Absolute Maximum Ratings

Storage Temperature Range -65°C to +175°C
Operating Temperature Range -55°C to +125°C
Lead Temperature (soldering, 60 s)
Internal Power Dissipation⁹
Can Without Heat Sink¹⁰ 0.71 W
Can With Heat Sink¹¹ 5.6 W
Input Voltage 35 V

Processing: MIL-STD-883, Method 5004

Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883, Method 5005

Group A Electrical Tests Subgroups:

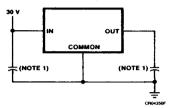
- 1. Static tests at 25°C
- 2. Static tests at 125°C
- 3. Static tests at -55°C
- 4. Dynamic tests at 25°C
- 9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1

Notes

- 1. 100% Test and Group A
- 2. Group A
- 3. Periodic tests, Group C
- 4. Guaranteed but not tested
- When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision.
- For more information on device function, refer to the Fairchild Linear Data Book Commercial Section.
- All characteristics except line and load transient response and noise are measured using pulse techniques (t_W ≤ 10 ms, duty cycle ≤ 5%).
 Output voltage changes due to changes in the internal temperature must be taken into account separately.
- 8. Conditions given will result in the following: $P_D \le 15$ W.
- 9. Internally limited.
- Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 35°C/W.
- Rating applies to ambient temperatures up to 125°C. Above 125°C, derate linearly at 4.46°C/W.

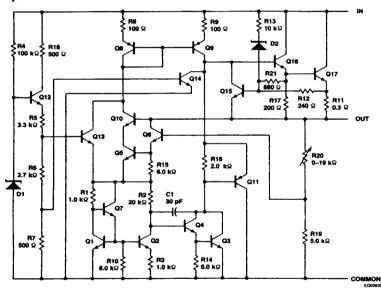
μ A7805QB


 μ A7805QB Electrical Characteristics V_I = 10 V, I_L = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.⁷

Symbol	Characteristic	Condition		Min	Max	Unit	Note	Subgrp
V_O	Output Voltage ⁸			4.8	5.2	V	1	1
		5.0 mA ≤ I _L ≤ 1.0 A	V _I = 8.0 V	4.65	5.35	V	1	1,2,3
			V ₁ = 20 V	4.65	5.35	V	1	1,2,3
$\Delta V_{O}/\Delta T$	Average Temperature Coefficient of Output Voltage	$I_L = 5.0 \text{ mA}, 25^{\circ}\text{C} \le T_A \le 125^{\circ}\text{C}$			1.5	mV/°C	4	2
		I _L = 5.0 mA, -55°C ≤ T _A ≤ 25°C			2.0	mV/°C	4	3
V _{R LINE}	Line Regulation	7.0 V ≤ V _I ≤ 25 V			50	mV	1	1
		8.0 V ≤ V ₁ ≤ 25 V			50	mV	1	2,3
		8.0 V ≤ V _I ≤ 12 V			25	mV	1	1
					50	mV	1	2,3
V _{R LOAD} Load Regulation		5.0 mA ≤ I _L ≤ 1.5 A			100	mV	1	1,2,3
		250 mA ≤ I _L ≤ 750 m	Α		25	mV	1	1
					50	mV	1	2,3
I _{SCD} Standby Curren	Standby Current Drain				6.0	mA	1	1
					7.0	mA	1	2,3
ΔI _{SCD} (LINE)	Standby Current Drain Change (vs Line Voltage)	8.0 V ≤ V _I ≤ 25 V			0.8	mA	1	1,2,3
ΔI _{SCD} (LOAD)	Standby Current Drain Change (vs Load Current)	5.0 mA ≤ I _L ≤ 1.0 A			0.5	mA	1	1,2,3
V _{DO}	Dropout Voltage	I _L = 1.0 A		1	2.5	٧	1	1
los	Output Short Circuit Current	V ₁ = 35 V			2.0	Α	1	1,2,3
loL	Overload Current	V _i = 12 V		1.3	3.3	Α	1	1,2,3
$\Delta V_I/\Delta V_O$	Ripple Rejection	V _I = 10 V, I _L = 350 mA, e _i = 1.0 V _{rms} , f = 2400 Hz		60		dB	1	4
No	Noise	$V_{l} = 10 \text{ V}, I_{L} = 100 \text{ mA},$ 10 Hz \leq f \leq 10 kHz			125	μV_{rms}	4	9
$\Delta V_{O}/\Delta V_{I}$	Line Transient Response	V _I = 10 V, I _L = 5.0 mA, V _{pulse} = 3.0 V			30	mV/V	4	9
$\Delta V_{\rm O}/\Delta I_{\rm L}$	Load Transient Response	$V_{I} = 10 \text{ V}, I_{L} = 100 \text{ mA},$ $\Delta I_{L} = 400 \text{ mA}$			2.5	mV/mA	4	9

μ**A7805QB**

Primary Burn-In Circuit


(38510/10706 may be used by FSC as an alternate)

Note

1. Capacitor value necessary to suppress oscillations.

Equivalent Circuit

