

CYPRESS

CY62148V MoBL™

512K x 8 MoBL Static RAM

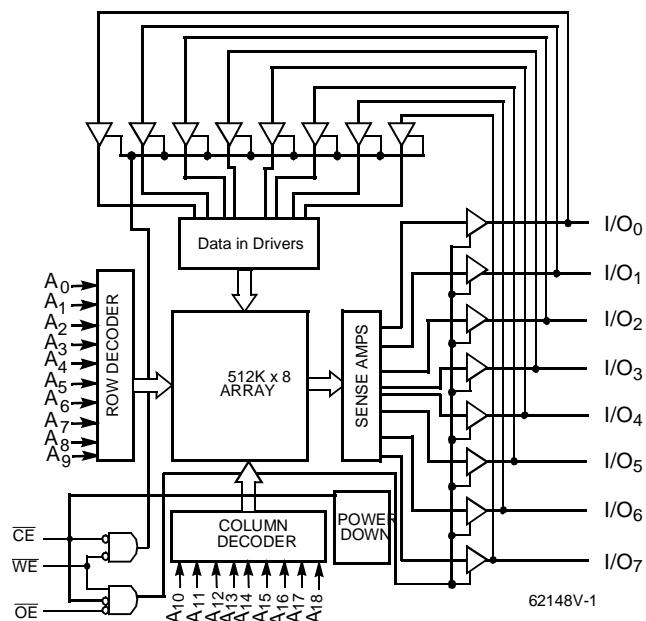
Features

- **Low voltage range:**
— 2.7V–3.6V
- **Ultra low active power**
- **Low standby power**
- **TTL-compatible inputs and outputs**
- **Automatic power-down when deselected**
- **CMOS for optimum speed/power**

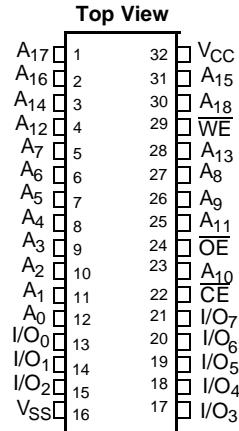
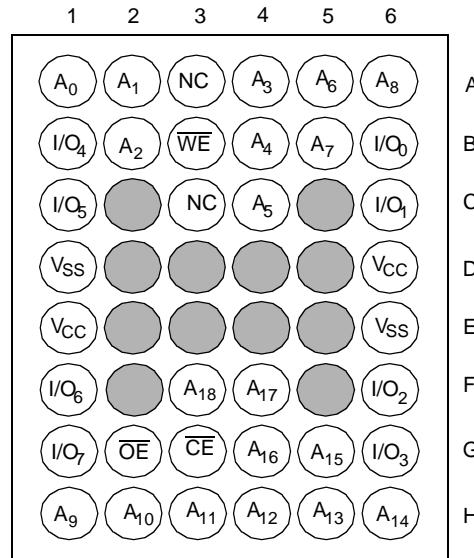
Functional Description

The CY62148V is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling.

The device can be put into standby mode when deselected (\overline{CE} HIGH).


Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. Data on the eight I/O pins (I/O_0 through I/O_7) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (OE) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.



The eight input/output pins (I/O_0 through I/O_7) are placed in a high-impedance state when the device is deselected (\overline{CE} HIGH), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE} LOW and WE LOW).

The CY62148V is available in a 36-ball FBGA, 32 pin TSOPII, and a 32-pin SOIC package.

Logic Block Diagram

Pin Configurations

TSOPII/SOIC

**FBGA
Top View**

62148V-2

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature -65°C to +150°C

Ambient Temperature with

Power Applied 55°C to +125°C

Supply Voltage to Ground Potential -0.5V to +4.6V

DC Voltage Applied to Outputs
in High Z State^[1] -0.5V to V_{CC} + 0.5V

DC Input Voltage^[1] -0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)

Latch-Up Current >200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	-40°C to +85°C	2.7V to 3.6V

Product Portfolio

Product	V _{CC} Range			Speed	Power Dissipation (Industrial)			
					Operating (I _{CC})		Standby (I _{SB2})	
	Min.	Typ. ^[2]	Max.		Typ. ^[2]	Maximum	Ty.p ^[2]	Maximum
CY62148V	2.7V	3.0V	3.6V	70 ns	7	15 mA	2 μ A	20 μ A

Notes:

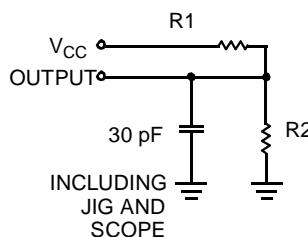
1. V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

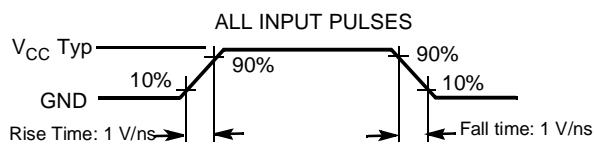
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		CY62148V			Unit
				Min.	Typ. ^[2]	Max.	
V_{OH}	Output HIGH Voltage	$I_{OH} = -1.0$ mA	$V_{CC} = 2.7V$	2.4			V
V_{OL}	Output LOW Voltage	$I_{OL} = 2.1$ mA	$V_{CC} = 2.7V$			0.4	V
V_{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		$V_{CC} + 0.5V$	V
V_{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I_{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	± 1	+1	μA
I_{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled		-1	± 1	+1	μA
I_{CC}	V_{CC} Operating Supply Current	$I_{OUT} = 0$ mA, ($f = f_{MAX} = 1/t_{RC}$) CMOS Levels	$V_{CC} = 3.6V$		7	15	mA
		$I_{OUT} = 0$ mA, $f = 1$ MHz CMOS Levels			1	2	mA
I_{SB1}	Automatic CE Power-Down Current—CMOS Inputs	$\bar{CE} \geq V_{CC} - 0.3V$, $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$, $f = f_{MAX}$				100	μA
I_{SB2}	Automatic CE Power-Down Current—CMOS Inputs	$\bar{CE} \geq V_{CC} - 0.3V$	L		1	50	μA
		$V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$, $f = 0$		$V_{CC} = 3.6V$	LL	2	20

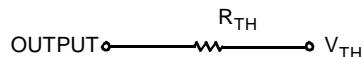
Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$T_A = 25^\circ C$, $f = 1$ MHz, $V_{CC} = 3.0V$	6	pF
C_{OUT}	Output Capacitance		8	pF

Thermal Resistance


Description	Test Conditions	Symbol	Others	BGA	Units
Thermal Resistance ^[3] (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	TBD	TBD	$^\circ C/W$
Thermal Resistance ^[3] (Junction to Case)		Θ_{JC}	TBD	TBD	$^\circ C/W$

Note:

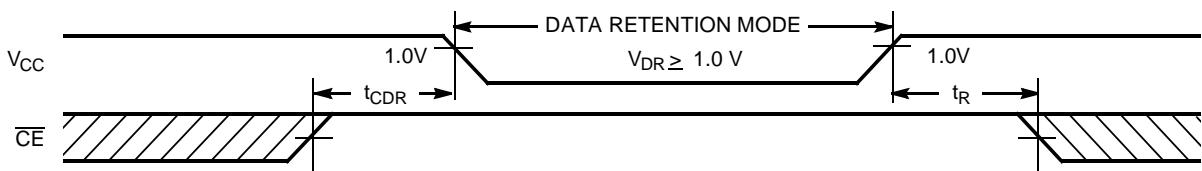

3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

62148V-3

62148V-4

 Equivalent to: **THÉVENIN EQUIVALENT**


Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R_{TH}	645	Ohms
V_{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V_{CC} for Data Retention			1.0		3.6	V
I_{CCDR}	Data Retention Current	$V_{CC} = 1.0V$ $CE \geq V_{CC} - 0.3V$, $V_{IN} \geq V_{CC} - 0.3V$ or $V_{IN} \leq 0.3V$ No input may exceed $V_{CC} + 0.3V$	L/LL	0.2	5.5	μA	μA
$t_{CDR}^{[3]}$	Chip Deselect to Data Retention Time			0			ns
$t_R^{[4]}$	Operation Recovery Time			t_{RC}			ns

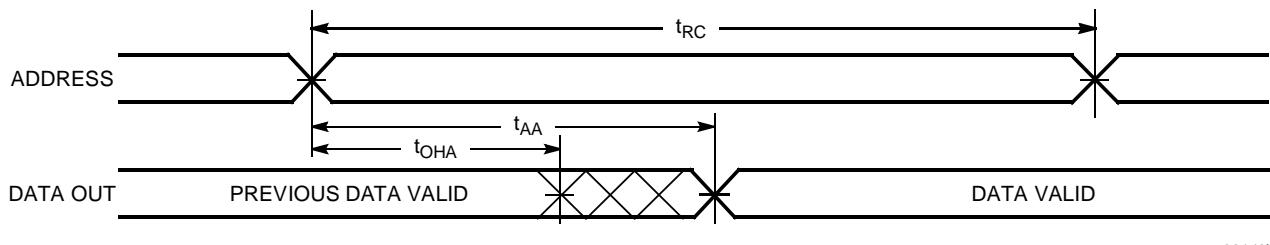
Note:

 4. Full Device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(\min.)} \geq 10 \mu s$ or stable at $V_{CC(\min.)} \geq 10 \mu s$.

Data Retention Waveform

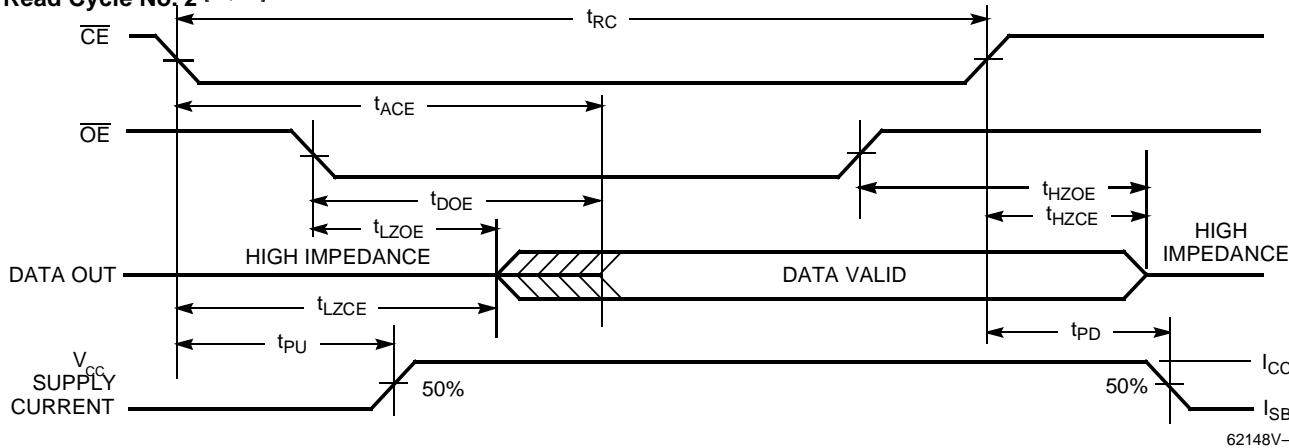
62148V-5

Switching Characteristics Over the Operating Range^[5]

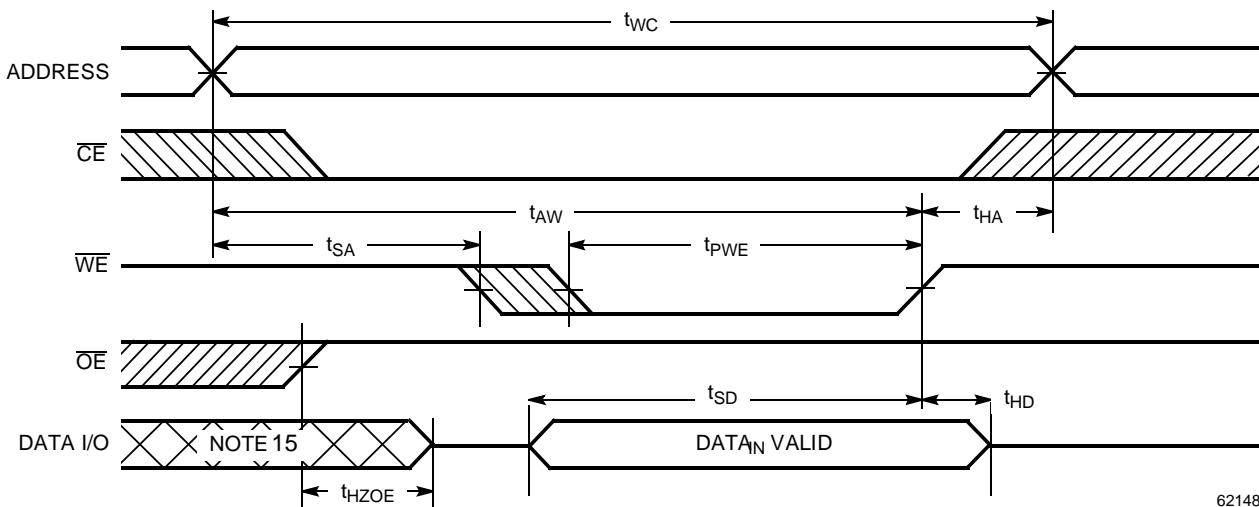

Parameter	Description	(2.7V–3.6V Operation)		Unit
		Min.	Max.	
READ CYCLE				
t_{RC}	Read Cycle Time	70		ns
t_{AA}	Address to Data Valid		70	ns
t_{OHA}	Data Hold from Address Change	10		ns
t_{ACE}	\overline{CE} LOW to Data Valid		70	ns
t_{DOE}	\overline{OE} LOW to Data Valid		35	ns
t_{LZOE}	\overline{OE} LOW to Low Z ^[6]	5		ns
t_{HZOE}	\overline{OE} HIGH to High Z ^[7]		25	ns
t_{LZCE}	\overline{CE} LOW to Low Z ^[6]	10		ns
t_{HZCE}	\overline{CE} HIGH to High Z ^[6, 7]		25	ns
t_{PU}	\overline{CE} LOW to Power-Up	0		ns
t_{PD}	\overline{CE} HIGH to Power-Down		70	ns
WRITE CYCLE ^[8, 9]				
t_{WC}	Write Cycle Time	70		ns
t_{SCE}	\overline{CE} LOW to Write End	60		ns
t_{AW}	Address Set-Up to Write End	60		ns
t_{HA}	Address Hold from Write End	0		ns
t_{SA}	Address Set-Up to Write Start	0		ns
t_{PWE}	\overline{WE} Pulse Width	50		ns
t_{SD}	Data Set-Up to Write End	30		ns
t_{HD}	Data Hold from Write End	0		ns
t_{HZWE}	\overline{WE} LOW to High Z ^[6, 7]		25	ns
t_{LZWE}	\overline{WE} HIGH to Low Z ^[6]	10		ns

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to $V_{CC(\text{typ.})}$, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
7. t_{HZOE} , t_{HZCE} , and t_{LZWE} are specified with $C_L = 5$ pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for Write Cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD} .


Switching Waveforms

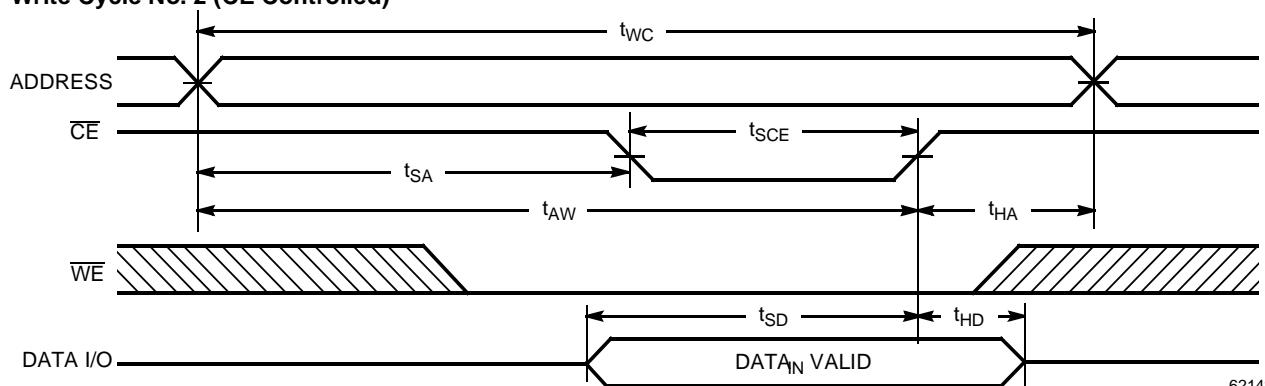
Read Cycle No. 1^[10, 11]


62148V-6

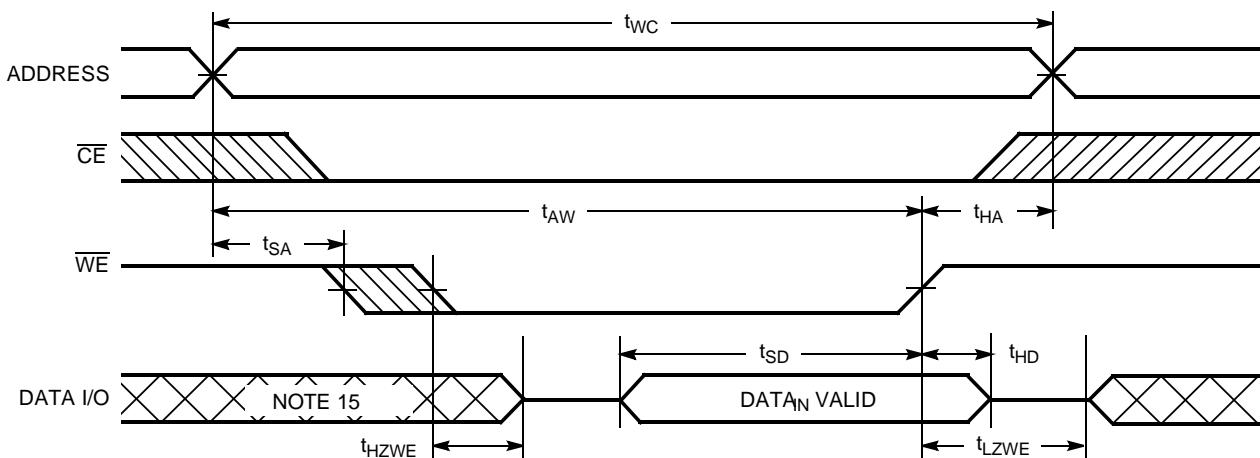
Read Cycle No. 2^[11, 12]

62148V-7

Write Cycle No. 1 (\overline{WE} Controlled)^[8, 13, 14]

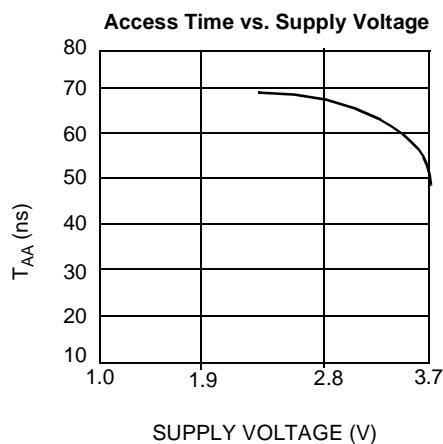
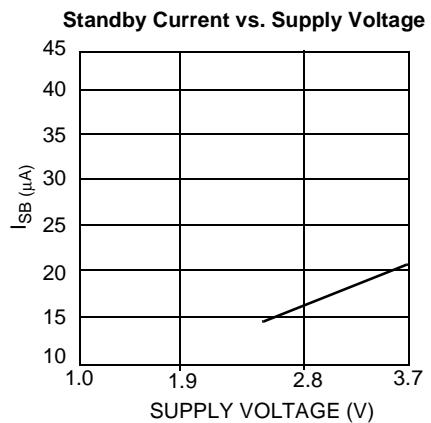
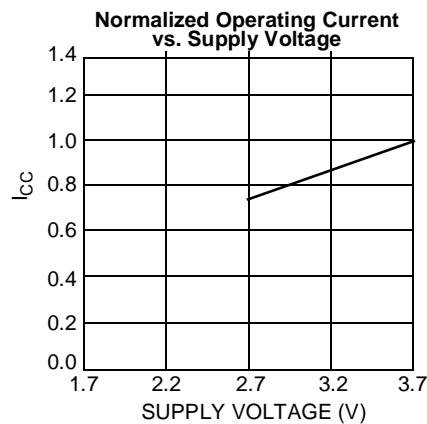


62148V-8


Notes:

10. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
11. \overline{WE} is HIGH for read cycle.
12. Address valid prior to or coincident with \overline{CE} transition LOW.
13. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
14. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
15. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

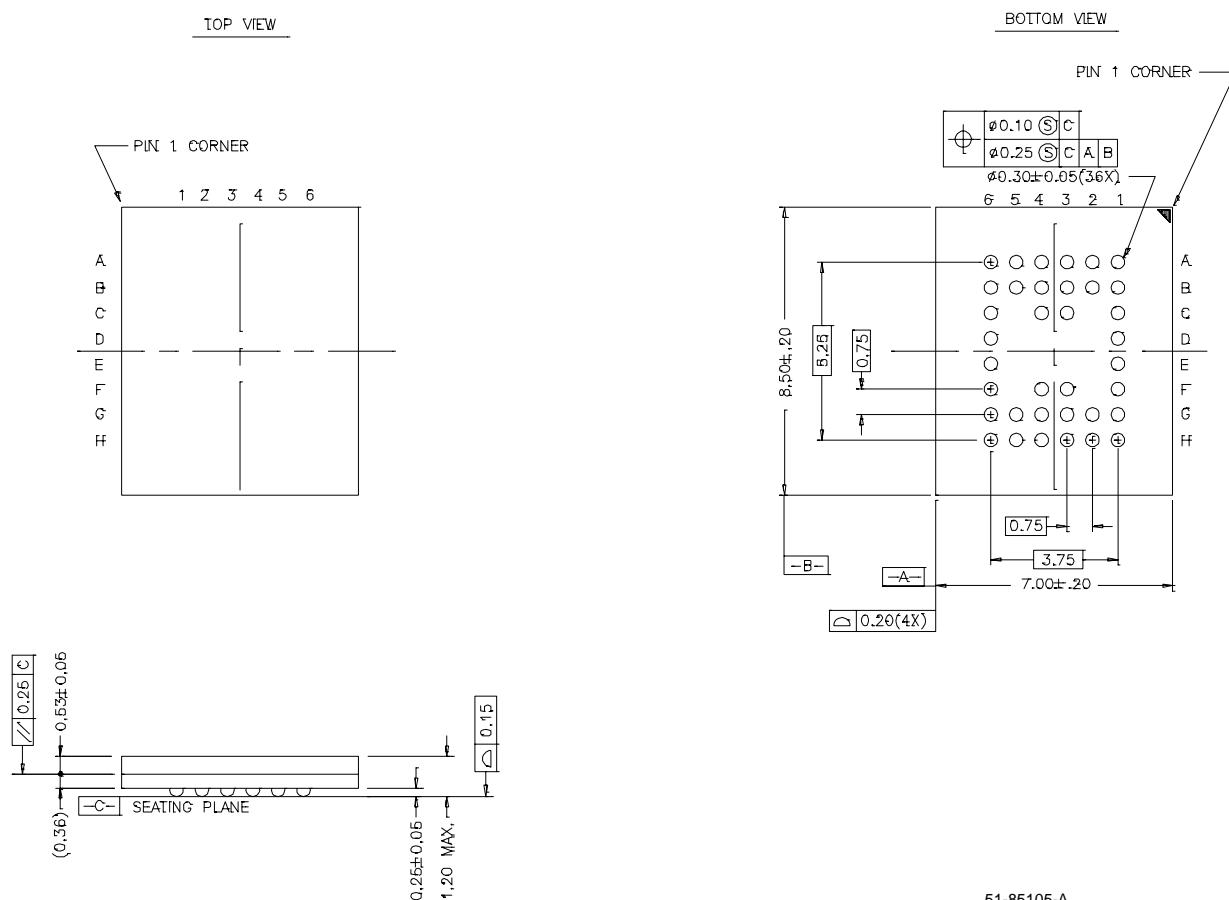



Write Cycle No. 2 (\overline{CE} Controlled) [8, 13, 14]

62148V-9

Write Cycle No. 3 (\overline{WE} Controlled, \overline{OE} LOW) [9, 14]

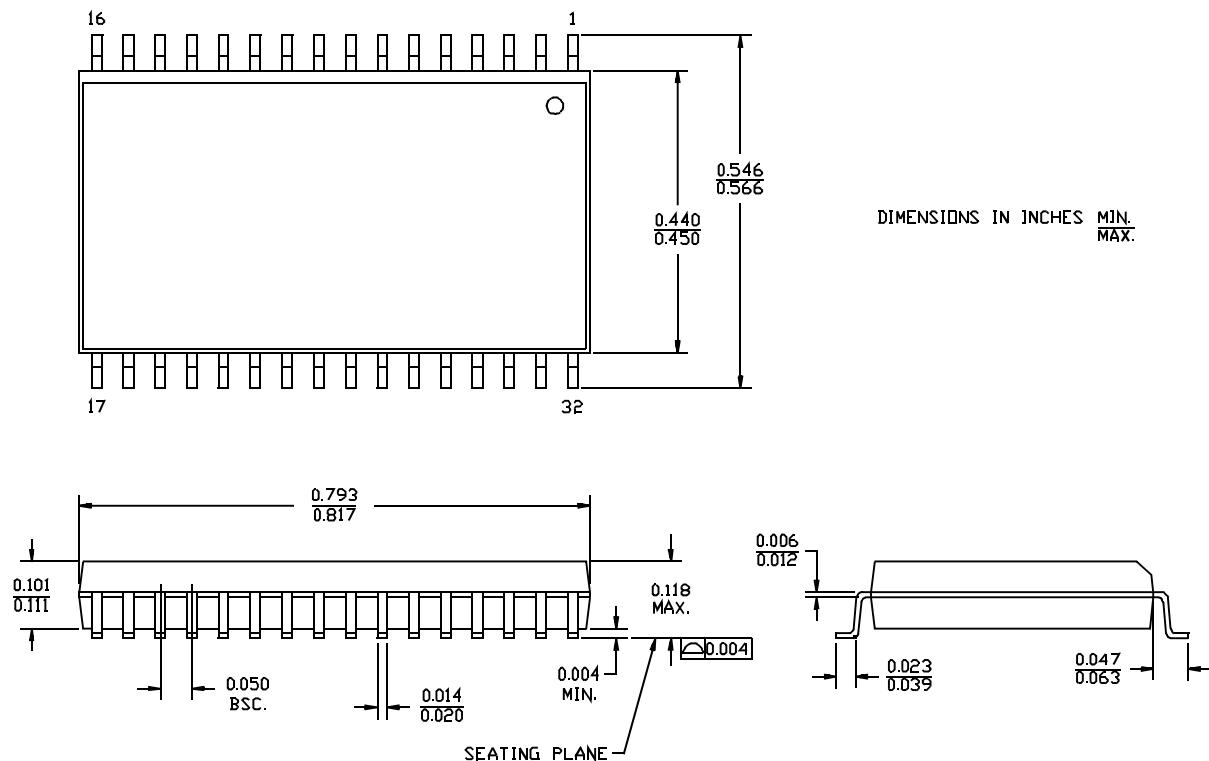
62148-10

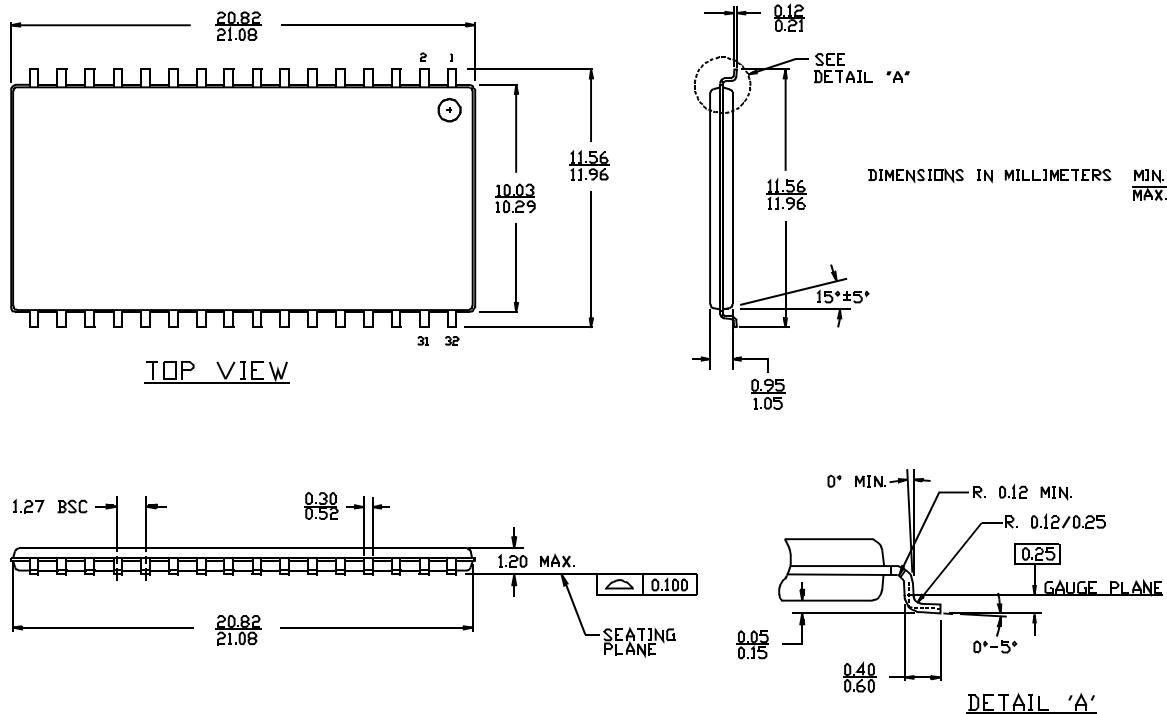
Typical DC and AC Characteristics


Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby (I_{SB})
L	H	L	Data Out	Read	Active (I_{CC})
L	L	X	Data In	Write	Active (I_{CC})
L	H	H	High Z	Output Disabled	Active (I_{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62148VLL-70BAI	BA37	36-Ball Fine Pitch BGA	Industrial
	CY62148VLL-70ZI	ZS32	32-Lead TSOPII	
	CY62148VLL-70SI	S34	32-Lead 450 mil. molded SOIC	


Document #: 38-00646-C

Package Diagrams
36-Ball (7.00 mm x 8.5 mm x 1.5 mm) Thin BGA BA37

* THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS
ARE DIFFERENT FROM JEDEC SPEC M0192 (LOW PROFILE BGA FAMILY)

Package Diagrams (continued)

32-Lead (450 MIL) Molded SOIC S34

Package Diagrams (continued)
32-Lead TSOP II ZS32

51-85095