4-channel PWM driver for CD and MD use BH6512FS / BH6513FS

The BH6512FS/BH6513FS are 4-channel PWM drivers for driving the motors and actuators in CD and MD players. MOSFET output stages are employed to keep power consumption down, and a charge pump circuit is included to multiply the VG voltage.

Applications

CD and MD players (portable units)

Features

- 1) Four power MOS H-bridges.
- 2) Charge pump $(\times 3)$.
- 3) PWM input.

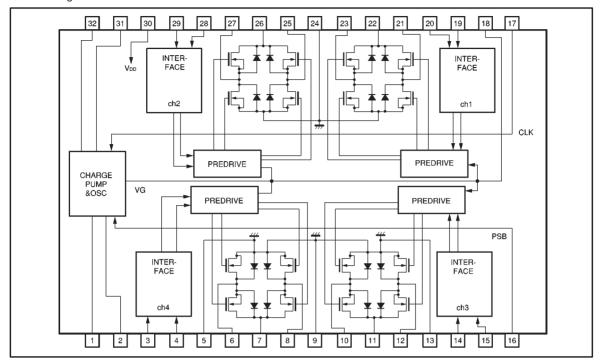
- 4) Low on-resistance.
- 5) Low power consumption.
- 6) Compact SSOP-A32 package.

■Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
H-bridge power supply voltage	VM	9	٧
Control circuit power supply voltage	VDD	9	٧
Pre-driver power supply voltage	VG (pin18)	12	V
Driver output current	lo (ch3, ch4)	500	1
	lo (ch1, ch2)	300*1	mA
Power dissipation	Pd	850* ²	mW
Operating temperature	Topr	−20~+85	င
Storage temperature	Tstg	−55∼ +150	°

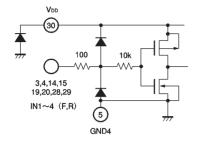
^{*1 500}ms.

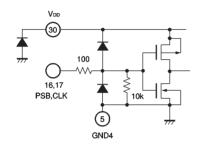
● Recommended operating conditions (Ta = 25°C)

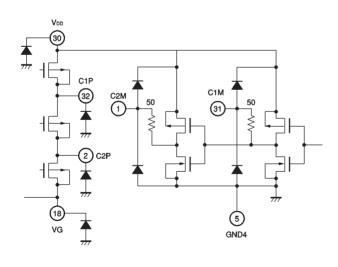

Parameter	Symbol	Min.	Тур.	Max.	Unit
H-bridge power supply voltage	VM	1.6	2.5	5.5	V
Control circuit power supply voltage	V _{DD}	2.4 2.7* ³	3.0	5.5	V
Pre-driver power supply voltage	VG (pin18)	VM+3.0	9	11.5	V
Ambient temperature	Та	-35	25	85	°C
Pulse input frequency fin		_	176.4	200	kHz

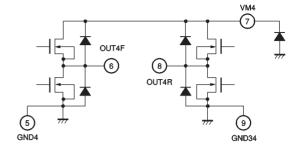
^{*3} When VG is supplied externally.

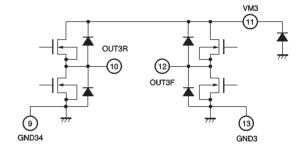
^{*2} Reduced by 6.8mW for each increase in Ta of 1°C over 25°C.

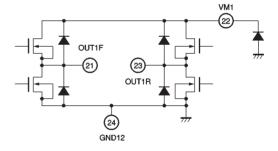

Block diagram




Pin descriptions


Pin No.	Pin name	Function		Pin name	Function	
1 C2M	Negative connection pin for charge		CLK	Synchronous clock input		
'	1 OZIVI	pump capacitor 2		VG	Charge pump output	
2	2 C2P	Positive connection pin for charge pump capacitor 2		IN1R	Channel 1 reverse input	
	OZI			IN1F	Channel 1 forward input	
3	IN4R	Channel 4 reverse input	21	OUT1F	Channel 1 forward output	
4	IN4F	Channel 4 forward input	22	VM1	Channel 1 power block power supply	
5	GND4	Channel 4 GND and pre block GND	23	OUT1R	Channel 1 reverse output	
6	OUT4F	Channel 4 forward output	24	GND12	Channels 1 and 2 power GND	
7	VM4	Channel 4 power block power supply	25	OUT2R	Channel 2 reverse output	
8	OUT4R	Channel 4 reverse output	26	VM2	Channel 2 power block power supply	
9	GND34	Channels 3 and 4 power GND	27	OUT2F	Channel 2 forward output	
10	OUT3R	Channel 3 reverse output	28	IN2F	Channel 2 forward input	
11	VM3	Channel 3 power block power supply	29	IN2R	Channel 2 reverse input	
12	OUT3F	Channel 3 forward output	30	V _{DD}	Pre block power supply	
13	GND3	Channel 3 power GND	31	C1M	Negative connection pin for charge	
14	IN3F	Channel 3 forward input	"		pump capacitor 1	
15	IN3R	Channel 3 reverse input	32	C1P	Positive connection pin for charge pump capacitor 1	
16	PSB	Power off	32	OIF		


Input / output circuits



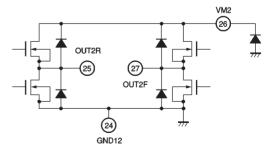


Fig.1

•Electrical characteristics (unless otherwise noted, Ta = 25 °C, VM = 2.5 V, V_{DD} = 3 V, VG is the internally pumped output, f_{IN} = 176kHz, and RL = 8 Ω - 47 μ H)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
⟨H-bridge power supply current⟩							
No input	IMST	_	_	1	μΑ	_	
Control circuit power supply cur	rent>						
Standby	IDDST	_	_	1	μΑ	PSB=L	
No signal	IDDO	_	0.6	1	mA	PSB=H, all inputs Low	
Operation	IDDA	_	3.3	6.5	mA	PSB=H, all channels driven together	
Pre-drive power supply voltage	>						
No input	IG1	7.5	8.9	10	V	PSB=H, all inputs Low	
Operation	IG2	6.0	7.2	9.5	V	PSB=H, all channels driven together	
(Logic input characteristics)							
Input high level voltage	VIH	V _{DD} -0.6	_	_	V	_	
Input low level voltage	VIL	_	-	0.6	V	_	
Input high level current 1	IIH1	_	_	1	μΑ	V _{IN} = 3V, each driver input	
Input low level current 1	IIL1	-1	_	_	μΑ	V _{IN} = 0V, each driver input	
Input high level current 2	IIH2	_	300	600	μА	V _{IN} = 3V, CLK, PSB pins	
Input low level current 2	IIL2	-1	-	_	μΑ	V _{IN} = 0V, CLK, PSB pins	
	RON3, 4	_	0.8	1.2	_	Balance of top and bottom resistors	
Output on-resistance	RON1, 2	_	1.2	2.0	Ω	VG = 10V	
Output transmission	tRISE	_	0.2	1	μsec	_	
delay time	tFALL	_	0.2	1	μsec	_	
Minimum input pulse width	tmin	200	-	_	nsec	Output pulse width 2 / 3 tmin or more	
Oscillator circuit							
Free-running frequency	fosc	150	300	400	kHz	Pin 32 waveform monitor	
Clock period range	fsync	100	_	500	kHz	Input from CLK input	

ONot designed for radiation resistance.

Driver truth table

PSB*	IN1∼4F	IN1∼4R	OUT1∼3F	OUT1∼3R	OUT4F	OUT4R
Н	L	L	L	L	L	L
Н	L	Н	L	Н	L	Н
Н	Н	L	Н	L	L	L
Н	Н	Н	L	L	Н	L
L	×	×	High-Z	High-Z	High-Z	High-Z

^{*} When PSB is Low, all outputs are high impedance, regardless of the state of the inputs. Also, the voltage multiplier circuit oscillator stops oscillating.

Measurement circuit

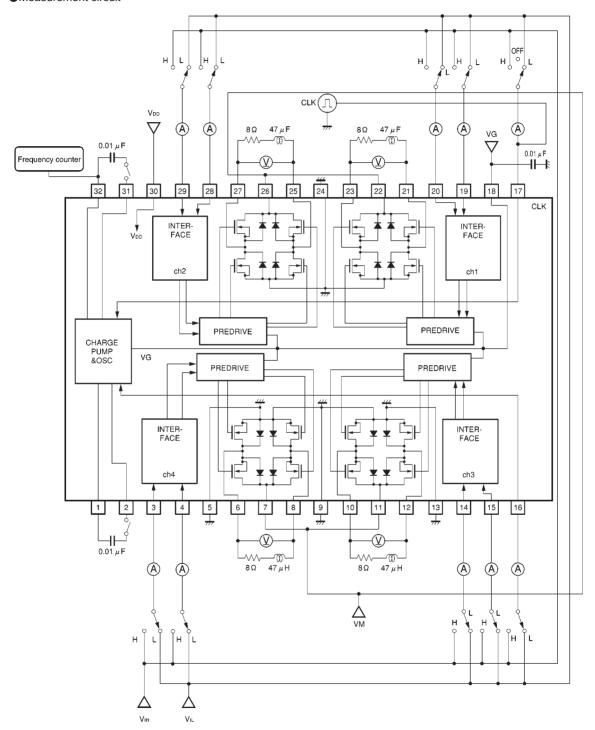
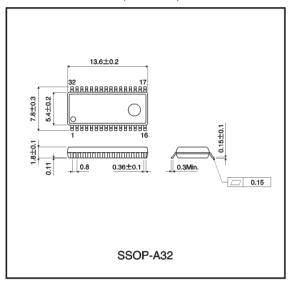


Fig.2


Operation notes

- (1) The charge pump circuit is a \times 3 multiplier that uses the voltage on pin 30 as its reference. Therefore, set the voltage (VDD) on pin 30 so that the VG does not exceed its rating.
- (2) If you will use an externally-supplied VG, disconnect the capacitors between pins 31 and 32 and pins 1 and 2.

(3) The charge pump oscillator circuit runs freely when the CLK pin is connected to either V_{DD} or GND. Also, as there is a pull-down resistor on the chip, it will also free run if CLK is left floating.

To synchronize with an external clock, input the clock pulses from the CLK pin.

External dimensions (Units: mm)

