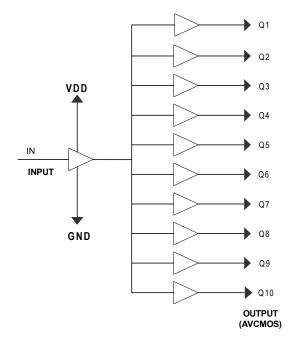


1:10 Clock Fanout Buffer

Features

- Low-voltage operation
- V_{DD} range from 2.5 V to 3.3 V
- 1:10 fanout
- Over voltage tolerant input hot swappable
- Drives either a 50-Ohm or 75-Ohm transmission line
- Low-input capacitance
- 250 ps typical output-to-output skew
- 19 ps typical DJ jitter
- Typical propagation delay < 3.5 ns
- High-speed operation > 500 MHz
- Industrial temperature range
- Available packages include: SSOP


Functional Description

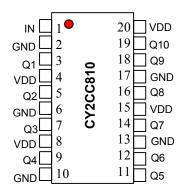
The Cypress series of network circuits are produced using advanced 0.35-micron CMOS technology, achieving the industry's fastest logic and buffers.

The Cypress CY2CC810 fanout buffer features one input and ten outputs. Designed for data communications clock management applications, the large fanout from a single input reduces loading on the input clock.

For a complete list of related documentation, click here.

Logic Block Diagram

Contents


Pin Configuration	3
Pin Description	
Absolute Maximum Conditions	
DC Electrical Characteristics	4
DC Electrical Characteristics	5
Capacitance	
Thermal Resistance	
Power Supply Characteristics	6
High-frequency Parametrics	
AC Switching Characteristics	
AC Switching Characteristics	
Parameter Measurement Information	
Parameter Measurement Information	

Ordering Information	11
Ordering Code Definitions	11
Package Drawing and Dimensions	12
Acronym	13
Document Conventions	13
Units of Measure	13
Document History Page	14
Sales, Solutions, and Legal Information	15
Worldwide Sales and Design Support	15
Products	
PSoC®Solutions	15
Cypress Developer Community	15
Technical Support	

Pin Configuration

Figure 1. 20-pin SSOP pinout

20 pin SOIC/SSOP

Pin Description

Pin Number	Pin Name	Description		
1	IN	Input	LVCMOS	
2, 6, 10, 13, 17	GND	Ground	Power	
4, 8, 15, 20	V_{DD}	Power Supply	Power	
3, 5, 7, 9, 11, 12, 14, 16, 18, 19	Q1 Q10	Output	AVCMOS	

Absolute Maximum Conditions

Parameter [1, 2]	Description	Min	Max	Unit
V_{DD}	V _{DD} ground supply voltage	-0.5	4.6	V
V _{IN}	Input supply voltage to ground potential	-0.5	5.8	V
V _{OUT}	Output supply voltage to ground potential	-0.5	V _{DD} + 1	V
T _S	Temperature, storage	-65	150	°C
T _A	Temperature, operating ambient	-40	85	°C
	Power dissipation	0.	75	W

DC Electrical Characteristics

@ 3.3 V (see Figure 6)

Parameter	Description	Condition	ıs	Min	Тур	Max	Unit
V _{OH}	Output high voltage	V _{DD} = Min, V _{IN} = V _{IH} or V _{IL}	I _{OH} = –12 mA	2.3	3.3	-	V
V _{OL}	Output low voltage	V _{DD} = Min, V _{IN} = V _{IH} or V _{IL}	I _{OL} = 12 mA	-	0.2	0.5	V
V _{IH}	Input high voltage	Guaranteed Logic High Level	-	2	_	5.8	V
V _{IL}	Input low voltage	Guaranteed Logic Low Level	-	-	-	0.8	V
I _{IH}	Input high current	V _{DD} = Max	V _{IN} = 2.7 V	=	-	1	μΑ
I _{IL}	Input low current	V _{DD} = Max	V _{IN} = 0.5 V	=	-	-1	μΑ
I _I	Input high current	$V_{DD} = Max,$ $V_{IN} = V_{DD}(Max)$	-	-	-	20	μА
V _{IK}	Clamp diode voltage	V_{DD} = Min, I_{IN} = -18 mA	-	_	-0.7	-1.2	V
I _{OK}	Continuous clamp current	V _{DD} = Max, V _{OUT} = GND	-	-	-	-50	mA
O _{OFF}	Power down disable	V_{DD} = GND, $V_{OUT} \le 4.5 \text{ V}$	-	_	-	100	μА
V _H	Input hysteresis	V _{DD} = Min, V _{IN} = V _{IH} or V _{IL}	-	_	80		mV

Stresses greater than those listed under absolute maximum ratings may cause permanent damage to the device. This is intended to be a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
 Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

DC Electrical Characteristics

@ 2.5 V (see Figure 2)

Parameter	Description	Condition	ıs	Min	Тур	Max	Unit
V _{OH}	Output high voltage	V _{DD} = Min,	I _{OH} = -7 mA	1.8	_	_	V
		$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = 12 mA	1.6	_	_	V
V _{OL}	Output low voltage	V _{DD} = Min, V _{IN} = V _{IH} or V _{IL}	I _{OL} = 12 mA		-	0.65	V
V _{IH}	Input high voltage	Guaranteed Logic High Level	-	1.6	-	5.0	V
V _{IL}	Input low voltage	Guaranteed Logic Low Level	-	-	_	0.8	V
I _{IH}	Input high current	V _{DD} = Max	V _{IN} = 2.4 V	_	_	1	μА
I _{IL}	Input low current	V _{DD} = Max	V _{IN} = 0.5 V	_	_	-1	μА
II	Input high current	V_{DD} = Max, V_{IN} = V_{DD} (Max)	-	-	_	20	μА
V _{IK}	Clamp diode voltage	V_{DD} = Min, I_{IN} = -18 mA	-	_	-0.7	-1.2	V
I _{OK}	Continuous clamp current	V _{DD} = Max, V _{OUT} = GND	-	_	-	-50	mA
O _{OFF}	Power-down disable	V _{DD} = GND, V _{OUT} ≤ 4.5 V	-	-	_	100	μА
V _H	Input hysteresis	-	-	-	80	_	mV

Capacitance

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
Cin	Input capacitance	V _{IN} = 0 V	_	2.5	_	pF
Cout	Output capacitance	V _{OUT} = 0 V	_	6.5	_	pF

Thermal Resistance

Parameter [3]	Description	Test Conditions	20-pin SSOP	Unit
θ_{JA}	(junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, in		°C/W
- 30	Thermal resistance (junction to case)	accordance with EIA/JESD51.	35	°C/W

Document Number: 38-07056 Rev. *J

Note
3. These parameters are guaranteed by design and are not tested.

Power Supply Characteristics

(see Figure 6)

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
Δ_{ICC}	Delta I _{CC} quiescent power supply current	$(I_{DD} @ V_{DD} = Max and V_{IN} = V_{DD}) - (I_{DD} @ V_{DD} = Max and V_{IN} = V_{DD} - 0.6 V)$	-	_	50	μА
I _{CCD}	Dynamic power supply current	V _{DD} = Max Input toggling 50% Duty Cycle, Outputs Open	-		0.63	mA/ MHz
I _C		V _{DD} = Max Input toggling 50% Duty Cycle, Outputs Open fL = 40 MHz	-	_	25	mA
t _{PU}	Power-up time for all V _{DD} s	Power-up to reach minimum specified voltage (power ramp must be monotonic)	0.05	_	500	ms

High-frequency Parametrics

Parameter	Description	Test Conditions		Min	Тур	Max	Unit
D _J	Jitter, Deterministic	50% duty cycle t _W (50–50)	2.5 V	_	23	35	ps
		The "point to point load circuit" Output Jitter – Input Jitter	3.3 V	-	19	30	ps
F _{max(3.3 V)}	Maximum frequency V _{DD} = 3.3 V	50% duty cycle t _W (50–50) Standard Load Circuit.	See Figure 6	_	-	160	MHz
		50% duty cycle t _W (50–50) The "point to point load circuit"	See Figure 8	-	-	650	
F _{max(2.5 V}	Maximum frequency V _{DD} = 2.5 V	The "point to point load circuit" V _{IN} = 2.4 V/0.0 V V _{OUT} = 1.7 V/0.7 V	See Figure 8	_	-	200	MHz
F _{max(20)}	Maximum frequency V _{DD} = 3.3 V	20% duty cycle $t_W(20-80)$ The "point to point load circuit" $V_{IN} = 3.0 \text{ V}/0.0 \text{ V}$ $V_{OUT} = 2.3 \text{ V}/0.4 \text{ V}$	See Figure 8	-	_	250	MHz
	Maximum frequency V _{DD} = 2.5 V	The "point to point load circuit" V _{IN} = 2.4 V/0.0 V V _{OUT} = 1.7 V/0.7 V	See Figure 4	_	-	- 200	MHz
t _W	Minimum pulse V _{DD} = 3.3 V	The "point to point load circuit" $V_{IN} = 3.0 \text{ V}/0.0 \text{ V}$ F = 100 MHz $V_{OUT} = 2.0 \text{ V}/0.8 \text{ V}$	See Figure 8	1	_	_	ns
	Minimum pulse V _{DD} = 2.5 V	The "point to point load circuit" V_{IN} = 2.4 V/0.0 V F = 100 MHz V_{OUT} = 1.7 V/0.7 V	See Figure 4	1	_	_	

AC Switching Characteristics

@ 3.3 V, V_{DD} = 3.3 V ± 5%, Temperature = –40 °C to +85 °C

Parameter	Description	Min	Тур	Max	Unit	
t _{PLH}	Propagation delay – Low to High	See Figure 5	1.5	2.7	3.5	ns
t _{PHL}	Propagation delay – High to Low	1	1.5	2.7	3.5	ns
t _R	Output rise time	_	_	0.8	_	V/ns
t _F	Output fall time	_	-	0.8	_	V/ns
t _{SK(0)}	Output Skew: Skew between outputs of the same package (in phase)	See Figure 11	_	0.25	0.38	ns
t _{SK(p)}	Pulse Skew: Skew between opposite transitions of the same output $(t_{PHL}-t_{PLH})$.	See Figure 10	_	_	0.2	ns
t _{SK(t)}	Package Skew: Skew between outputs of different packages at the same power supply voltage, temperature and package type.	See Figure 12	_	-	0.42	ns

AC Switching Characteristics

@ 2.5 V, V_{DD} = 2.5 V \pm 5%, Temperature = –40 °C to +85 °C

Parameter	Description	Min	Тур	Max	Unit	
t _{PLH}	Propagation delay – Low to High	See Figure 5	1.5	2.0	3.5	ns
t _{PHL}	Propagation delay – High to Low		1.5	2.0	3.5	ns
t _R	Output rise time	-	_	8.0	_	V/ns
t _F	Output fall time	-	_	0.8	_	V/ns
t _{SK(0)}	Output Skew: Skew between outputs of the same package (in phase)	See Figure 11	_	0.25	0.38	ns
t _{SK(p)}	Pulse Skew: Skew between opposite transitions of the same output $(t_{PHL}-t_{PLH})$.	See Figure 10	_	_	0.4	ns
t _{SK(t)}	Package Skew: Skew between outputs of different packages at the same power supply voltage, temperature and package type.	See Figure 12	_		0.65	ns

Parameter Measurement Information

V_{DD} @ 2.5 V

Figure 2. Load Circuit [4, 5, 6]

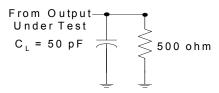


Figure 3. Voltage Waveforms Pulse Duration [7]

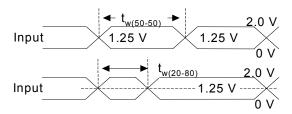


Figure 4. Point to Point Load Circuit [4, 5, 6]

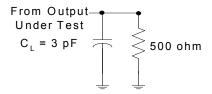
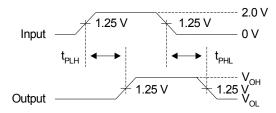



Figure 5. Voltage Waveforms Propagation Delay Times [5]

Notes

- 4. C_L includes probe and jig capacitance.
- 5. All input pulses are supplied by generators having the following characteristics: PRR < 100 MHz, Z_0 = 50W, t_R < 2.5 nS, t_F < 2.5 nS.
- 6. The outputs are measured one at a time with one transition per measurement.
- 7. T_{PLH} and T_{PHL} are the same as t_{pd} .

Parameter Measurement Information

V_{DD} @ 3.3 V

Figure 6. Load Circuit [8, 9, 10]

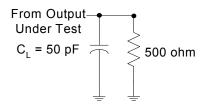


Figure 7. Voltage Waveforms – Pulse Duration [11]

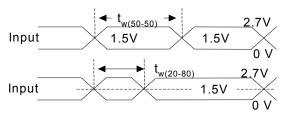


Figure 8. Point to Point Load Circuit [8, 9, 10]

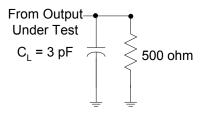
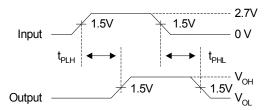
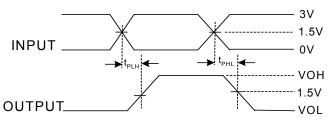



Figure 9. Voltage Waveforms Propagation Delay Times [9]

Notes


- 8. C_L includes probe and jig capacitance.
 9. All input pulses are supplied by generators having the following characteristics: PRR < 100 MHz, Z₀ = 50W, t_R < 2.5 nS, t_F < 2.5 nS.
 10. The outputs are measured one at a time with one transition per measurement.
- 11. T_{PLH} and T_{PHL} are the same as t_{pd}.

Parameter Measurement Information (Continued)

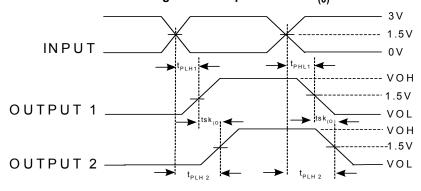

V_{DD} @ 3.3 V

Figure 10. Pulse Skew – $tsk_{(p)}$

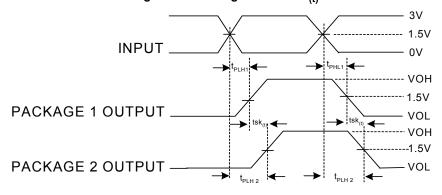
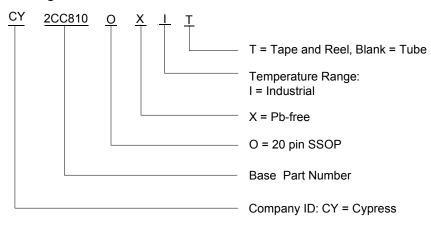

 $tsk_{(P)} = It_{PHL} - t_{PLH}I$

Figure 11. Output Skew – $tsk_{(0)}$

$$tsk_{(P)} = It_{PLH2} - t_{PLH1} I or t_{PHL2} - t_{PHL1} I$$

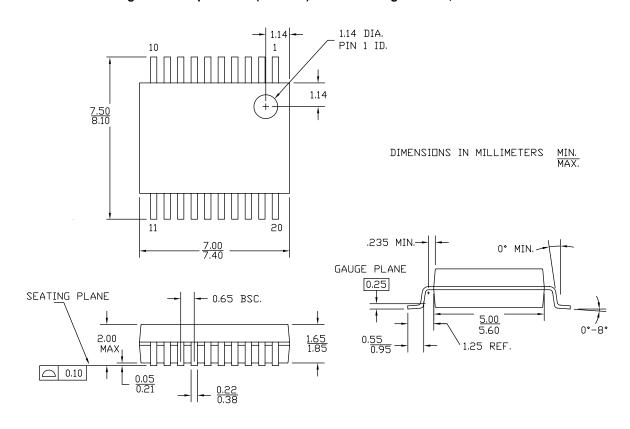
Figure 12. Package Skew - tsk_(t)


$$tsk_{(t)} = It_{PLH2} - t_{PLH1} I \text{ or } t_{PHL2} - t_{PHL1} I$$

Ordering Information

Part Number ^[12]	Package Type	Product Flow
Pb-free		·
CY2CC810OXI	20-pin SSOP	Industrial, –40 °C to 85 °C
CY2CC810OXIT	20-pin SSOP-Tape and Reel	Industrial, –40 °C to 85 °C
CY2CC810OXI-1	20-pin SSOP	Industrial, –40 °C to 85 °C
CY2CC810OXI-1T	Industrial, –40 °C to 85 °C	

Ordering Code Definitions


Note

^{12.} Devices with part numbers ending with -1 are identical to devices without the -1 suffix. There are no differences in specification.

Package Drawing and Dimensions

Figure 13. 20-pin SSOP (210 Mils) O20.21 Package Outline, 51-85077

51-85077 *F

Acronym

Acronym	Description		
CMOS	complementary metal oxide semiconductor		
DJ	Deterministic Jitter		
SSOP	shrunk small outline package		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHZ	megahertz		
uA	microampere		
mA	milliampere		
ms	millisecond		
ns	nanosecond		
%	percent		
pF	picofarad		
ps	picosecond		
V	volt		

Document History Page

	Document Title: CY2CC810, 1:10 Clock Fanout Buffer Document Number: 38-07056					
Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change		
**	107081	06/07/01	IKA	Convert from IMI to Cypress		
*A	114315	05/09/02	TSM	∆ I _{DD} Validation		
*B	119117	10/07/02	RGL	Updated DC Electrical Characteristics (@ 3.3 V): Added 5.8 V as the maximum value of V _{IH} parameter. Updated DC Electrical Characteristics (@ 2.5 V): Changed maximum value of V _{IH} parameter from 1.8 V to 5.0 V.		
*C	122743	12/14/02	RBI	Updated Absolute Maximum Conditions: Added Note 2 (power-up requirements) and referred the same note in "Parameter" column.		
*D	387761	See ECN	RGL	Updated High-frequency Parametrics: Updated details in "Test Conditions" column corresponding to D $_{J}$ parameter. Updated values of D $_{J}$ parameter. Updated AC Switching Characteristics: Updated values of $t_{SK(0)}$, $t_{SK(p)}$, $t_{SK(t)}$ parameters. Updated AC Switching Characteristics: Updated AC Switching Characteristics: Updated values of $t_{SK(0)}$, $t_{SK(p)}$, $t_{SK(t)}$ parameters. Updated Ordering Information: Removed devices with SOIC package. Added devices Lead-free SSOP package.		
*E	499991	See ECN	RGL	Updated Power Supply Characteristics: Added t _{PU} parameter and its details.		
*F	2896073	03/19/10	CXQ	Removed SOIC package related information in all instances across the document. Updated Ordering Information: Removed obsolete parts. Added CY2CC810OXI-1, CY2CC810OXI-1T parts. Updated Package Drawing and Dimensions.		
*G	3056154	10/08/2010	CXQ	Updated Ordering Information: Removed CY2CC810OXC and CY2CC810OXCT parts.		
*H	3396159	10/10/2011	PURU	Updated Functional Description: Removed "AVCMOS-type outputs dynamically adjust for variable impedance matching and reduce noise overall". Added Ordering Code Definitions under Ordering Information. Updated Package Drawing and Dimensions. Added Acronym, and Units of Measure.		
*	4559526	11/07/2014	PURU	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.		
*J	5272946	05/16/2016	PSR	Added Thermal Resistance. Updated Package Drawing and Dimensions: spec 51-85077 – Changed revision from *E to *F. Updated to new template.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-07056 Rev. *J Revised May 5, 2016 Page 15 of 15

[©] Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.