

PNPN Silicon, Reverse-Blocking, Power Triode Thyristors

Qualified per MIL-PRF-19500/108

Qualified Levels:
JAN and JANTX


DESCRIPTION

This silicon controlled rectifier device is military qualified up to a JANTX level for high-reliability applications.

Important: For the latest information, visit our website <http://www.microsemi.com>.

FEATURES

- JEDEC registered 2N682, 2N683, 2N685, and 2N687 – 2N692.
- JAN and JANTX qualifications are available per MIL-PRF-19500/108.
- RoHS compliant versions available (commercial grade only).

**TO-208 / TO-48
Package**

APPLICATIONS / BENEFITS

- A general purpose, reverse-blocking thyristor.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction Temperature	T_J	-65 to +125	°C
Storage Temperature	T_{STG}	-65 to +150	°C
Gate Voltage (Peak Total Value)	V_{GM}	5	V(pk)
Maximum Average DC Output Current ⁽¹⁾	I_o	16	A
Non-repetitive Peak On-State Current ⁽²⁾ @ $t = 7$ ms	I_{TSM}	150	A

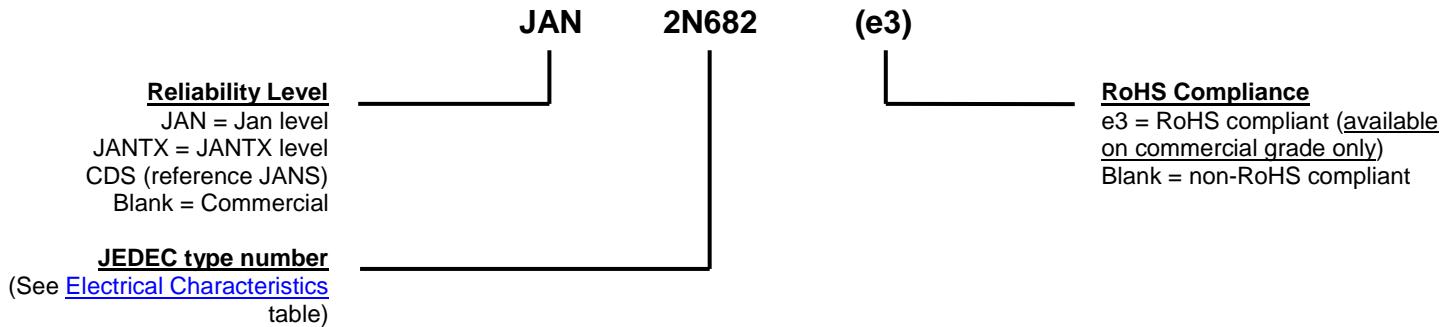
Notes:

1. This average forward current is for a maximum case temperature of +65 °C, and 180 electrical degrees of conduction.
2. Surge rating is non-recurrent and applies only with device in the conducting state. The peak rate of surge current must not exceed 100 amperes during the first 10 μ s after switching from the off (blocking) state to the on (conducting) state. This time is measured from the point where the thyristor voltage has decayed to 90 percent of its initial blocking value.

MSC – Lawrence

6 Lake Street,
Lawrence, MA 01841
Tel: 1-800-446-1158 or
(978) 620-2600
Fax: (978) 689-0803

MSC – Ireland


Gort Road Business Park,
Ennis, Co. Clare, Ireland
Tel: +353 (0) 65 6840044
Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Nickel plated copper.
- TERMINALS: Nickel plated steel, solder dipped or RoHS compliant matte-tin plating (on commercial and CDS grade only).
- MARKING: Manufacturer's ID, part number, date code, polarity.
- POLARITY: Terminal 1: gate, terminal 2: cathode, terminal 3 (stud): anode.
- WEIGHT: Approximately 12.36 grams.
- See [Package Dimensions](#) on last page.

PART NOMENCLATURE

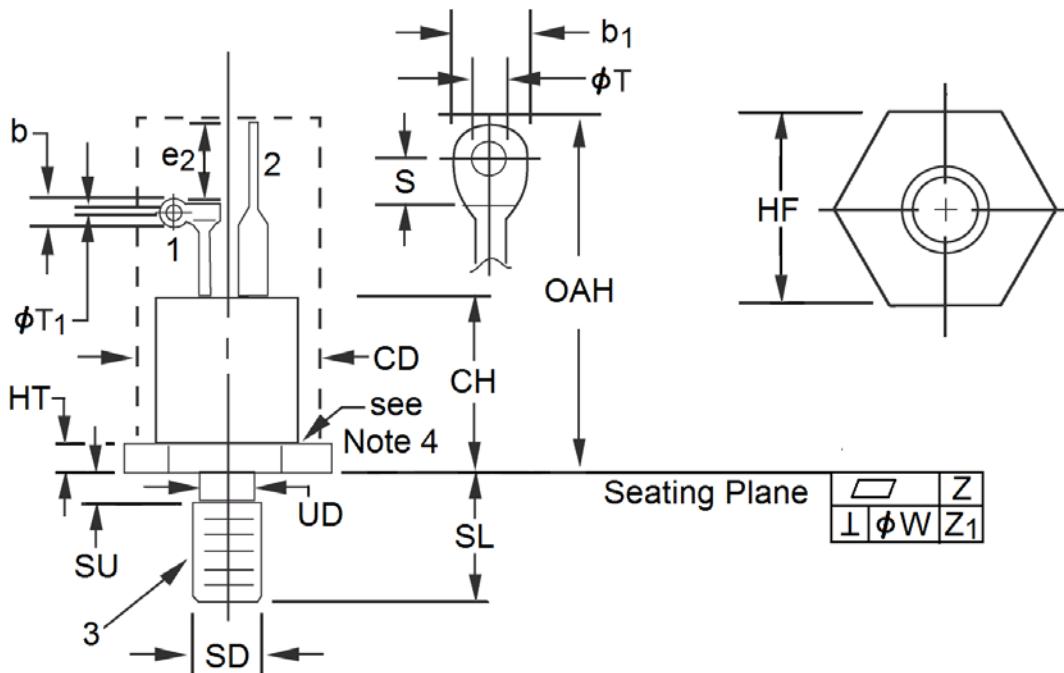
SYMBOLS & DEFINITIONS

Symbol	Definition
C	Capacitance
di/dt	Critical rate of rise of on-state current
dv/dt	Critical rate of rise of off-state voltage
f	frequency
I _F	Forward current
I _T	On-state current
I _{TM}	On-state current (peak total value)
R	Resistance
R _e	Responsivity, radiant
R _L	Resistor load
t	time
tp	Pulse variation
V _{AA}	Anode power supply voltage (dc)

ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Repetitive Peak Reverse Voltage and Repetitive Peak Off-State Voltage	$V_{RRM}^{(1)}$ and V_{DRM}		50	V (pk)
2N682		100		
2N683		200		
2N685		250		
2N686		300		
2N687		400		
2N688		500		
2N689		600		
2N690		700		
2N691		800		
2N692				

(1) Values applicable to zero or negative gate voltage (V_{GM}).


Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Holding current: Bias condition D; $V_{AA} = 24$ V maximum; $I_{TM} = I_{F1} = 1$ A $I_T = I_{F2} = 100$ mA trigger voltage source = 10 V trigger PW = 100 μ s (minimum) $R_2 = 20$ Ω	I_H		50	mA
Reverse blocking current AC method, bias condition D; $f = 60$ Hz, $V_{RRM} = \text{rated}$	I_{RRM1}		2	mA (pk)
Forward blocking current AC method, bias condition D; $f = 60$ Hz; $V_{DRM} = \text{rated}$	I_{DRM1}		2	mA (pk)
Gate trigger voltage and current $V_2 = V_D = 6$ V; $R_L = 50$ Ω ; $R_e = 20$ Ω maximum	V_{GT1} I_{GT1}		3 35	V mA
Forward on voltage $I_{TM} = 50$ A(pk) (pulse); pulse width = 8.5 ms; maximum; duty cycle = 2 percent maximum	V_{TM}		2	V (pk)
Reverse gate current $V_G = 5$ V	I_G		250	mA

ELECTRICAL CHARACTERISTICS (continued)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Reverse blocking current ($T_C = +120^\circ C$) AC method, bias condition D; $f = 60$ Hz; $V_{RRM} = \text{rated}$	I_{RRM2}		5	mA (pk)
Forward blocking current ($T_C = +120^\circ C$) AC method, bias condition D; $f = 60$ Hz; $V_{DRM} = \text{rated}$	I_{DRM2}		5	mA (pk)
Gate trigger voltage ($T_C = +120^\circ C$; $R_e = 20 \Omega$ max) $V_2 = V_{DM} = 50$ V; $R_L = 140 \Omega$ $V_2 = V_{DM} = 100$ V; $R_L = 140 \Omega$ $V_2 = V_{DM} = 200$ V; $R_L = 140 \Omega$ $V_2 = V_{DM} = 250$ V; $R_L = 650 \Omega$ $V_2 = V_{DM} = 300$ V; $R_L = 650 \Omega$ $V_2 = V_{DM} = 400$ V; $R_L = 3$ k Ω $V_2 = V_{DM} = 500$ V; $R_L = 3$ k Ω $V_2 = V_{DM} = 600$ V; $R_L = 3$ k Ω $V_2 = V_{DM} = 700$ V; $R_L = 3$ k Ω $V_2 = V_{DM} = 800$ V; $R_L = 3$ k Ω	2N682 2N683 2N685 2N686 2N687 2N688 2N689 2N690 2N691 2N692	.25		V
Reverse blocking current ($T_C = -65^\circ C$) AC method, bias condition D; $f = 60$ Hz; $V_{RRM} = \text{rated}$	I_{RRM3}		2	mA (pk)
Forward blocking current ($T_C = -65^\circ C$) AC method, bias condition D; $f = 60$ Hz; $V_{DRM} = \text{rated}$	I_{DRM3}		2	mA (pk)
Gate trigger voltage and current ($T_C = -65^\circ C$) $V_2 = V_D = 6$ V; $R_L = 50 \Omega$; $R_e = 20 \Omega$ maximum	V_{GT3}	3	80	V mA
	I_{GT2}			
Exponential rate of voltage rise Bias condition D; $T_C = +120^\circ C$ minimum, $dv/dt = 25$ v/ μ s; repetition rate = 60 pps; test duration = 15 s; $C = 1.0 \mu F$; $R_L = 50 \Omega$ $V_{AA} = 50$ V $V_{AA} = 100$ V $V_{AA} = 200$ V $V_{AA} = 250$ V $V_{AA} = 300$ V $V_{AA} = 400$ V $V_{AA} = 500$ V $V_{AA} = 600$ V $V_{AA} = 700$ V $V_{AA} = 800$ V	2N682 2N683 2N685 2N686 2N687 2N688 2N689 2N690 2N691 2N692	V_D	47 95 190 240 285 380 475 570 665 760	V

ELECTRICAL CHARACTERISTICS (continued)

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Circuit-commutated turn-off time $T_C = +120^\circ\text{C}$ minimum; $I_{TM} = 10 \text{ A}$; $t_{on} = 100 \pm 50 \mu\text{s}$; $di/dt = 5 \text{ A}/\mu\text{s}$ minimum; $di/dt = 8 \text{ A}/\mu\text{s}$ maximum; reverse voltage at $t_1 = 15 \text{ V}$ minimum; repetition rate = 60 pps maximum; $di/dt = 20 \text{ V}/\mu\text{s}$; gate bias conditions; gate source voltage = 0 V; gate source resistance = 100 Ω	t_{off}		30	μs
$V_{DM} = V_{DRM} = 50 \text{ V}$ (pk); $V_{RRM} = 50 \text{ V}$ maximum	2N682		30	
$V_{DM} = V_{DRM} = 100 \text{ V}$ (pk); $V_{RRM} = 100 \text{ V}$ maximum	2N683		30	
$V_{DM} = V_{DRM} = 200 \text{ V}$ (pk); $V_{RRM} = 200 \text{ V}$ maximum	2N685		30	
$V_{DM} = V_{DRM} = 250 \text{ V}$ (pk); $V_{RRM} = 250 \text{ V}$ maximum	2N686		30	
$V_{DM} = V_{DRM} = 300 \text{ V}$ (pk); $V_{RRM} = 300 \text{ V}$ maximum	2N687		30	
$V_{DM} = V_{DRM} = 400 \text{ V}$ (pk); $V_{RRM} = 400 \text{ V}$ maximum	2N688		30	
$V_{DM} = V_{DRM} = 500 \text{ V}$ (pk); $V_{RRM} = 500 \text{ V}$ maximum	2N689		40	
$V_{DM} = V_{DRM} = 600 \text{ V}$ (pk); $V_{RRM} = 600 \text{ V}$ maximum	2N690		40	
$V_{DM} = V_{DRM} = 700 \text{ V}$ (pk); $V_{RRM} = 700 \text{ V}$ maximum	2N691		60	
$V_{DM} = V_{DRM} = 800 \text{ V}$ (pk); $V_{RRM} = 800 \text{ V}$ maximum	2N692		60	
Gate controlled turn-on time $V_{AA} = 50 \text{ V}$ for 2N682 $V_{AA} = 100 \text{ V}$ for 2N683, 2N685 through 2N692 $I_{TM} = 10 \text{ A}$; $V_{GG} = 10 \text{ V}$; $R_e = 25 \Omega$ $t_{p1} = 15 \pm 5 \mu\text{s}$; $4 \text{ A}/\mu\text{s} \leq di/dt \leq 200 \text{ A}/\mu\text{s}$.	t_{on}		5	μs

PACKAGE DIMENSIONS

NOTES:

1. Dimensions are in inches. Millimeters are given for information only.
2. Device contour, except on hex head and noted terminal dimensions, is optional within zone defined by CD and OAH, CD not to exceed actual HF.
3. Contour and angular orientation of terminals 1 and 2 with respect to hex portion and to each other are optional.
4. Chamfer or undercut on one or both ends of the hexagonal portion are optional.
5. Square or radius on end of terminal is optional.
6. Minimum difference in terminal lengths to establish datum line for numbering terminals.
7. Dimension SD is pitch diameter of coated threads.
8. In accordance with ASME Y14.5M, diameters are equivalent to ϕx symbology.

Ltr	Dimensions				Notes	
	Inches		Millimeters			
	Min	Max	Min	Max		
b	0.115	0.139	2.92	3.53	3	
b1	0.210	0.300	5.33	7.62	3	
CD	-	0.543	-	13.8	2	
CH	-	0.550	-	14.00		
e2	0.125	-	3.17	-	6	
HF	0.544	0.563	13.8	14.3		
HT	0.075	0.200	1.9	5.08	4	
OAH	-	1.193	-	30.3	2	
S	0.120	-	3.05	-	3	
SD	1/4 - 28 UNF 2A					
SL	0.422	0.453	10.7	11.5		
SU	-	0.090	-	2.29		
phi T	0.125	0.165	3.17	4.19		
phi T1	0.060	0.075	1.52	1.9		
UD	0.220	0.249	5.59	6.32		

Terminal 1	Gate	
Terminal 2	Cathode	5
Terminal 3	Anode (Stud)	7