-y

SILICON LABS

C8051F38x USB MCU

» The C8051F38x family
» C8051F38x advantages
» C8051F38x enhancements

» Firmware portability

SILICON LABS

n C8051F38x Family Features

» High speed pipelined 8051 MCU core

= 48 MIPS operation ANALOG
. PERIPHERALS
Up to 64K flash and 4K RAM = : OARTT |
: . 10-bit| -}y w
> Flexible clocking 500 ksps r',‘ 3|
= Internal oscillator with +0.25% accuracy supports all USB ADC |2
PcA_|I°|E
and UART modes * =
. . TEMP =
= Low frequency oscillator for low power operation sensor|] VREA 48 PinOnly |
. CSD51F380;1-.“2130nIy
» USB function controller PRECISION INTERNAL| USB Controller /
* |ntegrated clock recovery requires no external crystal OSCILLATORS Transceiver
» [ntegrated transceiver requires no external resistors
. 64/32 kB 8051 CPU
> Two UART and SMBus/I2C peripherals ISP FLASH 48 MIPS 4/2 kB RAM
_ FLEXIBLE DEBUG
High performance analog INTERRUPTS CIRCUITRY
= 10-bit, 500 Ksps ADC
» Integrated voltage reference (15 ppm) C8051F38x Block Diagram

= Fast comparators
Integrated regulator
Small 5 mm x 5 mm package
» -40 to +85 C operation o

3 SILICON LABS

Presenter
Presentation Notes
With on-chip Power-On Reset, VDD monitor, Voltage Regulator, Watchdog Timer, and clock oscillator, C8051F380/1/2/3/4/5/6/7 devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

Each device is specified for 2.7–5.25 V operation over the industrial temperature range (–40 to +85 °C). For voltages above 3.6 V, the on-chip voltage regulator must be used. A minimum of 3.0 V is required for USB communication. The port I/O and RST pins are tolerant of input signals up to 5 V.

C8051F380/1/2/3/4/5/6/7 devices are available in 48-pin TQFP, 32-pin LQFP, or 32-pin QFN packages.

= .
C8051F38x Product Family

> 12 new USB flash-based devices

Ordering Part Number (8051F380-GQ C8051F381-GQ C8051F381-GM C8051F382-GQ CB051F383-GQ CB051F383-GM C8051F384-GQ C8051F385-GQ C8051F385-GM C8051F386-GQ

MIPS (Peak) R R R It} R 8 R R R R

Flash or EPROM Code Memory (Bytes) 64k 64k 64k 3k 3% 3% 64k 64k 64k 3%
RAM (Bytes) 1352 4352 4352 2304 2304 2304 1352 1352 4352 2304

Calibrated Internal 48 MHz Oscillator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Internal Low Frequency Oscillator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
USB with 1k Endpoint RAM Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Supply Voltage Regulator Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

SMBus/I2C 2 2 2 2 2 2 2 2 2 2

Enhanced SPI Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

UARTs 2 2 2 2 2 2 2 2 2 2

Timers (16-hit) 6 6 6 6 6 6 6 b b b
Programmable Counter Array Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Digital Port 1/0s 40 25 25 4 25 25 40 25 25 40

10-bit 500ksps ADC Yes Yes Yes Yes Yes Yes - - - -

Internal Voltage Reference Yes Yes Yes Yes Yes Yes - - - -
Temperature Sensor Yes Yes Yes Yes Yes Yes - - - -

Analog Comparator 2 2 2 2 2 2 2 2 2 2
External Memory Interface (EMIF) Yes - - Yes - - Yes - - Yes

Package TQFP48 LQFP32 QFN32 TQFP43 LQFP32 QFN32 TQFP48 LQFP32 QFN32 TQFP48

SILICON LABS

Presenter
Presentation Notes
Now, let’s take a closer look at the C8051F38x product family. This product family brings 12 new highly integrated USB flash-based devices, with 64K and 32K Flash memory and 4K and 2K of RAM memory. They come in 48 and 32 pins offerings with multiple packages: TQFP48, LQFP32 and a tiny 5 mm x 5 mm QFN32. An external memory interface is also available in 48TQP packages to enable connection to external memories or peripherals.

'C8051F38x USB Advantages

» Hardware implementation made simple with high functional density

= Oscillators, resistors, voltage supply regulators and in system programmable
memory are integrated on chip

= All that is recommended are the USB ESD protection diodes

. Voltage 48 MHz
Regulator Oscillator

USB Function Controller

USB Transceiver

SPO503BAHT C8O51 F38X

No external crystal, resistors, regulator or memory required

o SILICON LABS

Presenter
Presentation Notes
The Silicon Labs USB devices provide high functional density and integrates many of the components required for USB communications. For example, the internal oscillator is capable of generating the clock accuracy required for robust USB data links. The USB transceiver integrates the series termination resistors as well as the pull-up resistor required to start the enumeration process. Device power is generated from the integrated regulator that can be driven by the USB VBUS. The only recommended external component is the protection diodes for the D+/D- and VBUS lines. Overall, this integration reduces footprint, simplifies board design and reduces cost.

n C8051F38x Family Enhancements (1 of 2)

> Internal oscillator calibrated to 48 MHz

= Multiplier PLL not required
» Multiplier SFR registers remain for backward compatibility with existing code base

» More communications interfaces

= Adds second SMBus peripheral

 SMBus peripherals are enhanced and provide hardware acknowledge and hardware
address recognition

= All devices have two UARTSs
» Second UART has its own baud rate generator and FIFO

SYSCLK

Baud Rate Generator

Data Formatting

SMOD1

)

=lol—
g i 11}
=
]

MCE1
S1PT0
S1DL1
S1DLO

SBL1

>
Logic

—X<]Txi1

+

SBH1 Overflow
] . Pre-Scaler
Timer (1E5-b|t)EN > (1.4, 12, 48)

E E%

o

o

ko

SBCONT

Control / Status

]

TX Holding
Register

SCON1

Write to SBUF1
SBUF1
Read of SBUF1

— =

RI1

=
=

OVR1
TBX1

v
0
m
0

=
—

RXFIFO

| (3 Deep)

11
UART1
Interrupt

+

RX

p Logic

—X]rx1

|

C8051F38x UARTY Peripheral

®

SILICON LABS

Presenter
Presentation Notes
The C8051F38x devices are the next generation USB products and are pin and function compatible with the C8051F34x family. There are some changes to the family over the existing family. There is no longer a clock multiplier and the internal oscillator is calibrated to 48 MHz. This clock can be used to drive the USB clock directly. To maintain backward compatibility with existing firmware, the special function registers (SFR) that controlled the multiplier in the earlier family still exist so that existing firmware can still be used without modification. The communications interfaces for the SMBus and the UART have been enhanced to add more flexibility and in some cases, reduces code size and free up other resources. The SMBus interfaces are also backwards compatible with existing firmware.

n C8051F38x Family Enhancements (2 of 2)

» Low power optimization

= Voltage regulators can be disabled or
placed into a low power state while
maintaining voltage output

= Pre-fetch engine can be disabled in the
standby state to reduce power

» More timing peripherals
= Six general purpose 16 bit timers

» Analog performance enhanced
= ADC sample rate increased to 500 Ksps

= Voltage reference provides more options

* 1.2 V/2.4 V internal reference voltages
available

e Can use the internal 1.8 V regulator as well
as VDD for the reference

REFBGS
REGOVR
REFSL
TEMPE

To ADC, IDAC,
-: EN Bias Generator Internal Oscillators,
Reference,

-

|I0SCEN TempSensor

Temp Sensor —»To Analog Mux

1
!
[: E
) | Voltag |
| Ref i
R1 | Circuit 1
VREF EN
1 @ 1x/2% 1.2V Reference [«——REFBE
A !
| | |
| i
1
1

REFBGS

ke

1
i
4. 7uF 0.1uF 1 VREF
1T | VoD —| 1 (to ADC)
1
Recommended Bypass :

Capacitors

REGOVR

C8051F38x Ve Peripheral

®

SILICON LABS

Presenter
Presentation Notes
More enhancements include the ability to place the voltage regulators and the prefetch engine in low power modes. Also, two more timers have been integrated to provide more functionality. Combine this with the fact that the UART now includes its own baud rate generator and there are many free resources to use. The ADC sample rate has been increased to 500 ksps providing more flexibility in signal processing. Included in the ADC enhancements is the use of a slightly different voltage reference design. The reference has more options for modifying the sensitivity of a system. For example, the internal reference can drive the ADC for 1.2 V or 2.4 V which provides the capability to maximize the dynamic range of the system.

Firmware Porting Considerations (1 of 2)

» Firmware functionality between the existing C8051F34x family and
the C8051F38x family remains unchanged in the default state

= All SFR mappings and functionality remain compatible

= SFRs for removed peripherals remain, such as CLKMUL, for backward

compatibility

Clock muiltiplier no
longer present

—_—

No change to
firmware initialization —_
needed

Internal H-F Ozcillatar |
Clack Muliplier

—USE Clock

Internal L-F O zcillatar I
IJSE Clock Source |

Oscillators | |

External Qzcillatar
SYSCLK Select

USB Clock Speed [48000000 }

—USE Clock Derived From

+ Clack Multiplier
Aterna Oecilatar & 2

" External Qscillator

" Esternal Dscillator / 2

7 Esternal Dscillator / 2

" Esternal Dscillator / 4

Clock Multiplier:

|4SDDUDUD Hz

Internal Oscillatar:
|1 2000000 Hz

External Qscillatar:

FLSCL = 0=30;
CLEMUL = 0280;

CLEMUL |= 0=CO0;
while [[CLEMUL & 0x20] == 0):
CLKSEL =0x03;

for (i=0;0 < 200 i++]; A/ wiait Bug for initizlization

o lom |

ar. I Cancel | Reset |
Configuration Wizard

USB Clock remains
unchanged

®

SILICON LABS

Presenter
Presentation Notes
The default state of the registers of the C8051F38x family places the device in the same operating state as the previous family. Therefore, the firmware from the C8051F34x will run unmodified on the C8051F38x devices. One example is the clock multiplier settings. In the previous family that had the multiplier to generate the 48 MHz the multiplier had to be setup and stable. The mux settings in the chip were then set to drive the 48 MHz to the system clock and the USB clock. In the current family this same code can be used and the register settings will cause the 48 MHz internal oscillator to drive the nodes that the output of the clock multiplier did.

Firmware Porting Considerations (2 of 2)

» New firmware can utilize new features of the C8051F38x family
* Increase ADC sensitivity using lower reference voltage
= Multiplier initialization no longer needed
= Can place regulators in low power modes
= Can place pre-fetch engine in a low power mode

Low power mode
bits for regulators

REGO1CN Register
N AN N N R N N O O
Name RegODIS VBSTAT VBPOL REGOMD STOPCF Reserved REGIMD Reserved

Type R/W R R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

®

SILICON LABS

Presenter
Presentation Notes
If generating new designs then the firmware can take advantage of the new features of the device. The low power modes can be used and the code required for the oscillator can be removed and replaced with a much simpler and smaller set of code.

-y

SILICON LABS

C8051F38x Clocking

. Clocking Options

» Clock sources o | oo | [ommor | [
= Flexible internal oscillator §E£ 8%@%&%@ 0 kk
 Default clock after reset 1 | ke
* Factory calibrated to 48 MHz ?& e e
= Low frequency oscillator at 80 KHz < il
= External oscillator L{% »
« Supports CMOS oscillators, crystals, RC L b o
networks and capacitors v SL i — .
> USB clock can be sourced directly S oo f
from the internal high frequency :
oscillator Oscillator Options

= No external crystal required

®

H SILICON LABS

Presenter
Presentation Notes
C8051F380/1/2/3/4/5/6/7 devices include a programmable internal high-frequency oscillator, a programmable internal low-frequency oscillator, and an external oscillator drive circuit. The internal high-frequency oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers. The internal low-frequency oscillator can be enabled/disabled and calibrated using the OSCLCN register. The system clock can be sourced by the external oscillator circuit or either internal oscillator. Both internal oscillators offer a selectable post-scaling feature. The USB clock (USBCLK) can be derived from the internal oscillators or external oscillator.

" USB Clock

» USB Clock multiplier is not required since the internal oscillator is
calibrated to 48 MHz

» CLKMUL reqister still exists for backward compatibility with other
USB MCUs

Is now the 48 MHz high frequency oscillator

OSC/2—»

EXOSC —

—» USBCLK
T =S EXOSC /2 —*
= i |
S22]
222 == EXOSC /3 —*
== =
EXOSC /4 —
CLKMUL /T/
Q
% Register setting remains
'555' the same as legacy devices
=2

®

Legacy USB Clock Selection Mux

1z SILICON LABS

Presenter
Presentation Notes
Here is a diagram of the clocking system to generate the 48 MHz clock required for the full speed USB operation of the C8051F34x device family. On the C8051F38x devices this multiplier has been removed.

-y

SILICON LABS

The USB Peripheral

® UsB controller

» Complete Full/Low speed USB 2.0
compliant function controller

» Device only, cannot be a host
» Up to 8 Endpoints

» Integrated transceiver with clock
recovery and configurable pull-up
resistors

» 1 KB FIFO for Endpoint data transfers

» Serial Interface Engine (SIE) handles
low level protocol in hardware

= Error checking
= Packet validity

» Control, Interrupt, Bulk and
Isochronous transfers supported

14

Transceiver Serial Interface Engine (SIE)
Endpointd
VDD
IN/OUT
D+
= ‘ uss
H Gl r— Control, H CIP-51 Core
Transfer Endpoint! Status, and
Caontrol Endpaint? Interrupt
D- ‘ Endpoint3 Reqsies
> | N out
USB FIFOs
{1k RAM)
USBO Peripheral
Endpoint Associated Pi_pes ~ USB Profacol Address
: Endpomt0 IN 0x00
Exdpountd Endpoint0 OUT 0x00
) Endpomtl IN 0x81
End, t1 -
pou Endpointl OUT 0x01
: Endpomt2 IN 0x82
End, 2 -
e Endpoint2 OUT 0x02
) Endpomt3 IN 0x83
Endpdmt] Endpoint3 OUT 0x03

Supported Endpoints

®

SILICON LABS

Presenter
Presentation Notes
The USB controller integrated into the C8051F38x family is the same controller that has been used for many designs and has been proven through numerous USB product certifications. The Silicon Labs USB MCUs provide device side functionality for communication with a USB host. The USB module includes the serial interface engine (SIE) that provides all of the low level functionality required to communicate with the host. The SIE controls the low level packet checking and acknowledgment without firmware overhead. This simplifies the implementation of USB firmware development. All transfer types are supported using the USB controller including control, bulk, interrupt and isochroous.

15

USB Register Access Scheme

» Two SFRs used to provide access
to the configuration registers
(USBOADR and USBODAT)
= First set USBOADR to define the USB

register to access

= Write/Read data to/from USBODAT

» Endpoint Access via the Index
register
= Set USBOADR to point to the Index
register
= Use USBODAT to write the endpoint
address desired into the index register

= Switch USBOADR to point to the
Endpoint Control/Status registers

= Use USBODAT to write/read data
to/from the endpoint registers

» USB Endpoint FIFOs accessed via
the indexing scheme

8051 USB Caontroller

SFRs

/ Interrupt
Reqgisters
FIFO
Access
Common
Registers

USBODAT Index

Register

Endpointd Control/
Status Registers

Endpoint1 Control/
Status Registers

Endpoint2 Control/
Status Registers

l\"‘-.,
SFRs

Endpoint3 Confrol/
Status Registers

_WJ

Indexed
Registers

Indexed Registers

USB clock must be active when accessing the USBO Control/Status registers

®

SILICON LABS

Presenter
Presentation Notes
Programming the USB controller is accomplished through two direct registers that are mapped to the SFR space of the MCU. These registers are called the USB address register (USB0ADR) and the USB data register (USB0DAT). Access to all of the USB registers and the endpoint FIFOs are through an indexing scheme whereby the USB0ADR register points to the associated register to access and the data register is used to pass the data to the controller. For example, to write to the common registers the USB0ADR register would set the mux to where the yellow line is pointing. After the USBADR register is set the data written to the USB0DAT register would then be written to the common register. To access the endpoint registers the index register must first be written to set the mux to point to the channel highlighted by the red arrow. Then data written will be passed to the associated endpoint pointed to by the index register. Silicon Labs code examples provide routines that handle all of the indirect access which simplifies the implementation.

" Indirect Addressing Flow Chart

16

» Indirect register access

Poll for BUSY
USBOADR
Bit7="0

Poll for BUSY
USBOADR
Bit7=0

USBAD
R
already
set?

Load Target
USBO register
into USBADR

Write Data to
USBODAT

Indirect Write Data Flow

USBAD
R
already
set?

Load Target
USBO register
into USBADR

Auto-
read

enabled

Write ‘1’ to
BUSY bit in
USBOADR

A 4

Poll for BUSY
USBOADR

Read data

from
USBODAT

A

Bit7=0

A

Indirect Read Data Flow

SILICON LABS

Presenter
Presentation Notes
Here is a flow diagram that highlights the indirect register access of the USB module for both the read and write directions. These principles can be found in the code examples provided in the Silicon Labs examples directory of the IDE install.

USBO FIFO Allocation

» 1024 Bytes of FIFO available to the USB 0A07FF

endpoints allocated in XRAM space orcs

0x07BF

» Endpoints 1-3 can be configured as IN,
OUT or split mode with both IN and OUT 0X0740

0x073F

end po ints Configurable as
]]] IN, QUT, or both (Split
= Split mode halves the FIFO size available for 0610 Mode)
each endpoint 0X0B3F

» Each endpoint can be double buffered /

= Half the memory is available for each transaction

= Max. packet size is halved

« Example, IN endpoint 1 double buffered provides 64
bytes for each IN transaction 0X0400

0x0440
0xD43F

USB Clock Domain

» FIFO access indirectly addressed

System Clock Domain

0x03FF
User XRAM

(1024 bytes)
0x0000
IN/OUT Endpoint FIFQ | USE Address
0 020 .
2 =l Endpoint FIFOs
3 03

®

17 SILICON LABS

Presenter
Presentation Notes
There is 1 KB of memory available to the USB controller and is split amongst the 8 endpoints. Endpoint 0 is a 64 byte memory location that is used for the control transfers during enumeration. The other memory areas are allocated to the remaining endpoints and range in size. The memory can be split such that there are IN and OUT endpoints or they can be used in a double buffered mode. In this case the data is made available to successive transactions and the overall max packet size that can be used is half that of the endpoint buffer size. This FIFO space is accessed using the indirect scheme previously outlined using the USB0ADR and USB0DAT registers.

n C8051 Interrupt Vectors

» Single interrupt vector for all
USB events

» 11 Interrupt sources can
trigger an interrupt event

* |SR needs to be parsed to
determine which interrupt is
pending

18

s =
£
: |2
Interrupt | Priority : % | z |Enable Priority
eyt Suurbe Vector | Order |CeROingFlag § 3 | Control
= | =
= £
2 (O
, o | Always Always
Reset 0x0000 Top |None N/A | N/A Enabled Highest
fmil Tndecrapt 0 0%0003 0 |IE0(TCON.1) Y | Y |EX0(E0) |PX0(IP0)
Timer 0 Overflow 0x000B 1 | TF0(TCONS) Y | Y |ETOCED |PTO(PD)
;Em’gl i1 0x0013 2 |IE1(TCONS3) Y | Y |EX1(E2) |PX1 (P2)
Timer 1 Overflow 0x001B 3 |TFL(TCON.7) Y | Y |ETL(E3) |PTI(P3)
RI0 (SCONO.0)
1
UARTO 0x0023 4+ |10 (scoNo.1) Y | N |ES0(E4) |PSO(P4)
) TEOH (IMRICN.7)
g s :
Timer 2 Overflow 0x002B 5 TF2L (TMR2CN.6) Y | N |ET2(IES) |PT2(IRS)
SPIF (SPIOCN.7)
WCOL (SPIOCN.6) ESPIO PSPI0
L Ox033 | MoDEF (sPI0CN 5) ¥\ Nl (IP6)
RXOVRN (SPIOCN 4)
i ESMBO0 PSMBO
SMBO 0x003B 7 SI (SMBOCN.0) Y N (EIE1. O; (EIP1.0)
e EUSBO P
.
USBO 0x0043 8 Special N | N (EIE1 1) (E]w>
\ ADOWINT EVEBET [PWADCO
ADC0 Window Compare | UXUUSE 9 (ADCOCN.3) Y [N EEL2) |EPL)
ADCO Conversion EADCO PADCO
g 1 oA
Complete 0x0053 10 ADOINT (ADCOCNS) | Y N (EIE13) (EIP1.3)
Programmable Counter CF (PCAOCN.T) EPCAOD PPCA0D
Array il U | ocFa (PCAOCN 1) Y| N @E1e |@EPLe
CPOFIF (CPTOCN 4) ECPO PCPO
2
Conpmt) Oetll} 2 lcporir(ceroens) | N | N |@ELs) |@PLS)

) CPIFIF (CPTICN 4) ECP1 PCP1
Comparatorl 0x006B 13 CPIRIF (CPTICN.5) N N (EIE16) (EIPL6)
_ o TF3H (TMR3CN.7) ET3 PI3
Timer 3 Overflow 0x0073 14 TF3L (TMR3CN.6) N | N (EIE17) EP17)

: ; .« |EVBUS PVBUS
T b / ! /
VBUS Level 0x007B 15 N/A N/A | N/A (EIE2.0) (EIP2.0)

SILICON LABS

Presenter
Presentation Notes
There is a single interrupt generated from the USB module. Once vectored to the interrupt service routine (ISR) the firmware then parses the interrupt flags and determines the appropriate action. For example, if a transaction from a control transfer were received and the SIE determined that it was a valid packet then the USB0 module would set the USB0 interrupt flag. Once vectored to the interrupt the firmware would then read the interrupt flags register and see that it was endpoint 0 that generated the interrupt and jump to the routines that handle the control transfer.

Serial Interface Engine (SIE)

» Serial Interface Engine (SIE) handles data

communications to the host in hardware SRR N

= Handles the handshake between the endpoint and the @ ey
host device D g \] -

= Generates an interrupt when valid data packets L—> - e S ‘Ct:m;. o
received oy ey | RS

= Will not interrupt the CPU when an error in é [Jou] \\ |
transmission occurs =

= Moves valid data to/from the endpoint FIFOs ,/‘1\\

= Firmware only needs to be concerned with the data < i
transferred -

Firmware
interfaces

Token Packet [PID Address Endpoint CRC
format:

7 4 SIE handles
SOF Packet [Frame Number error checking

format:

11

Data Packet
format:

SIE handles
handshaking

Handshake
Packet format:

19 SILICON LABS

Presenter
Presentation Notes
The SIE is what handles all of the low level processing the incoming packets from the host and outgoing packets from the MCU. Shown in the slide are the packets defined by the USB specification. The SIE is responsible for monitoring the data as it is received and checking the validity of the complete packet. If for some reason that packet is invalid the SIE will discard the packet and not store it into the FIFO. If the packet is valid then the SIE will pass the packet to the FIFO. This limits the firmware overhead require to service the USB data transfers.

Control Transfer to Endpoint O

» Setup packet to Endpoint O:
= Both IN and OUT directions
= Used when sending the USB Standard Requests SIE controlled

CRC OK
8 data bytes transferred |
ACK transmitted

. Firmware control

Host sends
Setup Packet

T

N

Do nothing

v

Discard Data

20

Packet
Valid?

Y

Load data to
Endpoint0
FIFO

v

Generate
Interrupt

Set Index to

0x00 to read
EOCSR

N
Do other

Unload FIFO

Decode

transfer

request
Set SOPRDY SOPRDY - Service

=1 OUT Packet

Load data for Get data from

IN request OUT request

SILICON LABS

Presenter
Presentation Notes
Over the next couple of slides we can look at the steps that are involved in the firmware development required to handle data transfers across the USB. As an example we will look at the control transfer. The first thing that happens is the host sends what is called a setup packet. If the packet is received with errors the SIE will do nothing and discard the packet. No device firmware is required to handle this error condition. If the packet is valid then the SIE will load the data into the FIFO and an interrupt is generated. At this point it is now up to the firmware to handle the received data. Since this was an endpoint 0 transaction the firmware sets the index to 0 so that the endpoint 0 FIFO can be read. If the packet is ready the firmware unloads the data from the FIFO and decodes the transfer request (according to chapter 9 of the USB specification). Once decoded the firmware will either load data to be read by the host (IN) or get the new data sent from the host (OUT).

"IN Packet to Endpoint O

» Host is requesting data
= Data phase of control transfers
= Used when sending data for the USB standard requests

.| Host sends IN
Packet

Service IN
interrupt

SIE controlled

. Firmware control

Load data to
Endpoint0
FIFO

No response

v
Discard Data

INPRDY
Set?

Last
Packet N
of
data?

A 4

Send NAK

Send FIFO
INPRDY - IN Packet Data

Ready
l A\ 4
Set interrupt DATAEND =1

flag

21 SILICON LABS

Presenter
Presentation Notes
The next phase of the control transfer is the data phase. Depending on the request that was communicated in the setup phase the host will either request data from the device or send data to the device. Here we see the flow diagram if the host is expecting the device to return the requested data. As a result of the setup phase, if the request from the host was a GET request then the firmware had already loaded the data into the IN endpoint FIFO and set the INPRDY flag to notify the SIE that there is valid data waiting on the host IN request. Once the IN request is received the SIE once again determines the validity of the packet and checks the INPRDY bit to make sure the data is ready. If it is not set the SIE automatically generates NAK response to the host. If the bit is set then the SIE sends the data from the FIFO and sets the interrupt flag. Once the interrupt is pended the firmware will load more data to the FIFO and set the INPRDY bit once again. If this is the last packet the firmware will also set the DATAEND bit. This allows the SIE to generate the acknowledge sequence required by the control transfer status phase.

OUT Packet to Endpoint O

» Host is sending data
= Data phase of control transfers
= Used when receiving data for standard requests

Host sends
out Packet

N Packet Do other
v Valid? Unload FIFO

No response

Y

J' Last data
Load data to byte

Discard Data EndpointO received?
FIFO

v

Generate
Interrupt

Set DATAEND Set SOPRDY
=1 =1

SIE controlled

. Firmware control
22 SILICON LABS

Presenter
Presentation Notes
Some control transfers send data to the device which would require OUT transfers in the data phase. In this flow diagram the SIE loads the received data to the FIFO and sets the interrupt flag. The firmware then unloads the FIFO for processing.

-y

SILICON LABS

The SMBus/I2C Peripheral

n SMBus/I°C Peripheral

» Master/Slave byte-wise serial data transfers

(can switch on-the-fly)
» Clock signal generation on SCL (Master Mode
only) and SDA data synchronization LT
> Timeout/bus error recognition, as defined by -
the SMBOCF configuration register o [T Oveton
» START/STOP timing, detection, and generation vy, o vvivey e L
E;T;z% : :?L“E\t(iszhmmzalion | I
» SMBus peripheral supports both software Sy e i) S ::
address decoding and hardware address e 208 Do
decodlng - : . Con:rul ConlrolL : ‘E}i\ I
= Hardware address decoding , - :
*Hardware controls the ACK/NACK of the address || ___.__| | |‘FE<Eew ey
and data bytes A Wt .)
*The SMBus peripheral can support masters PIFELL] Stz 2ol =
without clock stretching at 400 kHz (for I°C) SRR L S >
*Hardware control means less code, less overhead » =

and more CPU resources available
» Bus arbitration
» Status information

» Supports SCL Low Timeout and Bus Free Timeout detection

24 SILICON LABS

Presenter
Presentation Notes
The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I2C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/20th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

SMBus Transfer Modes

» The SMBus interface may be configured to operate as Master and/or
a Slave

» At any particular time, it will be operating in one of the following four
modes:

= Master transmitter (write operation)
= Master receiver (read operation)

= Slave transmitter (read operation)

= Slave receiver (write operation)

» Peripheral is in master mode any time a START is generated
= Remains in Master mode until it loses an arbitration or generates a STOP

» SMBus interrupts are generated at the end of all SMBus byte frames:

= Recelver:

*The interrupt for an ACK occurs before the ACK with hardware ACK generation
disabled

*The interrupt for an ACK occurs after the ACK when hardware ACK generation is
enabled

= Transmitter:
Interrupts occur after the ACK

®

25 SILICON LABS

Presenter
Presentation Notes
The SMBus interface may operate as a master and/or a slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. The SMBus peripheral can be fully driven by software (i.e., software accepts/rejects slave addresses, and generates ACKs), or hardware slave address recognition and automatic ACK generation can be enabled to minimize software overhead and response latency.

SMBus Timing Control

» The SMBCS1-0 bits in SMBOCF select the SMBus clock source
= OQverflows from Timer O, Timer 1 or Timer 2 set the time-base

= Used only when operating as a Master or when the Bus Free Timeout detection
is enabled

= Selected clock source may be shared by other peripherals so long as the timer is
left running at all times.

*Example, Timer 1 overflows may generate the SMBus and UART baud rates
simultaneously

1 Timer overflow rate determines high and low

T <«— time and must conform to the standards as

HighMin = 1.

LowMin

fom:kSourcererﬂow

BitRate = fCIackSom;ceOverﬂaw p i | | . i | i | | |
3

Timer Source ‘L ‘LW |‘| 1 |‘| /_ Thien typically twice as large as T, o, (SCL \
[

SCL

®
Hign

26 SILICON LABS

~ SMBus Addressing

» The SMBus hardware has the capability to automatically recognize
iIncoming slave addresses and send an ACK without software
intervention
= SMBus Slave Address register

*Programmed device address
*Addresses are 7 bits
= SMBus Slave Address Mask Registers

*A 1 in the bit position enables the comparison with the incoming address
*A 0 in the bit position is treated as a don’t care

= Will recognize the General Call Address (0x00) . pleg |

27 SILICON LABS

Presenter
Presentation Notes
The registers used to define which addresses are recognized by the hardware are the SMBus Slave Address register and the SMBus Slave Address Mask register. A single address or range of addresses (including the General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two registers are used to define which addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison between the received slave address and the hardware’s slave address bits. A 0 in a bit of the slave address mask means that bit will be treated as a “don’t care” for comparison purposes. In this case, either a 1 or a 0 value are acceptable on the incoming slave address.

n SMBus Configuration: SMBOCN

Register

» SMBOCN bits can be used to identify
the transfer mode:

= MASTER
= TXMODE
= STA
= STO

» All bits combined define the
firmware action to take

= Example: A master data or address byte
was transmitted; ACK received.

*SMBOCN = 1100001
*MASTER = 1
"TXMODE = 1
STA=0
STO =0
*ACKRQ =0
*ARBLOST =0
*ACK =1

*Possible next action for firmware:
e oad new data to SMBODAT
*Send Stop
*Send repeated start

28

Bit | Name Description Read Write
7 | MASTER | sMBus Master/Slave 0: SMBus operating in N/A
Indicator. This read-only bit | slave mode.
indicates when the SMBus is | 1: SMBus operating in
operating as a master. master mode.
6 | TXMODE | sMBus Transmit Mode 0: SMBus in Receiver N/A
Indicator. This read-only bit | Mode.
indicates when the SMBus is | 1: SMBus in Transmitter
operating as a transmitter. Mode.
5 STA SMEBus Start Flag. 0: No Start or repeated 0: No Start generated.
Start detected. 1: When Configured as a
1: Start or repeated Start | Master, initiates a START
detected. or repeated START.
4 STO SMBus Stop Flag. 0: No Stop condition 0: No STOP condition is
detected. transmitted.
1: Stop condition detected | 1: When configured as a
(if in Slave Mode) or pend- | Master, causes a STOP
ing (if in Master Mode). condition to be transmit-
ted after the next ACK
cycle.
Cleared by Hardware.
3 | ACKRQ |sMBus Acknowledge 0: No Ack requested N/A
Request. 1: ACK requested
2 |ARBLOST | sMBus Arbitration Lost 0: No arbitration error. N/A
Indicator. 1: Arbitration Lost
1 ACK SMBus Acknowledge. 0: NACK received. 0: Send NACK
1: ACK received. 1: Send ACK
0 Sl 0: Clear interrupt, and initi-

SMBus Interrupt Flag.
This bit is set by hardware .
Sl must be cleared

by software. While Sl is set,
SCL is held low and the
SMBus is stalled.

: No interrupt pending
: Interrupt Pending

- o

ate next state machine
event.
1: Force interrupt.

SILICON LABS

Presenter
Presentation Notes
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depends on whether hardware slave address recognition and ACK generation is enabled or disabled.

Acknowledgement Handling

» Software acknowledgement
= EHACK bit in register SMBOADM is cleared to O

» Firmware on the device must detect incoming slave addresses and ACK or
NACK the slave address and incoming data bytes.

*Receiver—writing the ACK bit defines the outgoing ACK value

*Transmitter—reading the ACK bit indicates the value received during the last ACK
cycle

» Hardware acknowledgement
= EHACK bit in register SMBOADM is setto 1

= Automatic slave address recognition and ACK generation is enabled in hardware

*Receiver—the value currently specified by the ACK bit will be automatically sent on
the bus during the ACK cycle of an incoming data byte

*Transmitter—reading the ACK bit indicates the value received on the last ACK cycle
= Transmit mode always interrupts after the ACK/NAK

= |ndicates a successful transfer

®

29 SILICON LABS

Presenter
Presentation Notes
The transmitter, master or slave, releases the SDA line (HIGH) during the acknowledge clock cycle. In order to acknowledge a byte, the receiver must pull the SDA line LOW during the HIGH period of the clock pulse according to the SMBus timing specifications. A receiver that wishes to NACK a byte must let the SDA line remain HIGH during the acknowledge clock pulse.

. Write: Master Transmitter

» Transmit mode always interrupts after the ACK/NAK

= First byte transfer the device is the master transmitter and interrupts after the
ACK

= The device then continues to be the transmitter and generates the interrupt
regardless of the hardware acknowledgement bit (EHACK)

_ —

Interrupts generated \
Interrupts generated \

Start Slave Address W Data Byte Data Byte Stop

Received by SMBus slave
Transmitted by the SMBus slave

30 SILICON LABS

Presenter
Presentation Notes
During a Write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. The interface will switch to master receiver mode if SMB0DAT is not written following a master transmitter interrupt. Two transmit data bytes are shown above, though any number of bytes may be transmitted. Notice that all of the “data byte transferred” interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

. Read: Master Recelver

¢ Transmit mode always interrupts after the ACK/NAK

> First byte transfer the device is the master transmitter and interrupts after the
ACK

» The device then becomes the receiver and generates the interrupt based on
the hardware acknowledgement bit (EHACK)
*EHACK = 1 then interrupts occur after the ACK/NAK

*EHACK = 0 then interrupts occur before the ACK/NAK period and firmware must
write the desired value to the ACK bit

_Master Read Interrupt Generation |

Interrupts generated \
Interrupts generated \

Received by SMBus Slave
Transmitted by the SMBus Slave @

31 SILICON LABS

Start Slave Address W [Data Byte Data Byte

Presenter
Presentation Notes
During a read sequence, an SMBus master reads data from a Slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

. Write: Slave Recelver

» First byte transfer the device is the slave receiver for the address and
direction bit

= The device continues to be the receiver and generates the interrupt based on the
hardware acknowledgement bit (EHACK)
*EHACK = 1 then interrupts occur after the ACK/NAK

*EHACK = 0 then interrupts occur before the ACK/NAK period and firmware must
write the desired value to the ACK bit

_ =

Interrupts generated

Start Slave Address W Data Byte Data Byte Stop

Interrupts generated

1

Received by SMBus Slave
Transmitted by the SMBus Slave @

32 SILICON LABS

Presenter
Presentation Notes
During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters slave receiver mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering slave receiver mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

. Read: Slave Transmitter

» First byte transfer the device is the slave receiver for the address and
direction bit

= EHACK =1 then interrupts occur after the ACK/NAK

= EHACK = 0 then interrupts occur before the ACK/NAK period and firmware must
write the desired value to the ACK bit

» The device then becomes the transmitter and generates the interrupt
after the Acknowledgement bit (ACK)

_ Slave Read Interrupt Generation |

Interrupts generated \
Interrupts generated \

Start Slave Address R [Data Byte Data Byte

Received by SMBus Slave
Transmitted by the SMBus Slave

33 SILICON LABS

Presenter
Presentation Notes
During a Read sequence, an SMBus master reads data from a Slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters slave receiver ode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

" SMBus/I2C Code Examples

¢ Code examples can be found in the Silicon Labs install directory
» Silabs\MCU\Examples\C8051F38x
» Master and slave implementations available

¢ Example initialization routines found in the examples directory

yoid SMBus_Init (void) yoid SMBus_Init (void)

{ {
// Save the current SFRPAGE // Save the current SFREAGE
18 SFRPAGE save = SFRAGE: Master 118 SFRPAGE save = SFRRAGE: Slave
(Y PAGE: SFRPAGE = LEGACY_PAGE,

SHBOCE = 0x5D; SHBOCF = 0x1D; 7/ Tze Tinerl overtlovs as SMBus clock
/4 source,

// Enable slave node;

// Enable setup & hold tine

// eEtensions,

// Enable SMBus Free tineout detect:

// Enable 5CL low tineout detect

/7 Tze Tinerl overflovs as SMBus clock
/7 source,

/¢ Dizable slave node;

// Enable setup & hold tine

// eEtensions;

/7 Enable SMBus Free tinsout detect:
/¢ Enable 5CL low tineout detect:
SHBOCF |= 0x80: // Enable SHBus;

SHBOCE |= 0x80; // Enable SHBua;

SFREAGE = SFRPAGE_save; SFREAGE = SFRPAGE save;

34 SILICON LABS

Presenter
Presentation Notes
Here we see a code example for the configuration of the SMBus module. The difference between setting the peripheral up for master or slave is one bit setting in the SMB0CF register.

-y

SILICON LABS

C8051F38x Enhanced UART

® Additional UART Module

» Asynchronous full-duplex serial port
» Dedicated Baud rate generator
= Three byte FIFO for receiving characters

» Baud rates should be less than the system clock divided by 16

» Multi-processor mode available

» 0Odd, even, mark or space parity supported

SYSCLK

Baud Rate Generator

Data Formatting

SMOD1

[SBRLH1 | SBRLL1

b U

A A

Timer (16-bit)

Overflow AT i e)]
BEEEnnég
S| —|—
| Pre-Scaler P12 (°1”
EN "1(1, 4,12, 48)

/

.
>

= o Control / Status

2 &8 SCONT e

i B EREERREE

Al SEEERE T
SECONT =

>
p Logic

—X]xi

+

> TX Holding

>

Register

T‘—Write to SBUF1
F1

SBU
Read of SBUF1

»|
>

/

Dedicated baud
rate generator

36

UART1 |
Interrupt

h 4

RX FIFO
(3 Deep)

2

RX

D

Logic

—Rx1

Enhanced UART Block Diagram

®

SILICON LABS

Presenter
Presentation Notes
UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive up to three data bytes before data is lost and an overflow occurs. The UART supports multiprocessor communication between a master processor and one or more slave processors by special use of the extra data bit. Extra bits can be used to generate the mark and space parity (1 or 0 respectively).

y Operating Modes

» The UART has several modes of operation, selectable using the
SMOD register

» All modes enable asynchronous communications
= 5,6, 7, or 8-bit UART
= Extra 9™ bit for multi-processor communications
= Parity can be enabled or disabled
= Stop bit length can be changed

s | . M—\ i;m
Rx Data DO D1 Dn-2 | Dy P/E Stop
LA \ X ,
1 :

N bits: N=5, 6, 7 or 8 >

P/E Parity bit can be enabled or disabled or the bit time can be used for an extra bit
Stop Stop bit is programmable for 1, 1.5 or 2 bit times

37 SILICON LABS

Presenter
Presentation Notes
UART1 has a number of available options for data formatting. Data transfers begin with a start bit (logic low), followed by the data bits (sent LSB-first), a parity or extra bit (if selected), and end with one or two stop bits (logic high). The data length is variable between 5 and 8 bits. A parity bit can be appended to the data, and automatically generated and detected by hardware for even, odd, mark, or space parity. The stop bit length is selectable between short (1 bit time) and long (1.5 or 2 bit times), and a multi-processor communication mode is available for implementing networked UART buses. All of the data formatting options can be configured using the SMOD1 register. The figure shows the formats provided by the UART1 module. Note that the extra bit feature is not available when parity is enabled, and the second stop bit is only an option for data lengths of 6, 7, or 8 bits.

Baud Rate Calculations

» The baud rate is generated by using the following equation:

SYSCLK 1 1
BaudRate = X — X
(65536 —(SBRLH1: SBRLL1)) 2 Prescaler

Baud Rate Example:
Desired baud rate = 57600 baud
Clock input to Timer 1 = System clock = 48 MHz

Changing above equation:

38 SILICON LABS

Presenter
Presentation Notes
The baud rate generator is included as part of the UART1 module. The baud rate is determined by the equation shown. The SBRL register is a 16 bit timer that is clocked by the system clock through a prescaler that provides divisors of 1, 4, 12, and 48. The example shows how to calculate the register settings from a desired UART baud rate.

-y

SILICON LABS

Silicon Labs Tools for USB
Development

= .
Firmware Examples

» Installed as part of the Silicon labs IDE and found at
= http://www.silabs.com/PRODUCTS/MCU/Pages/SoftwareDownloads.aspx

» Firmware template for HID applications can be used for custom
applications

» USB examples provided (includes host and device software)
= USB bulk—uses the bulk transfer method to illustrate USB
= USB HID—includes firmware template as a starting point for custom firmware

e HID blinky
* HID to UART
e HID mouse example
= USB interrupt—examples highlight firmware that utilize the interrupt transfer

» Other examples
= Mass Storage Device (MSD)
= Human interface device w/boot loader
= USB streaming audio/isochronous

40 SILICON LABS

Presenter
Presentation Notes
There are code examples in the Silicon Labs IDE install examples directory. Each peripheral has a code example that can be used as a starting point for application firmware. There are also example highlighting the use of the USB controller. Due to the complex nature of USB and the associated firmware, these examples prove to be invaluable as a starting point for USB device implementations.

http://www.silabs.com/PRODUCTS/MCU/Pages/SoftwareDownloads.aspx�

n USBXpress

» Allows the developer to implement a
USB application without USB expertise i L _customer Aspiicaion_]

= Royalty free, Windows certified device driver _ N s T
that can be customized and distributed rrrr— |
USB Protocol Expertise . | | USE Protocol Expertise |

= Microsoft Windows 2000,XP, Vista, 7 and ——
WInCE are supported S et

> For use with USB MCUs as well as fixed i
function devices

» Host side API and drivers included
= No host side driver development required | |

= Drivers certified through Microsoft and can be T
customized and certified by the end user USBXpress Diver

USB Root Hub

User Application
(eg. VC++ custom app)

User Application
(eg. VC++ custom app)

| USBXpress DLL / API I

F

USBXpress Driver

USB Root Hub

» Firmware API included

= Access to USBXpress libraries via the
firmware API

» Details can be found in AN169:
USBXpress Programmers User Guide @

Transceiver or
UART Circuitry

CP210x
| USBXpress Firmware | USB-UART Bridge

USBXpress Data Flow
4L SILICON LABS

Presenter
Presentation Notes
The Silicon Laboratories USBXpress® Development Kit provides a complete host and device software solution for interfacing Silicon Laboratories USB MCUs and bridge devices to the Universal Serial Bus (USB). No USB protocol or host device driver expertise is required. Instead, a simple, high-level Application Program Interface (API) for both the host software and device firmware is used to provide complete USB connectivity.

= :
C8051F380DK Development Kit

» C8051F380DK development kit
= Enables real-time code development and
evaluation of the C8051F38x product family

= |ncludes:

* C8051F380 target board
Quick start guide L
Integrated development environment (IDE) | Q
USB debug adaptor
Wall power adaptor

USB cables and complete documentation The C8051F380DK Development Kit is
available for $99.00 USD (MSRP)

C8051F380DK Development Kit

» TOOLSTICK381DC
= Enables a quick development and evaluation of the C8051F381 USB MCU
= Available for $9.90 USD (MSRP)

42 SILICON LABS

Presenter
Presentation Notes
Silicon Labs has developed a cohesive ecosystem of easy-to-learn application development and evaluation tools for all of our USB product families.

The C8051F380DK development kit enables real-time code development and evaluation of the C8051F38x product family. It includes the C8051F380 target board, Quick Start Guide, Integrated Development Environment (also known as IDE), USB debug adaptor, wall power adaptor, USB cables and complete documentation. The C8051F380 development kit is available for $99.00 USD MSRP

Additionally, the Silicon Labs TOOLSTICK381DC daughter card is an easy to use development system that allows designers to develop and debug application firmware directly on the target C8051F381 microcontroller using the Silicon Labs IDE. Once complete, designers can replace the daughter card with a programming adapter and program blank devices for use in their actual system. The TOOLSTICK381DC is available for $9.90 MSRP

-y

SILICON LABS

www.silabs.com/USB

	C8051F38x USB MCU
	Agenda
	C8051F38x Family Features
	C8051F38x Product Family
	C8051F38x USB Advantages
	C8051F38x Family Enhancements (1 of 2)
	C8051F38x Family Enhancements (2 of 2)
	Firmware Porting Considerations (1 of 2)
	Firmware Porting Considerations (2 of 2)
	C8051F38x Clocking
	Clocking Options
	USB Clock
	The USB Peripheral
	USB Controller
	USB Register Access Scheme
	Indirect Addressing Flow Chart
	USB0 FIFO Allocation
	C8051 Interrupt Vectors
	Serial Interface Engine (SIE)
	Control Transfer to Endpoint 0
	IN Packet to Endpoint 0
	OUT Packet to Endpoint 0
	The SMBus/I2C Peripheral
	SMBus/I2C Peripheral
	SMBus Transfer Modes
	SMBus Timing Control
	SMBus Addressing
	SMBus Configuration: SMB0CN Register
	Acknowledgement Handling
	Write: Master Transmitter
	Read: Master Receiver
	Write: Slave Receiver
	Read: Slave Transmitter
	SMBus/I2C Code Examples
	C8051F38x Enhanced UART
	Additional UART Module
	Operating Modes
	Baud Rate Calculations
	Silicon Labs Tools for USB Development
	Firmware Examples
	USBXpress
	C8051F380DK Development Kit
	www.silabs.com/USB

