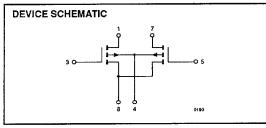

Monolithic Dual P-Channel Enhancement Mode MOSFET General Purpose Amplifier



3N165/3N166

FEATURES

- · Very High Impedance
- High Gate Breakdown
- Low Capacitance

ABSOLUTE MAXIMUM RATINGS (Note 1)

(T_A = 25°C unless otherwise specified)

Drain-Source or Drain-Gate Voltage (Note 2)
3N165
3N166
Transient Gate-Source Voltage (Note 3)
Gate-Gate Voltage
Drain Current (Note 2) 50mA
Storage Temperature65°C to +200°C
Operating Temperature55°C to +150°C
Lead Temperature (Soldering, 10sec)+300°C
Power Dissipation
One Side
Both Sides525mW
Total Derating above 25°C

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

Part	Package	Temperature Range
3N165-66	Hermetic TO-99	-55°C to +150°C
X3N165-66	Sorted Chips in Carriers	-55°C to +150°C

ELECTRICAL CHARACTERISTICS (TA = 25°C and VBS = 0 unless otherwise specified)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
Igssa	Gate Reverse Leakage Current		10		V _{GS} = 40V	
	0.5		-10	pA	VGS = -40V	
IGSSF	Gate Forward Leakage Current		-25		T _A = +125°C	
loss	Drain to Source Leakage Current		-200		V _{DS} = -20V	
Isps	Source to Drain Leakage Current		-400		V _{SD} = -20V, V _{DB} = 0	
D(on) On Drain Current		-5	-30	mA	V _{DS} = -15V, V _{GS} = -10V	
V _{GS(th)}	Gate Source Threshold Voltage	-2	-5		V _{DS} = -15V, I _D = -10μA	
VGS(th)	Gate Source Threshold Voltage	-2	-5] `	V _{DS} = V _{GS} , I _D = -10μA	
rDS(on)	Drain Source ON Resistance		300	ohms	V _{GS} = -20V, i _D = -100µA	

■ 1844322 0000939 T53 ■

ELECTRICAL CHARACTERISTICS (Continued) (TA = 25°C and VBS = 0 unless otherwise specified)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
gfs .	Forward Transconductance	1500	3000		V _{DS} = -15V, I _D = -10mA, f = 1kHz	
gos	Output Admittance		300	μS		
Ciss	Input Capacitance		30			
Crss Reverse Transfer Capacitance			0.7	pF	V _{DS} = -15V, I _D = -10mA, f = 1MHz (Note 4)	
Coss	Output Capacitance		3.0			
R _E (Y _{fs})	Common Source Forward Transconductance	1200		μs	V _{DS} = -15V, i _D = -10mA, f = 100MHz (Note 4)	

MATCHING CHARACTERISTICS 3N165

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
Yfs1 / Yfs2	Forward Transconductance Ratio	0.90	1.0		V _{DS} = -15V, I _D = -500μA, f = 1kHz
V _{GS1-2}	Gate Source Threshold Voltage Differential		100	mV	V _{DS} = -15V, I _D = -500μA
$\frac{\Delta V_{GS1-2}}{\Delta T}$	Gate Source Threshold Voltage Differential Change with Temperature		100	μV/°C	V _{DS} = -15V, I _A = -500μA T _A = -55°C to +25°C

NOTES: 1. See handling precautions on 3N170 data sheet
2. Per transistor.
3. Devices must not be tested at ±125V more than once, nor longer than 300ms.
4. For design reference only, not 100% tested.