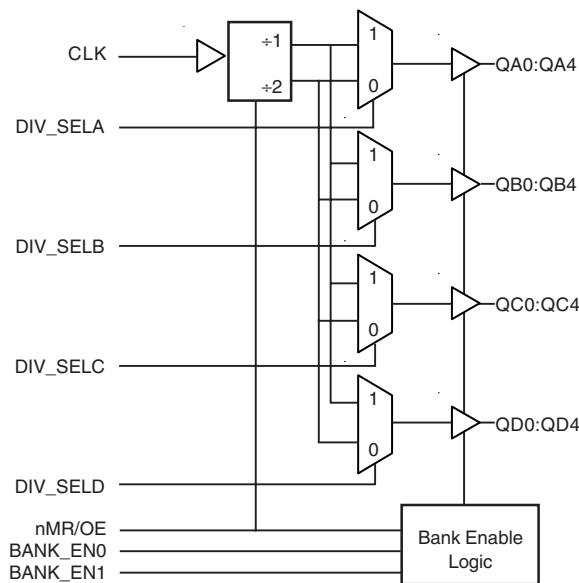
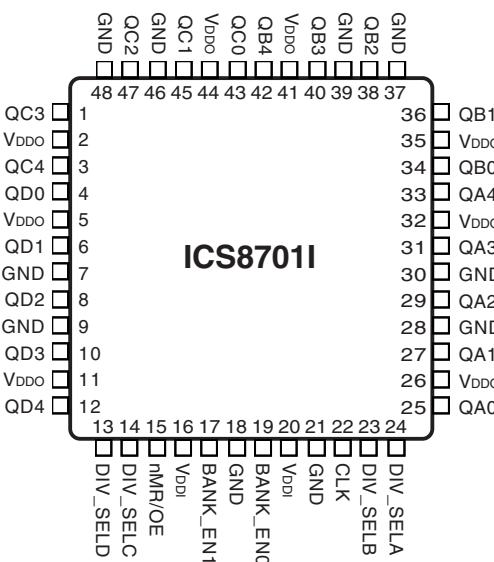


GENERAL DESCRIPTION

The ICS8701I is a low skew, $\div 1$, $\div 2$ Clock Generator. The low impedance LVCMS outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 20 to 40 by utilizing the ability of the outputs to drive two series terminated lines.


The divide select inputs, DIV_SELx, control the output frequency of each bank. The outputs can be utilized in the $\div 1$, $\div 2$ or a combination of $\div 1$ and $\div 2$ modes. The bank enable inputs, BANK_EN0:1, support enabling and disabling each bank of outputs individually. The master reset input, nMR/OE, resets the internal frequency dividers and also controls the active and high impedance states of all outputs.

The ICS8701I is characterized at 3.3V and mixed 3.3V input supply, and 2.5V output supply operating modes. Guaranteed bank, output and part-to-part skew characteristics make the ICS8701I ideal for those clock distribution applications demanding well defined performance and repeatability.


FEATURES

- Twenty LVCMS outputs, 7Ω typical output impedance
- LVCMS / LVTTL clock input
- Maximum input frequency: 250MHz
- Bank enable logic allows unused banks to be disabled in reduced fanout applications
- Bank skew: 200ps
- Output skew: 250ps
- Multiple frequency skew: 300ps
- Part-to-part skew: 600ps
- 3.3V or mixed 3.3V input, 2.5V output operating supply
- 40°C to 85°C ambient operating temperature
- Other divide values available on request
- Available in both standard and lead-free RoHS compliant packages

BLOCK DIAGRAM

PIN ASSIGNMENT

48-Pin LQFP
7mm x 7mm x 1.4mm package body
Y Package
Top View

ICS8701
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

TABLE 1. PIN DESCRIPTIONS

Number	Name	Type		Description
2, 5, 11, 26, 32, 35, 41, 44	V_{DDO}	Power		Output supply pins.
7, 9, 18, 21, 28, 30, 37, 39, 46, 48	GND	Power		Power supply ground.
16, 20	V_{DD}	Power		Positive supply pins.
25, 27, 29, 31, 33	QA0, QA1, QA2, QA3, QA4	Output		Bank A outputs. LVCMOS / LVTTL interface levels. 7 Ω typical output impedance.
34, 36, 38, 40, 42	QB0, QB1, QB2, QB3, QB4	Output		Bank B outputs. LVCMOS / LVTTL interface levels. 7 Ω typical output impedance.
43, 45, 47, 1, 3	QC0, QC1, QC2, QC3, QC4	Output		Bank C outputs. LVCMOS / LVTTL interface levels. 7 Ω typical output impedance.
4, 6, 8, 10, 12	QD0, QD1, QD2, QD3, QD4	Output		Bank D outputs. LVCMOS / LVTTL interface levels. 7 Ω typical output impedance.
22	CLK	Input	Pulldown	LVCMOS / LVTTL clock input.
13	DIV_SELD	Input	Pullup	Controls frequency division for Bank D outputs. LVCMOS / LVTTL interface levels.
14	DIV_SELC	Input	Pullup	Controls frequency division for Bank C outputs. LVCMOS / LVTTL interface levels.
23	DIV_SELB	Input	Pullup	Controls frequency division for Bank B outputs. LVCMOS / LVTTL interface levels.
24	DIV_SELA	Input	Pullup	Controls frequency division for Bank A outputs. LVCMOS / LVTTL interface levels.
17, 19	BANK_EN1, BANK_EN0	Input	Pullup	Enables and disables outputs by banks. LVCMOS / LVTTL interface levels.
15	nMR/OE	Input	Pullup	Master Reset and output enable. When HIGH, output drivers are enabled. When LOW, output drivers are in HiZ and dividers are reset. LVCMOS / LVTTL interface levels.

NOTE: *Pullup* and *Pulldown* refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

ICS8701
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance			4		pF
R_{PULLUP}	Input Pullup Resistor			51		k Ω
$R_{PULLDOWN}$	Input Pulldown Resistor			51		k Ω
C_{PD}	Power Dissipation Capacitance (per output)	$V_{DD}, V_{DDO} = 3.465V$			15	pF
R_{OUT}	Output Impedance			7		Ω

TABLE 3. FUNCTION TABLE

Inputs				Outputs				
nMR/OE	BANK_EN1	BANK_EN0	DIV_SELx	QA0:QA4	QB0:QB4	QC0:QC4	QD0:QD4	Qx frequency
0	X	X	X	Hi Z	Hi Z	Hi Z	Hi Z	zero
1	0	0	0	Active	Hi Z	Hi Z	Hi Z	fIN/2
1	1	0	0	Active	Active	Hi Z	Hi Z	fIN/2
1	0	1	0	Active	Active	Active	Hi Z	fIN/2
1	1	1	0	Active	Active	Active	Active	fIN/2
1	0	0	1	Active	Hi Z	Hi Z	Hi Z	fIN
1	1	0	1	Active	Active	Hi Z	Hi Z	fIN
1	0	1	1	Active	Active	Active	Hi Z	fIN
1	1	1	1	Active	Active	Active	Active	fIN

ICS8701I
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD}	4.6V
Inputs, V_I	-0.5V to $V_{DD} + 0.5$ V
Outputs, V_O	-0.5V to $V_{DD} + 0.5$ V
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ OR $2.5V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V_{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
			2.375	2.5	2.625	V
I_{DD}	Power Supply Current				100	mA

TABLE 4B. LVC MOS DC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ OR $2.5V \pm 5\%$, $T_A = 0^\circ C$ TO $70^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	DIV_SELA, DIV_SELB, DIV_SELC, DIV_SELD, BANK_EN0, BANK_EN1, nMR/OE		2	$V_{DD} + 0.3$	V
		CLK		2	$V_{DD} + 0.3$	V
V_{IL}	Input Low Voltage	DIV_SELA, DIV_SELB, DIV_SELC, DIV_SELD, BANK_EN0, BANK_EN1, nMR/OE		-0.3	0.8	V
		CLK		-0.3	1.3	V
I_{IH}	Input High Current	DIV_SELA, DIV_SELB, DIV_SELC, DIV_SELD, BANK_EN0, BANK_EN1, nMR/OE	$V_{DD} = V_{IN} = 3.465V$		5	μA
		CLK	$V_{DD} = V_{IN} = 3.465V$		150	μA
I_{IL}	Input Low Current	DIV_SELA, DIV_SELB, DIV_SELC, DIV_SELD, BANK_EN0, BANK_EN1, nMR/OE	$V_{DD} = 3.465V, V_{IN} = 0V$	-150		μA
		CLK	$V_{DD} = 3.465V, V_{IN} = 0V$	-5		μA
V_{OH}	Output High Voltage		$V_{DD} = V_{DDO} = 3.135V$ $I_{OH} = -36mA$	2.6		V
			$V_{DD} = 3.135V$, $V_{DDO} = 2.375$ $I_{OH} = -27mA$	1.8		V
V_{OL}	Output Low Voltage		$V_{DD} = V_{DDO} = 3.135V$ $I_{OL} = 36mA$		0.5	V
			$V_{DD} = 3.135V$, $V_{DDO} = 2.375$ $I_{OL} = 27mA$		0.5	V

ICS8701I
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

TABLE 5A. AC CHARACTERISTICS, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Input Frequency				250	MHz
$t_{p_{LH}}$	Propagation Delay, Low-to-High; NOTE 1	$0MHz \leq f \leq 200MHz$	2.2		3.6	ns
$t_{p_{HL}}$	Propagation Delay, High-to-Low; NOTE 1	$0MHz \leq f \leq 200MHz$	2.2		3.6	ns
$t_{sk(b)}$	Bank Skew; NOTE 2, 7	Measured on rising edge at $V_{DDO}/2$			200	ps
$t_{sk(o)}$	Output Skew; NOTE 3, 7	Measured on rising edge at $V_{DDO}/2$			250	ps
$t_{sk(w)}$	Multiple Frequency Skew; NOTE 4, 7	Measured on rising edge at $V_{DDO}/2$			300	ps
$t_{sk(pp)}$	Part to Part Skew; NOTE 5, 7	Measured on rising edge at $V_{DDO}/2$			600	ps
t_R	Output Rise Time; NOTE 6	30% to 70%	200		900	ps
t_F	Output Fall Time; NOTE 6	30% to 70%	200		900	ps
t_{PW}	Output Pulse Width	$0MHz \leq f \leq 200MHz$	$t_{CYCLE}/2 - 0.6$	$t_{CYCLE}/2$	$t_{CYCLE}/2 + 0.6$	ns
		$f = 200MHz$	1.9	2.5	3.1	ns
t_{EN}	Output Enable Time; NOTE 6	$f = 10MHz$			6	ns
t_{DIS}	Output Disable Time; NOTE 6	$f = 10MHz$			6	ns

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the V_{DD} input crossing point to the output at $V_{DDO}/2$.

NOTE 2: Defined as skew within a bank of outputs at the same supply voltages and with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions.

NOTE 4 Defined as skew across banks of outputs operating at different frequency with the same supply voltages and equal load conditions.

NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

NOTE 7: This parameter is defined in accordance with JEDEC Standard 65.

ICS8701I
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

TABLE 5B. AC CHARACTERISTICS, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^\circ C$ TO $85^\circ C$

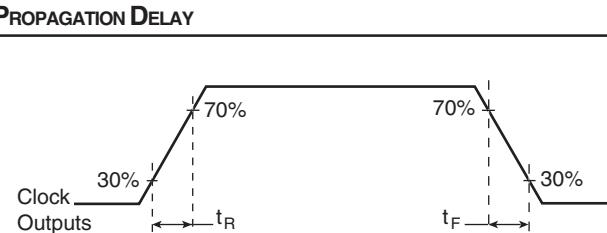
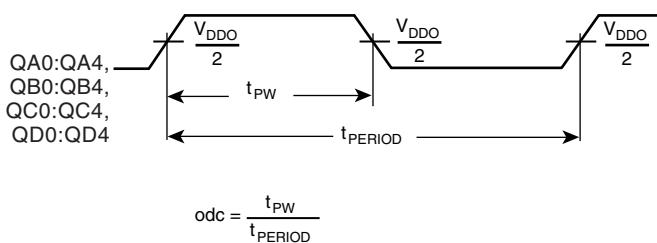
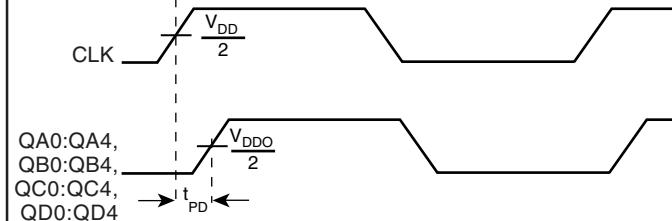
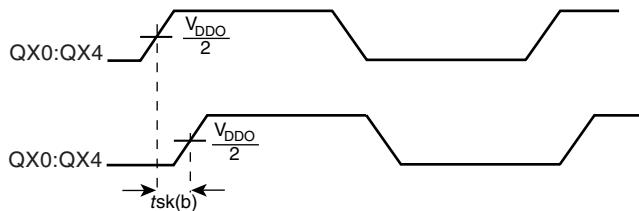
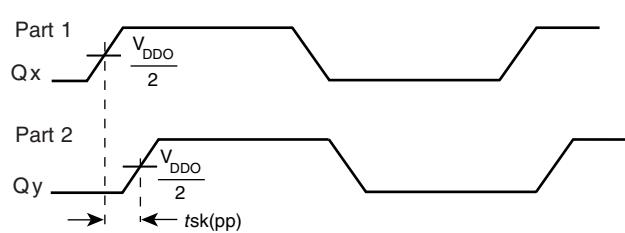
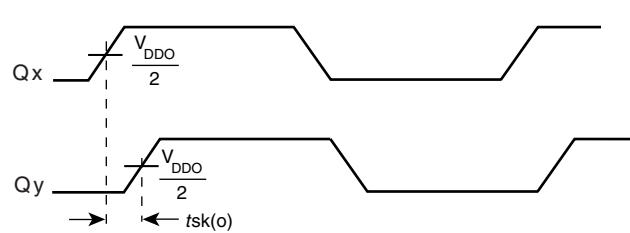
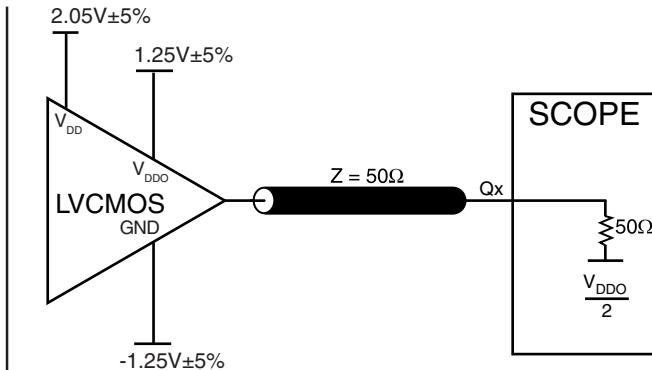
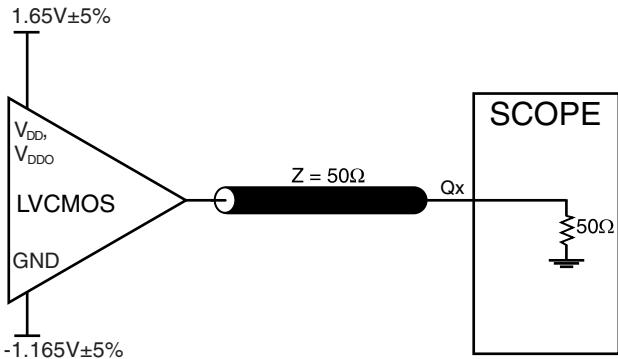
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f_{MAX}	Input Frequency				250	MHz
$t_{p_{LH}}$	Propagation Delay, Low-to-High; NOTE 1	$0MHz \leq f \leq 200MHz$	2.4		3.7	ns
$t_{p_{HL}}$	Propagation Delay, High-to-Low; NOTE 1	$0MHz \leq f \leq 200MHz$	2.4		3.7	ns
$t_{sk(b)}$	Bank Skew; NOTE 2, 7	Measured on rising edge at $V_{DDO}/2$			225	ps
$t_{sk(o)}$	Output Skew; NOTE 3, 7	Measured on rising edge at $V_{DDO}/2$			250	ps
$t_{sk(w)}$	Multiple Frequency Skew; NOTE 4, 7	Measured on rising edge at $V_{DDO}/2$			300	ps
$t_{sk(pp)}$	Part to Part Skew; NOTE 5, 7	Measured on rising edge at $V_{DDO}/2$			650	ps
t_R	Output Rise Time; NOTE 6	30% to 70%	200		900	ps
t_F	Output Fall Time; NOTE 6	30% to 70%	200		900	ps
t_{PW}	Output Pulse Width	$0MHz \leq f \leq 200MHz$	$t_{CYCLE}/2 - 0.6$	$t_{CYCLE}/2$	$t_{CYCLE}/2 + 0.6$	ns
		$f = 200MHz$	1.9	2.5	3.1	ns
t_{EN}	Output Enable Time; NOTE 6	$f = 10MHz$			6	ns
t_{DIS}	Output Disable Time; NOTE 6	$f = 10MHz$			6	ns

All parameters measured at 200MHz unless noted otherwise.

NOTE 1: Measured from the V_{DD} input crossing point to the output at $V_{DDO}/2$.

NOTE 2: Defined as skew within a bank of outputs at the same supply voltages and with equal load conditions.

NOTE 3: Defined as skew between outputs at the same supply voltages and with equal load conditions.









NOTE 4: Defined as skew across banks of outputs operating at different frequency with the same supply voltages and equal load conditions.

NOTE 5: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

NOTE 6: These parameters are guaranteed by characterization. Not tested in production.

NOTE 7: This parameter is defined in accordance with JEDEC Standard 65.

PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

Driver Termination

For LVC MOS Output Termination, please refer to a separate Application Note: *LVC MOS Driver Termination*.

RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

INPUTS:

LVC MOS CONTROL PINS:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1\text{k}\Omega$ resistor can be used.

OUTPUTS:

LVC MOS OUTPUT:

All unused LVC MOS output can be left floating. We recommend that there is no trace attached.

POWER CONSIDERATIONS

For Power Dissipation, please refer to a separate Application Note: *Power Dissipation for LVC MOS Buffer*.

RELIABILITY INFORMATION

TABLE 6. θ_{JA} VS. AIR FLOW TABLE FOR 48 LEAD LQFP

θ_{JA} by Velocity (Linear Feet per Minute)			
	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.			

TRANSISTOR COUNT

The transistor count for ICS8701I is: 1743

PACKAGE OUTLINE - Y SUFFIX FOR 48 LEAD LQFP

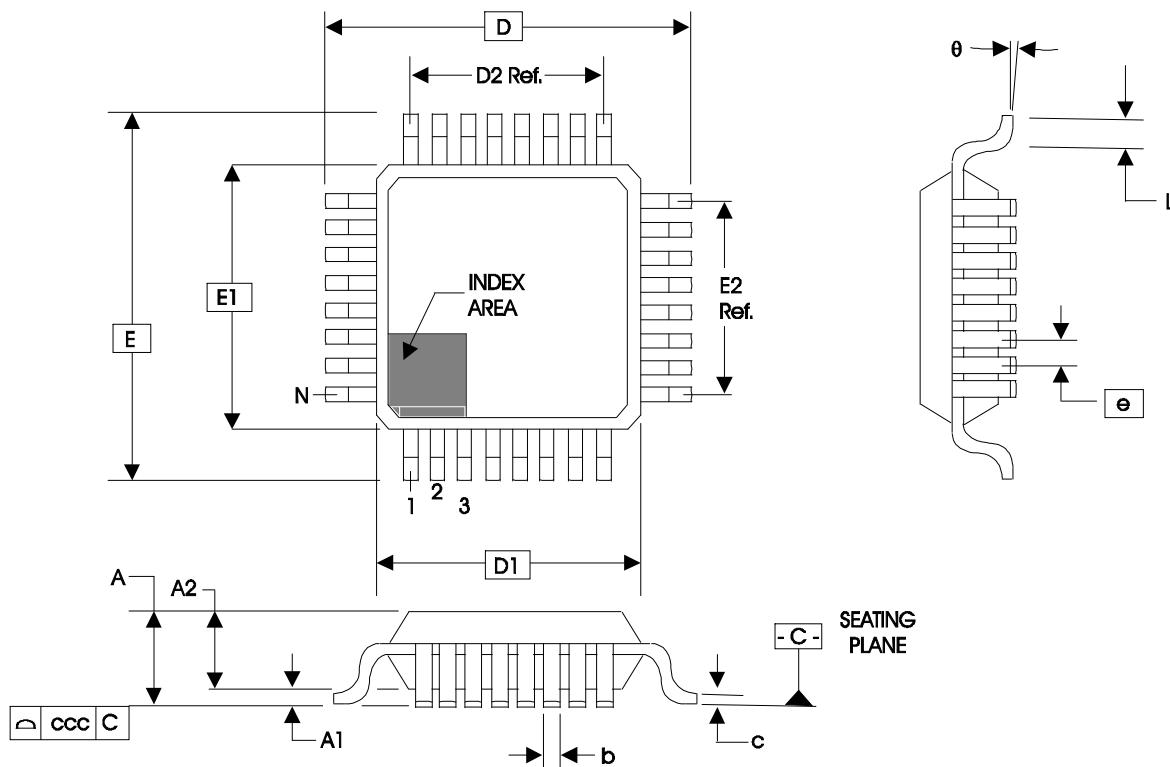


TABLE 7. PACKAGE DIMENSIONS

SYMBOL	JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS		
	MINIMUM	NOMINAL	MAXIMUM
N	48		
A	--	--	1.60
A1	0.05	--	0.15
A2	1.35	1.40	1.45
b	0.17	0.22	0.27
c	0.09	--	0.20
D	9.00 BASIC		
D1	7.00 BASIC		
D2	5.50 Ref.		
E	9.00 BASIC		
E1	7.00 BASIC		
E2	5.50 Ref.		
e	0.50 BASIC		
L	0.45	0.60	0.75
θ	0°	--	7°
ccc	--	--	0.08

Reference Document: JEDEC Publication 95, MS-026

ICS8701
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

TABLE 7. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8701CYI	ICS8701CYI	48 Lead LQFP	tray	-40°C to 85°C
8701CYIT	ICS8701CYI	48 Lead LQFP	1000 tape & reel	0°C to 70°C
8701CYILF	ICS8701CYILF	48 Lead "Lead-Free" LQFP	tray	0°C to 70°C
8701CYILFT	ICS8701CYILF	48 Lead "Lead-Free" LQFP	1000 tape & reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Inc. (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

REVISION HISTORY SHEET					
Rev	Table	Page	Description of Change		Date
A	1 5A 5B 8 - 10 10 11 12	2	Updated format throughout the datasheet. Renamed LVC MOS_CLK to CLK. Renamed V _{DDI} to V _{DD} .	8/19/02	
		5	Pin Description Table, revised nMR/OE description.		
		7	3.3V AC Characteristics Table, updated notes.		
		8 - 10	3.3V/2.5V Characteristics Table, updated notes.		
		10	Updated drawings.		
		11	Added Power Consideration and Driver Termination notes.		
		12	Added Reliability Information and Transistor Count.		
			Revised Package Outline.		
B	T2	1	Features Section - added lead-free bullet.	2/28/06	
		3	Pin Characteristics Table - changed CIN from 4pF max. to 4pF typical.		
	T7	8	Parameter Measurement Information - added Bank Skew diagram.		
		9	Application Information - added <i>Recommendations for Unused Input and Output Pins</i> .		
C	T7	12	Ordering Information Table - added lead-free part number, marking and note.	7/27/10	
			Updated format throughout the data sheet.		
		14	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.		

ICS8701
LOW SKEW, $\div 1$, $\div 2$
CLOCK GENERATOR

We've Got Your Timing Solution.

6024 Silver Creek Valley Road
San Jose, CA 95138

Sales
800-345-7015 (inside USA)
+408-284-8200 (outside USA)
Fax: 408-284-2775

Tech Support
netcom@idt.com

© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners.
Printed in USA