

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32671P ... B32673P

Date: June 2018

© EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Power Factor Correction

Typical applications

■ PFC (Power Factor Correction)

Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1:2013): 55/110/56

Construction

- Dielectric: polypropylene (PP)
- Wound capacitor technology
- Plastic case (UL 94 V-0)
- Epoxy resin sealing

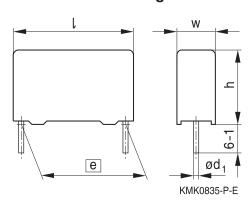
Features

- Very compact design
- Very small dimensions
- Very high ripple and peak current
- High frequency AC operation capability
- High voltage capability
- Excellent self-healing property
- RoHS-compatible
- Halogen-free capacitors available on request
- AEC-Q200D compliant

Terminals

- Parallel wire leads, lead free, tinned
- Special lead lengths available on request

Marking


- Manufacturer's logo
- Lot number, series number
- Rated capacitance (coded)
- Capacitance tolerance (code letter)
- Rated DC voltage
- Date of manufacture (coded)

Delivery mode

- Bulk (untaped)
- Taped (Ammo pack or reel)

For notes on taping, refer to chapter "Taping and packing".

Dimensional drawing

Dimensions in mm

Lead spacing	Lead diameter	Туре
e ±0.4	$d_1 \pm 0.05$	
10	0.6	B32671P
15	0.8	B32672P
22.5	0.8	B32673P

Overview of available types

Lead spacing	10 mm		15 mm		22.5 mm				
Туре	B32671P		B32672P		B32673P				
Page	4			5			6		
V _{RMS} (V AC)	160	200	200	160	200	200	160	200	200
V _R (V DC)	450	520	630	450	520	630	450	520	630
C _R (μF)									
0.068									
0.082									
0.10									
0.15									
0.18									
0.22									
0.27									
0.33									
0.39									
0.47									
0.56									
0.68									
1.0									
1.5									
2.0									
2.2									

B32671P

Power Factor Correction

Ordering codes and packing units (lead spacing 10 mm)

$\overline{V_R}$	V_{RMS}	C_R	Ordering code	Max. dimensions	Ammo	Reel	Untaped
	f≤1 kHz		(composition see	$w \times h \times I$	pack		
V DC	V AC	μF	below)	mm	pcs./MOQ	pcs./MOQ	pcs./MOQ
450	160	0.10	B32671P4104+***	$4.0 \times 9.0 \times 13.0$	4000	6800	4000
		0.15	B32671P4154+***	$4.0 \times 9.0 \times 13.0$	4000	6800	4000
		0.18	B32671P4184+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.22	B32671P4224+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.27	B32671P4274+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.33	B32671P4334+***	$6.0 \times 12.0 \times 13.0$	2720	4400	4000
		0.39	B32671P4394+***	$6.0 \times 12.0 \times 13.0$	2720	4400	4000
		0.47	B32671P4474+***	$6.0 \times 14.0 \times 13.0$	2720	4400	4000
		0.68	B32671P4684+***	$7.0 \times 16.0 \times 13.0$	_	_	4000
		1.0	B32671P4105+***	$8.0 \times 17.5 \times 13.0$	_	_	2000
520	200	0.082	B32671P5823+***	$4.0 \times 9.0 \times 13.0$	4000	6800	4000
		0.10	B32671P5104+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.15	B32671P5154+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.22	B32671P5224+***	$6.0 \times 12.0 \times 13.0$	2720	4400	4000
		0.33	B32671P5334+***	$7.0 \times 16.0 \times 13.0$	_	_	4000
		0.47	B32671P5474+***	$8.0\times17.5\times13.0$	_	_	2000
630	200	0.068	B32671P6683+***	$4.0 \times 9.0 \times 13.0$	4000	6800	4000
		0.082	B32671P6823+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.10	B32671P6104+***	$5.0 \times 11.0 \times 13.0$	3320	5200	4000
		0.15	B32671P6154+***	$6.0 \times 12.0 \times 13.0$	2720	4400	4000
		0.18	B32671P6184+***	$6.0 \times 12.0 \times 13.0$	2720	4400	4000
		0.22	B32671P6224+***	$6.0 \times 14.0 \times 13.0$	2720	4400	4000
		0.33	B32671P6334+***	$8.0 \times 17.5 \times 13.0$	_	_	2000
		0.39	B32671P6394+***	$8.0\times17.5\times13.0$	_	_	2000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerance on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $J = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

003 = Straight terminals, untaped (lead length

 $3.2 \pm 0.3 \text{ mm}$

000 = Straight terminals, untaped (lead length)

6-1 mm)

B32672P

Power Factor Correction

Ordering codes and packing units (lead spacing 15 mm)

$\overline{V_R}$	V _{RMS}	C _R	Ordering code	Max. dimensions	Ammo	Reel	Untaped
	f≤1 kHz		(composition see	$w \times h \times I$	pack		
V DC	V AC	μF	below)	mm	pcs./MOQ	pcs./MOQ	pcs./MOQ
450	160	0.10	B32672P4104+***	$5.0\times10.5\times18.0$	4680	5200	4000
		0.22	B32672P4224+***	$5.0 \times 10.5 \times 18.0$	4680	5200	4000
		0.33	B32672P4334+***	$5.0 \times 10.5 \times 18.0$	4680	5200	4000
		0.47	B32672P4474+***	$5.0 \times 10.5 \times 18.0$	4680	5200	4000
		0.56	B32672P4564+***	$6.0 \times 11.0 \times 18.0$	3840	4400	4000
		0.68	B32672P4684+***	$6.0 \times 12.0 \times 18.0$	3840	4400	4000
		1.0	B32672P4105+***	$7.0 \times 12.5 \times 18.0$	3320	3600	4000
		1.5	B32672P4155+***	$9.0 \times 17.5 \times 18.0$	2560	2800	2000
		2.0	B32672P4205+***	$9.0 \times 17.5 \times 18.0$	2560	2800	2000
		2.2	B32672P4225+***	$11.0 \times 18.5 \times 18.0$	-	2200	1200
520	200	0.15	B32672P5154+***	$5.0 \times 10.5 \times 18.0$	4680	5200	4000
		0.22	B32672P5224+***	$5.0 \times 10.5 \times 18.0$	4680	5200	4000
		0.33	B32672P5334+***	$6.0 \times 11.0 \times 18.0$	3840	4400	4000
		0.47	B32672P5474+***	$7.0 \times 12.5 \times 18.0$	3320	3600	4000
		0.68	B32672P5684+***	$8.5 \times 14.5 \times 18.0$	2720	2800	2000
		1.0	B32672P5105+***	$9.0 \times 17.5 \times 18.0$	2560	2800	2000
		1.5	B32672P5155+***	$11.0\times18.5\times18.0$	-	2200	1200
630	200	0.15	B32672P6154+***	$5.0 \times 10.5 \times 18.0$	4680	5200	4000
		0.22	B32672P6224+***	$6.0 \times 11.0 \times 18.0$	3840	4400	4000
		0.33	B32672P6334+***	$7.0 \times 12.5 \times 18.0$	3320	3600	4000
		0.47	B32672P6474+***	$8.0 \times 14.0 \times 18.0$	2920	3000	2000
		0.68	B32672P6684+***	$9.0 \times 17.5 \times 18.0$	2560	2800	2000
		1.0	B32672P6105+***	$11.0\times18.5\times18.0$	_	2200	1200

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerance on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $J = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

003 = Straight terminals, untaped (lead length

 3.2 ± 0.3 mm)

000 = Straight terminals, untaped (lead length)

6-1 mm

B32673P

Power Factor Correction

Ordering codes and packing units (lead spacing 22.5 mm)

V_R	V_{RMS}	C _R	Ordering code	Max. dimensions	Ammo	Reel	Untaped
	f≤1 kHz		(composition see	$w \times h \times I$	pack		
V DC	V AC	μF	below)	mm	pcs./MOQ	pcs./MOQ	pcs./MOQ
450	160	1.0	B32673P4105+***	$6.0 \times 15.0 \times 26.5$	2720	2800	2880
		1.5	B32673P4155+***	$7.0\times16.0\times26.5$	2320	2400	2520
		2.2	B32673P4225+***	$8.5\times16.5\times26.5$	1920	2000	2040
520	200	0.47	B32673P5474+***	$6.0 \times 15.0 \times 26.5$	2720	2800	2880
		0.56	B32673P5564+***	$6.0 \times 15.0 \times 26.5$	2720	2800	2880
		0.68	B32673P5684+***	$6.0 \times 15.0 \times 26.5$	2720	2800	2880
		1.0	B32673P5105+***	$7.0\times16.0\times26.5$	2320	2400	2520
		1.5	B32673P5155+***	$10.5 \times 16.5 \times 26.5$	1560	1600	2160
		2.2	B32673P5225+***	$10.5\times20.5\times26.5$	-	_	2160
630	200	0.33	B32673P6334+***	$6.0\times15.0\times26.5$	2720	2800	2880
		0.47	B32673P6474+***	$6.0 \times 15.0 \times 26.5$	2720	2800	2880
		0.56	B32673P6564+***	$6.0 \times 15.0 \times 26.5$	2720	2800	2880
		0.68	B32673P6684+***	$7.0\times16.0\times26.5$	2320	2400	2520
		1.0	B32673P6105+***	$8.5 \times 16.5 \times 26.5$	1920	2000	2040
		1.5	B32673P6155+***	$10.5 \times 18.5 \times 26.5$	1560	1600	2160
		2.2	B32673P6225+***	$12.0\times22.0\times26.5$	_	_	1800

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerance on request.

Composition of ordering code

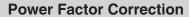
+ = Capacitance tolerance code:

 $J = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

*** = Packaging code:


289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

003 = Untaped (lead length 3.2 ± 0.3 mm)

000 = Untaped (lead length 6-1 mm)

Technical data

Reference standard: IEC 60384-16:2005 and AEC-Q200D. All data given at T = 20 $^{\circ}$ C, unless otherwise specified.

+85 °C		
Max. operating	temperature T _{op, max}	+125 °C
Upper category	y temperature T _{max}	+110 °C
Lower category	y temperature T _{min}	−55 °C
Rated tempera	iture T _R	+85 °C
at 1 kHz:	1.0	
at 10 kHz:	2.5	
at 100 kHz: 2	25.0	
30 G Ω ($C_R \leq 0$.33 μF)	
10000 s (C _R >	0.33 μF)	
1.4 · V _R , 2 s		
T _{op} (°C)	DC voltage derating	AC voltage derating
T _{op} ≤85	$V_C = V_R$	$V_{C.RMS} = V_{RMS}$
85 <t<sub>op≤110</t<sub>	$V_{\rm C} = V_{\rm R} \cdot (165 - T_{\rm op})/80$	$V_{C,RMS} = V_{RMS} \cdot (165 - T_{op})/80$
T _{op} (°C)	DC voltage (max. hours)	AC voltage (max. hours)
T _{op} ≤100	$V_{op} = 1.1 \cdot V_{C} (1000 \text{ h})$	$V_{op} = 1.0 \cdot V_{C,RMS} (1000 \text{ h})$
100 <t<sub>op≤125</t<sub>	$V_{op} = 1.0 \cdot V_{C} (1000 \text{ h})$	$V_{op} = 1.0 \cdot V_{C,RMS} (1000 \text{ h})$
1000 h / 40 °C	/ 93% relative humidity w	ith V _{R,DC}
Capacitance cl	hange ∆C/C	≤ 5%
Dissipation fac	tor change Δ tan δ	≤ 0.002 (at 1 kHz)
Insulation resis	stance R _{ins}	\geq 200 M Ω
24 fit (≤ 1 · 10 ⁻¹	⁷ /h) at 0.5 ⋅ V _B , 40 °C	
200000 h at 0.	5 · V _R , 85 °C	
For conversion	to other operating condit	ions and temperatures, refer
Short circuit or	open circuit	
Capacitance change ∆C/C		> 10%
Dissipation fac	tor tan δ	> 4 · upper limit values
Insulation resis	stance R _{ins}	$< 150 \text{ M}\Omega \text{ (C}_{R} \le 0.33 \mu\text{F)}$
Or time consta	nt τ	$< 50 \text{ s } (C_R \ge 0.33 \ \mu\text{F})$
	Max. operating Upper category Lower category Rated temperate at 1 kHz: at 10 kHz: at 100 kHz: $\frac{2}{30}$ G Ω ($C_R \le 0$) 10000 s ($C_R > 1$) $\frac{1.4 \cdot V_R}{20000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{20000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{20000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{20000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{20000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{200000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000}$ S ($C_R > 1$) $\frac{1.4 \cdot V_R}{2000000000000000000000000000000000000$	Max. operating temperature $T_{op,max}$ Upper category temperature T_{max} Lower category temperature T_{min} Rated temperature T_R at 1 kHz: 1.0 at 10 kHz: 2.5 at 100 kHz: 25.0 30 GΩ ($C_R \le 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) $C_R > 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) 10000 s ($C_R > 0.33 \mu F$) 1000 s ($C_R $

Power Factor Correction

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

" k_0 " represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.

Note:

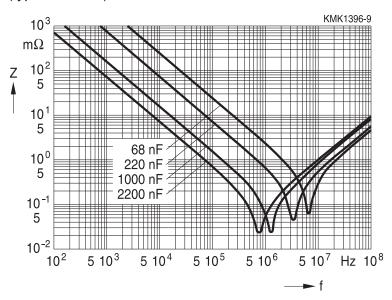
The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency.

dV/dt values

Lead sp	d spacing 10 mm		15 mm	22.5 mm
V_R	V_{RMS}			
	V AC	dV/dt in V/μs		
450	160	140	120	100
520	200	200	160	110
630	200	250	180	130

k₀ values

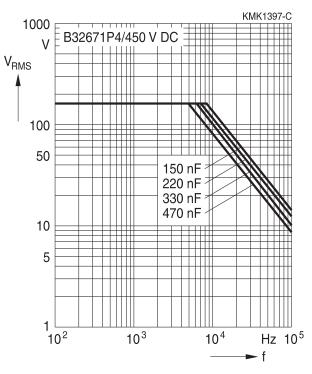
Lead sp	acing	10 mm 15 mm		22.5 mm
V_R	V_{RMS}		•	
V DC	V AC	k ₀ in V²/μs		
450	160	126000	108000	90000
520	200	208000	166000	114000
630	200	315000	226000	163000



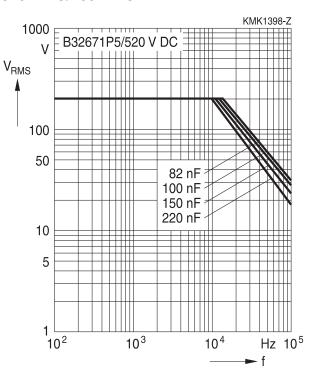
Impedance Z versus frequency f

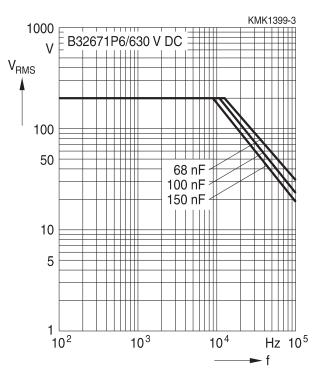
(typical values)

B32671P


Power Factor Correction

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100~{}^{\circ}\text{C}$)

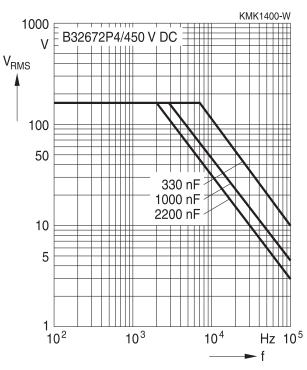

For $T_A > 100$ °C, please use derating factor F_T .

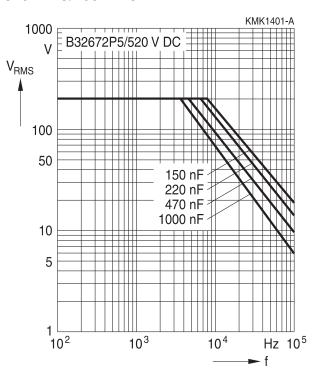

Lead spacing 10 mm

450 V DC/160 V AC

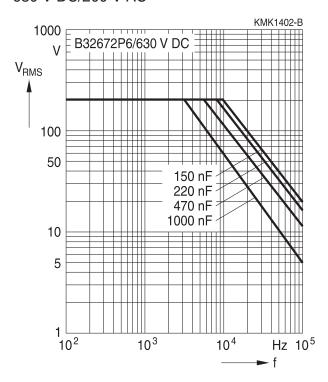
520 V DC/200 V AC

Power Factor Correction




Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤100 °C)

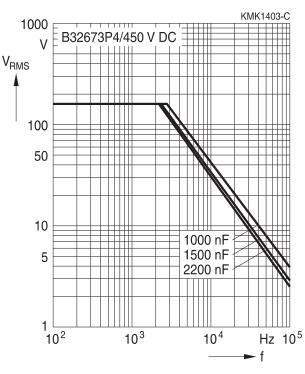
For $T_A > 100$ °C, please use derating factor F_T .


Lead spacing 15 mm

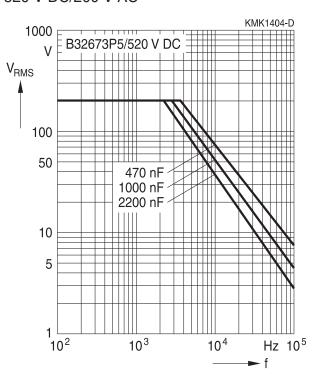
450 V DC/160 V AC

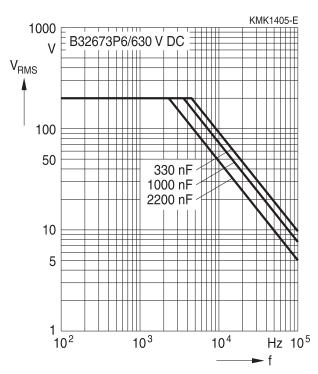
630 V DC/200 V AC

B32673P


Power Factor Correction

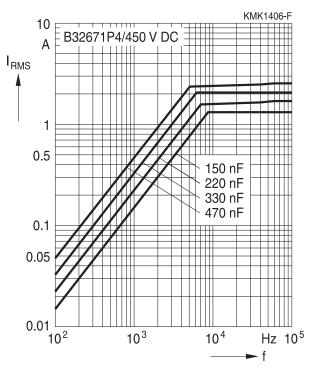
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100~{}^{\circ}\text{C}$)

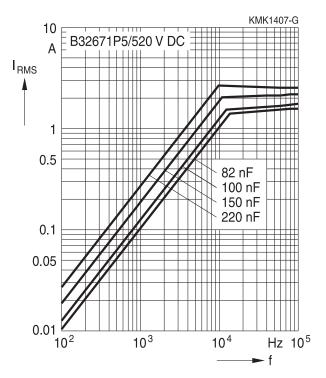

For $T_A > 100$ °C, please use derating factor F_T .


Lead spacing 22.5 mm

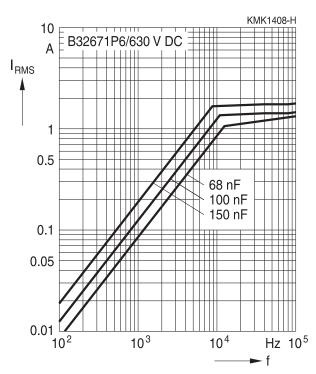
450 V DC/160 V AC

520 V DC/200 V AC




Permissible AC current I_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤100 °C)

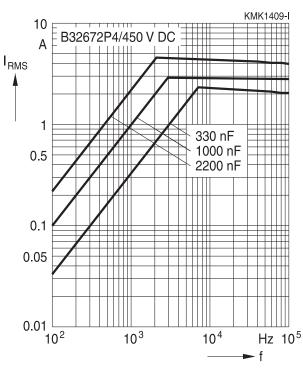
For $T_A > 100$ °C, please use derating factor F_T .

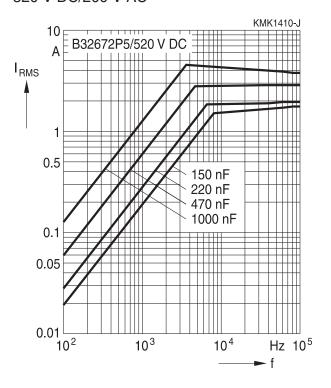

Lead spacing 10 mm

450 V DC/160 V AC

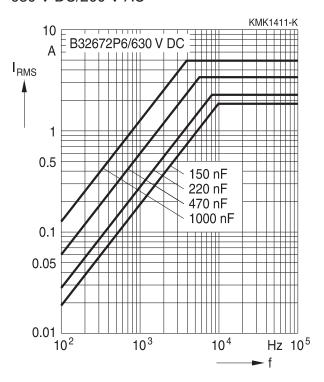
630 V DC/200 V AC

B32672P


Power Factor Correction

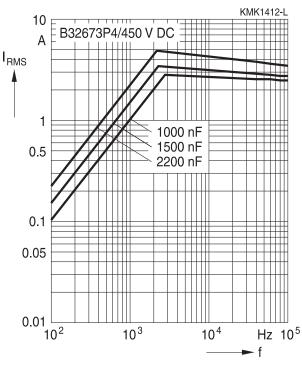

Permissible AC current I_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤100 °C)

For $T_A > 100$ °C, please use derating factor F_T .

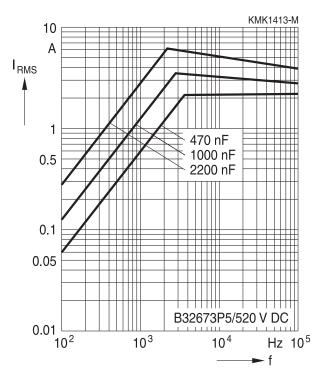

Lead spacing 15 mm

450 V DC/160 V AC

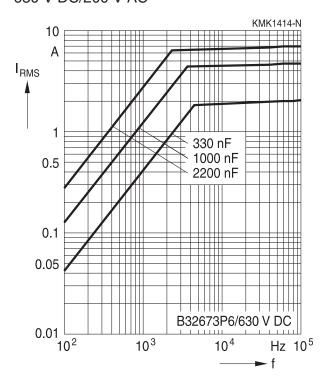
630 V DC/200 V AC



Permissible AC current I_{RMS} versus frequency f (for sinusoidal waveforms T_A ≤100 °C)


For $T_A > 100$ °C, please use derating factor F_T .

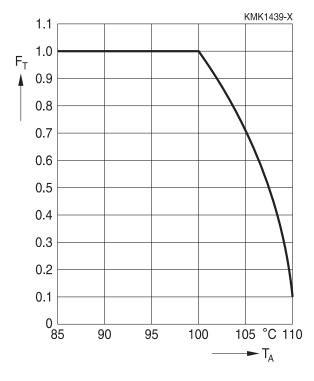
Lead spacing 22.5 mm


450 V DC/160 V AC

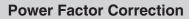
520 V DC/200 V AC

630 V DC/200 V AC

Power Factor Correction


Maximum AC voltage (V_{RMS}), current (I_{RMS}) versus frequency and temperature for $T_A > 100$ °C

The graphs described in the previous section for the permissible AC voltage (V_{RMS}) or current (I_{RMS}) versus frequency are given for a maximum ambient temperature $T_A \leq 100~^{\circ}C$. In case of higher ambient temperatures (T_A), the self-heating (ΔT) of the component must be reduced to avoid that temperature of the component ($T_{op} = T_A + \Delta T$) reaches values above maximum operating temperature. The factor F_T shall be applied in the following way:


$$I_{RMS}(T_A) = I_{RMS,T_A \le 100 \, ^{\circ}C} \cdot F_T(T_A)$$

$$V_{RMS}(T_A) = V_{RMS,T_{\Delta} \leq 100 \, ^{\circ}C} \cdot F_T(T_A)$$

And F_T is given by the following curve:

Testing and Standards

Test	Reference	Conditions of test		Performance requirements
Electrical parameters	IEC 60384-16:2005	Voltage proof, 1.4 V_R , 1 minute Insulation resistance, R_{ins} Capacitance, C Dissipation factor, tan δ		Within specified limits
Robustness of termina-tions	IEC 60068-2-21:2006		et Ua1) Tensile force 10 N	Capacitance and tan δ within specified limits
Resistance to soldering heat	IEC 60068-2-20:2008, test Tb, method 1A	Solder bath tempera immersion for 10 sec		$\Delta C/C_0 \le 2\%$ $ \Delta \tan \delta \le 0.001$
Rapid change of temperature	IEC 60384-16:2005	T_A = lower category to T_B = upper category Five cycles, duration	temperature	$\begin{split} \Delta C/C_0 &\leq 2\% \\ \Delta \tan \delta &\leq 0.002 \\ R_{ins} &\geq 50\% \text{ of initial limit} \end{split}$
Vibration	IEC 60384-16:2005	Test F _c : vibration sinusoidal Displacement: 0.75 mm Accleration: 98 m/s ² Frequency: 10 Hz 500 Hz Test duration: 3 orthogonal axes, 2 hours each axe		No visible damage
Bump	IEC 60384-16:2005	Test Eb: Total 4000 390 m/s² mounted or Duration: 6 ms	•	No visible damage $ \Delta C/C_0 \leq 2\%$ $ \Delta \tan \delta \leq 0.001$ $R_{\text{ins}} \geq 50\% \text{ of initial limit}$
Climatic sequence	IEC 60384-16:2005	Dry heat Tb / 16 h Damp heat cyclic, 1st cycle +55 °C / 24 h / 95% 100% RH Cold Ta / 2 h Damp heat cyclic, 5 cycles +55 °C / 24 h / 95% 100% RH		No visible damage $ \Delta C/C_0 \leq 2\%$ $ \Delta\ tan\ \delta \leq 0.001$ $R_{ins} \geq 50\% \ of \ initial \ limit$
Damp heat, steady state	IEC 60384-16:2005	Test Ca 40 °C / 93% RH / 56 days		No visible damage $ \Delta C/C_0 \leq 3\%$ $ \Delta \tan \delta \leq 0.003$ $R_{\text{ins}} \geq 50\% \text{ of initial limit}$
Advanced biased humidity		60 °C / 95% RH / 10 with V _{R,DC}	000 hours	No visible damage $\begin{split} \Delta C/C_0 &\leq 10\% \\ \Delta \ tan \ \delta &\leq 0.004 \\ R_{ins} &\geq 50\% \ of \ initial \ limit \end{split}$

Power Factor Correction

Test	Reference	Conditions of test	Performance
			requirements
Endurance A		85 °C / 1.1 V _R / 1000 hours	No visible damage
			$ \Delta C/C_0 \leq 5\%$
			$ \Delta \tan \delta \le 0.004$
			$R_{ins} \ge 50\%$ of initial limit
Endurance B		110 °C / 1.1 V _C / 1000 hours	No visible damage
			$ \Delta C/C_0 \leq 10\%$
			$ \Delta \tan \delta \le 0.004$
			$R_{ins} \ge 50\%$ of initial limit
Endurance C		125 °C / 1.1 V _C / 1000 hours	No visible damage
			$ \Delta C/C_0 \le 10\%$
			$ \Delta \tan \delta \le 0.004$
			$R_{ins} \ge 50\%$ of initial limit
Endurance D		85 °C/ V _R + 4 A _{RMS,1000 KHz} / 1000 hours	No visible damage
		,	$ \Delta C/C_0 \le 10\%$
			$ \Delta \tan \delta \le 0.004$
			$R_{ins} \ge 50\%$ of initial limit

Mounting guidelines

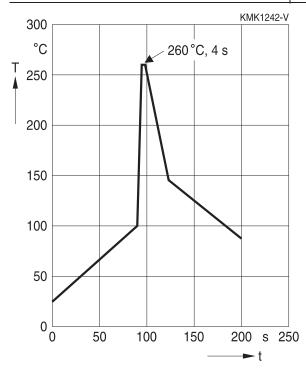
1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder



1.2 Resistance to soldering heat

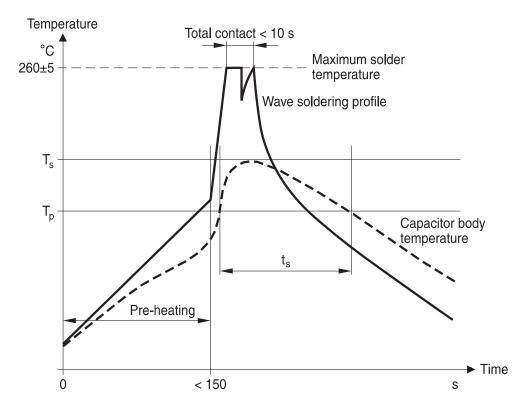
Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1. Conditions:

Serie	S	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated uncoated (lead spacing >10 mm)	260 ±5 °C	10 ±1 s
MFP			
MKP	(lead spacing >7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP MKT	(lead spacing ≤7.5 mm) uncoated (lead spacing ≤10 mm) insulated (B32559)		<4 s recommended soldering profile for MKT uncoated (lead spacing ≤ 10 mm) and insulated (B32559)

Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane	
Shield	Heat-absorbing board, (1.5 \pm 0.5) mm thick, between	
	capacitor body and liquid solder	
Evaluation criteria:		
Visual inspection	No visible damage	
$\Delta C/C_0$	2% for MKT/MKP/MFP	
$\Delta O/O_0$	5% for EMI suppression capacitors	
$tan \ \delta$	As specified in sectional specification	

Power Factor Correction

1.3 General notes on soldering

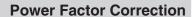

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

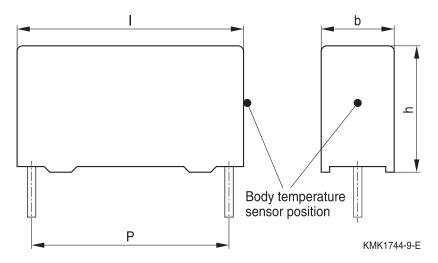
The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommendations

As a reference, the recommended wave soldering profile for our film capacitors is as follows:



T_s: Capacitor body maximum temperature at wave soldering


T_D: Capacitor body maximum temperature at pre-heating

KMK1745-A-E

Body temperature should follow the description below:

MKP capacitor

During pre-heating: $T_p \le 110 \, ^{\circ}\text{C}$ During soldering: $T_s \le 120 \, ^{\circ}\text{C}$, $t_s \le 45 \, \text{s}$

MKT capacitor

During pre-heating: $T_p \le 125 \,^{\circ}C$ During soldering: $T_s \le 160 \,^{\circ}C$, $t_s \le 45 \,^{\circ}S$

When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.

Leaded film capacitors are not suitable for reflow soldering.

In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T_s) must be ≤ 120 °C.

One recommended condition for manual soldering is that the tip of the soldering iron should be <360 °C and the soldering contact time should be no longer than 3 seconds.

For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended:

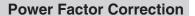
- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

Please refer to EPCOS Film Capacitor Data Book in case more details are needed.

Power Factor Correction

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.
- Consult us if application is with severe temperature and humidity condition.
- There are no serviceable or repairable parts inside the capacitor. Opening the capacitor or any attempts to open or repair the capacitor will void the warranty and liability of EPCOS.
- Please note that the standards referred to in this publication may have been revised in the meantime.


The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter "General technical information"
Storage	Make sure that capacitors are stored within the specified	
conditions	range of time, temperature and humidity conditions.	"Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive 5.3	
	flammability), avoid overload of the capacitors (active	"Flammability"
	flammability) and consider the flammability of materials.	
Resistance to	Do not exceed the tested ability to withstand vibration.	5.2
vibration	The capacitors are tested to IEC 60068-2-6:2007.	"Resistance to
	EPCOS offers film capacitors specially designed for	vibration"
	operation under more severe vibration regimes such as	
	those found in automotive applications. Consult our	
	catalog "Film Capacitors for Automotive Electronics".	

Topic	Safety information	Reference chapter
		"Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits	1 "Soldering"
	during soldering.	
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"

Topic	Safety information	Reference chapter
		"Mounting guidelines"
Embedding of	When embedding finished circuit assemblies in plastic	3 "Embedding of
capacitors in	resins, chemical and thermal influences must be taken	capacitors in finished
finished	into account.	assemblies"
assemblies	Caution: Consult us first, if you also wish to embed other	
	uncoated component types!	

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.

Power Factor Correction

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
α_{C}	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
Α	Capacitor surface area	Kondensatoroberfläche
β_{C}	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
ΔC/C	Relative capacitance change (relative deviation of actual value)	Relative Kapazitätsänderung (relative Abweichung vom Ist-Wert)
$\Delta C/C_R$	Capacitance tolerance (relative deviation	Kapazitätstoleranz (relative Abweichung
	from rated capacitance)	vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔΤ	Absolute temperature change (self-heating)	Absolute Temperaturänderung (Selbsterwärmung)
$\Delta tan \delta$	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate of voltage rise)	Differentielle Spannungsänderung (Spannungsflankensteilheit)
$\Delta V/\Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f ₁	Frequency limit for reducing permissible AC voltage due to thermal limits	Grenzfrequenz für thermisch bedingte Reduzierung der zulässigen Wechselspannung
f_2	Frequency limit for reducing permissible AC voltage due to current limit	Grenzfrequenz für strombedingte Reduzierung der zulässigen Wechselspannung
f_r	Resonant frequency	Resonanzfrequenz
F_D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion
F_T	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
Ic	Category current (max. continuous current)	Kategoriestrom (max. Dauerstrom)

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current,	(Sinusförmiger) Wechselstrom
	root-mean-square value	
i_z	Capacitance drift	Inkonstanz der Kapazität
k_0	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λ_{o}	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P_{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des
		Entladekreises
R_{i}	Internal resistance	Innenwiderstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_P	Parallel resistance	Parallelwiderstand
R_s	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
Т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
tan $\delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
tan δ_{P}	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan δ_{S}	Series component of dissipation factor	Serienanteil des Verlustfaktors
T _A	Temperature of the air surrounding the component	Temperatur der Luft, die das Bauteil umgibt
T_{max}	Upper category temperature	Obere Kategorietemperatur
T _{min}	Lower category temperature	Untere Kategorietemperatur
t _{OL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
-	and voltage	-spannung
T_op	Operating temperature, $T_A + \Delta T$	Beriebstemperatur, $T_A + \Delta T$
T _R	Rated temperature	Nenntemperatur
T_{ref}	Reference temperature	Referenztemperatur
t_{SL}	Reference service life	Referenz-Lebensdauer

Power Factor Correction

Symbol	English	German
V_{AC}	AC voltage	Wechselspannung
V_{C}	Category voltage	Kategoriespannung
$V_{C,RMS}$	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
V_{i}	Input voltage	Eingangsspannung
V_{o}	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V_p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V_R	Rated voltage	Nennspannung
Ŷ _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage,	(Sinusförmige) Wechselspannung
	root-mean-square value	
V_{SC}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung
		"Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

Release 2018-06