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DC to 600 MHz,

Dual-Digital Variable Gain Amplifiers

AD8366

FEATURES

Matched pair of differential, digitally controlled VGAs
Gain range: 4.5 dB to 20.25 dB
0.25 dB gain step size
Operating frequency
DCto 150 MHz (2V p-p)
3 dB bandwidth: 600 MHz
Noise figure (NF)
11.4 dB at 10 MHz at maximum gain
18 dB at 10 MHz at minimum gain
OIP3:45 dBm at 10 MHz
HD2/HD3
Better than —90 dBc for 2V p-p output at 10 MHz at
maximum gain
Differential input and output
Adjustable output common-mode
Optional dc output offset correction
Serial/parallel mode gain control
Power-down feature
Single 5V supply operation

APPLICATIONS

Baseband 1/Q receivers
Diversity receivers
Wideband ADC drivers

GENERAL DESCRIPTION

The AD8366 is a matched pair of fully differential, low noise and
low distortion, digitally programmable variable gain amplifiers
(VGAs). The gain of each amplifier can be programmed separately
or simultaneously over a range of 4.5 dB to 20.25 dB in steps of
0.25 dB. The amplifier offers flat frequency performance from dc
to 70 MHz, independent of gain code.

The AD8366 offers excellent spurious-free dynamic range, suitable
for driving high resolution analog-to-digital converters (ADCs).
The NF at maximum gain is 11.4 dB at 10 MHz and increases

~2 dB for every 4 dB decrease in gain. Over the entire gain range,
the HD3/HD?2 are better than —90 dBc for 2 V p-p at the output at
10 MHz into 200 Q. The two-tone intermodulation distortion of
—90 dBc into 200 () translates to an OIP3 of 45 dBm (38 dBVrms).
The differential input impedance of 200 Q) provides a well-defined
termination. The differential output has a low impedance of ~25 Q.
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The output common-mode voltage defaults to Veos/2 but can
be programmed via the VCMA and VCMB pins over a range
of voltages. The input common-mode voltage also defaults

to Vros/2 but can be driven down to 1.5 V. A built-in, dc offset
compensation loop can be used to eliminate dc offsets from prior
stages in the signal chain. This loop can also be disabled if dc-
coupled operation is desired.

The digital interface allows for parallel or serial mode gain
programming. The AD8366 operates from a 4.75 V to 525 V
supply and consumes typically 180 mA. When disabled, the
part consumes roughly 3 mA. The AD8366 is fabricated using
Analog Devices, Inc., advanced silicon-germanium bipolar
process, and it is available in a 32-lead exposed paddle LFCSP
package. Performance is specified over the —40°C to +85°C
temperature range.
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AD8366

SPECIFICATIONS

Vs=5V, Ta=25°C, Zs = 200 Q, Z1. = 200 Q, f = 10 MHz, unless otherwise noted.

Table 1.
Parameter Test Conditions/Comments Min  Typ Max | Unit
DYNAMIC PERFORMANCE
Bandwidth 3 dB; all gain codes 600 MHz
1 dB; all gain codes 200 MHz
Slew Rate Maximum gain 1100 V/ps
Minimum gain 1500 V/ps
INPUT STAGE IPPA, IPMA, IPPB, IPMB
Linear Input Swing At minimum gain Ay = 4.5 dB, 1 dB gain compression 3.6 Vp-p
Differential Input Impedance 217 Q
Minimum Input Common-Mode Voltage 1.5 \Y
Maximum Input Common-Mode Voltage Vros/2 +0.075 \Y
Input pins left floating Vros/2 \
GAIN
Minimum Voltage Gain 4.5 dB
Maximum Voltage Gain 20.25 dB
Gain Step Size All gain codes 0.25 dB
Gain Step Accuracy All gain codes +0.25 dB
Gain Flatness Maximum gain, DC to 70 MHz 0.1 dB
Gain Mismatch Channel A/Channel B at minimum/maximum gain code 0.1 dB
Group Delay Flatness All gain codes, 20% fractional bandwidth, fc < 100 MHz <0.5 ns
Mismatch Channel A and Channel B at same gain code 2 ps
Gain Step Response Maximum gain to minimum gain 30 ns
Minimum gain to maximum gain 60 ns
Common-Mode Rejection Ratio —66.2 dB
OUTPUT STAGE OPPA, OPMA, OPPB, OPMB, VCMA, VCMB
Linear Output Swing 1 dB gain compression 6 Vp-p
Differential Output Impedance 28 Q
Output DC Offset Inputs shorted, offset loop disabled at -10/-30 mV
minimum/maximum gain
Inputs shorted, offset loop enabled (across all gain codes) 10 mV
Minimum Output Common-Mode Voltage HD3, HD2 > —90 dBc, 2 V p-p output 1.6 \Y
Maximum Output Common-Mode Voltage HD3, HD2 > -90 dBc, 2 V p-p output 3 \Y
VCMA and VCMB left floating Vros/2 \
Common-Mode Setpoint Input Impedance 4 kQ
NOISE/DISTORTION
3 MHz
Noise Figure Maximum gain 11.3 dB
Minimum gain 18.2 dB
Second Harmonic 2V p-p output, maximum gain -82 dBc
2V p-p output, minimum gain -82 dBc
Third Harmonic 2V p-p output, maximum gain -87 dBc
2V p-p output, minimum gain -90 dBc
OIpP3’ 2V p-p composite, maximum gain 34 dBVrms
2V p-p composite, minimum gain 35 dBVrms
OIpP2! 2V p-p composite, maximum gain 76 dBVrms
2V p-p composite, minimum gain 76 dBVrms
Output 1 dB Compression Point’ Maximum gain 6.7 dBVrms
Minimum gain 6.9 dBVrms
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Parameter Test Conditions/Comments Min  Typ Max | Unit
10 MHz
Noise Figure Maximum gain 11.4 dB
Minimum gain 18 dB
Second Harmonic 2V p-p output, maximum gain -97 dBc
2V p-p output, minimum gain -96 dBc
Third Harmonic 2V p-p output, maximum gain -97 dBc
2V p-p output, minimum gain -90 dBc
OIP3! 2V p-p composite, maximum gain 38 dBVrms
2V p-p composite, minimum gain 36 dBVrms
OIP2’ 2V p-p composite, maximum gain 72 dBVrms
2V p-p composite, minimum gain 76 dBVrms
Output 1 dB Compression Point’ Maximum gain 7 dBVrms
Minimum gain 6.7 dBVrms
50 MHz
Noise Figure Maximum gain 11.8 dB
Minimum gain 18.2 dB
Second Harmonic 2V p-p output, maximum gain -82 dBc
2V p-p output, minimum gain -84 dBc
Third Harmonic 2V p-p output, maximum gain -80 dBc
2V p-p output, minimum gain =71 dBc
OIP3! 2V p-p composite, maximum gain 32 dBVrms
2V p-p composite, minimum gain 26 dBVrms
OIP2’ 2V p-p composite, maximum gain 71 dBVrms
2V p-p composite, minimum gain 78 dBVrms
Output 1 dB Compression Point’ Maximum gain 6.7 dBVrms
Minimum gain 6.7 dBVrms
DIGITAL LOGIC SENB, DENA, DENB, BITO, BIT1, BIT2, BIT3, BIT4, BIT5
Input High Voltage, Vinu 2.2 \Y
Input Low Voltage, Vin 1.2 \Y
Input Capacitance, C 1 pF
Input Resistance, Rin 50 kQ
SPIINTERFACE TIMING SENB = high
fscix Serial clock frequency (maximum) 444 MHz
t CS rising edge to first SCLK rising edge (minimum) 7.5 ns
t SCLK high pulse width (minimum) 7.5 ns
t SCLK low pulse width (minimum) 15 ns
ta SCLK falling edge to CS low (minimum) 7.5 ns
ts SDAT setup time (minimum) 7.5 ns
te SDAT hold time (minimum) 15 ns
PARALLEL PORT TIMING SENB = low
t7 DENA/DENB high pulse width (minimum) 7.5 ns
ts DENA/DENB low pulse width (minimum) 15 ns
to BITx setup time (minimum) 7.5 ns
tio BITx hold time (minimum) 7.5 ns
POWER AND ENABLE VPSIA, VPSIB, VPSOA, VPSOB, ICOM, OCOM, ENBL
Supply Voltage Range 4.75 525 |V
Total Supply Current ENBL=5V 180 mA
Disable Current ENBL=0V 3.2 mA
Disable Threshold 1.65 \Y
Enable Response Time Delay following high-to-low transition until device 150 ns
meets full specifications
Disable Response Time Delay following low-to-high transition until device 3 ps

produces full attenuation

"To convert to dBm for a 200 Q load impedance, add 7 dB to the dBVrms value.
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PARALLEL AND SERIAL INTERFACE TIMING
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Figure 2. SPI Port Timing Diagram
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ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed under Absolute Maximum

Table 2.
Parameter Rating
Supply Voltages, VPSIx and VPSOx 55V
ENBL, SENB, DENA, DENB, BITO, BIT1, BIT2, 55V
BIT3, BIT4, BIT5
IPPA, IPMA, IPPB, IPMB 55V
OPPA, OPMA, OPPB, OPMB 55V
OFSA, OFSB 55V
DECA, DECB, VCMA, VCMB, CCMA, CCMB 55V
Internal Power Dissipation 1.4W
6,4 (With Pad Soldered to Board) 45.4°C/W
Maximum Junction Temperature 150°C

Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these

or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.

ESD CAUTION

A

—40°C to +85°C
—65°C to +150°C M

300°C

ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge
without detection. Although this product features
patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.
Therefore, proper ESD precautions should be taken to
avoid performance degradation or loss of functionality.
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PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. Pin Function Descriptions
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Figure 4. Pin Configuration

Pin No. Mnemonic Description
1,8,13,28 VPSIA, VPSIB, VPSOB, | Input and Output Stage Positive Supply Voltage (4.75V to 5.25V).
VPSOA
2,3,6,7 IPPA, IPMA, IPMB, Differential Inputs.
IPPB
4 ENBL Chip Enable. Pull this pin high to enable.
5,20 ICOM, OCOM Input and Output Ground Pins. Connect these pins via the lowest possible impedance to
ground.
9,32 DECB, DECA Vros/2 Reference Decoupling Node. Connect a decoupling capacitor from these nodes to
ground.
10, 31 OFSB, OFSA Output Offset Correction Loop Compensation. Connect a capacitor from these nodes to
ground to enable the correction loop. Tie this pin to ground to disable.
11,30 CCMB, CCMA Connect These Nodes to Ground.
12,29 VCMB, VCMA Output Common-Mode Setpoint. These pins default to Veos/2 if left open. Drive these pins
from a low impedance source to change the output common-mode voltage.
14,15, 26, 27 OPPB, OPMB, OPMA, | Differential Outputs.
OPPA
16,17 DENB, DENA Data Enable. Pull these pins high to address each or both channels for parallel gain
programming. These pins are not used in serial mode.
18,19, 21,22, 23,24 | BIT5, BIT4, BIT3, Parallel Data Path (When SENB Is Low). When SENB is high, BITO becomes a chip select (CS),
BIT2/SCLK, BIT1/SDAT, | BIT1 becomes a serial data input (SDAT), and BIT2 becomes a serial clock (SCLK). BIT3 to BIT5
BITO/CS are not used in serial mode.
25 SENB Serial Interface Enable. Pull this pin high for serial gain programming mode and pull this pin low
for parallel gain programming mode.
EPAD The exposed pad must be connected to ground.
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TYPICAL PERFORMANCE CHARACTERISTICS

Vs=5V, Ta=25°C, Zs =200 Q, Zir = 200 Q, f = 10 MHz, unless otherwise noted.
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Figure 7. Channel A-to-Channel B Amplitude Mismatch vs. Gain Code,

2V p-p Output
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Figure 21. Two-Tone Output IMD2 vs. Frequency,
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AD8366

CIRCUIT DESCRIPTION

The AD8366 is a dual, differential, digitally controlled VGA
with 600 MHz of 3 dB bandwidth and a gain range of 4.5 dB to
20.25 dB adjustable in 0.25 dB steps. Using a proprietary variable
gain architecture, the AD8366 is able to achieve excellent linearity
(45 dBm) and noise performance (11.7 nV/VHz) at 10 MHz at
minimum gain. Intended for use in direct conversion systems, the
part also includes dc offset correction that can be disabled easily
by grounding either OFSA or OFSB. In addition, the part offers
an adjustable output common-mode range of 1.6 V to 3 V.

The main signal path is shown in Figure 46. It consists of an
input transconductance, a variable-gain cell, and an output
transimpedance amplifier.

VARIABLE

CURRENT-GAIN OUTPUT
STAGE BUFFER
100Q 12,50
INP ouTP
| z
INM ouT™M
100Q  VIRTUAL VIRTUAL 12.5Q 3
GROUND GROUND d

Figure 46. Main Signal Path

The input transconductance provides a broadband 200
differential termination and converts the input voltage to a
current. This current is fed into the variable current-gain cell.
The output of this cell goes into the transimpedance stage, which
generates the output voltage. The transimpedance is fixed at 500 ),
with a roughly 25 Q differential output impedance.

INPUTS

The inputs to the digitally-controlled VGAs in the AD8366 are
differential and can be either ac- or dc-coupled. The AD8366
synthesizes a 200 Q) (differential) input impedance, with a return
loss (re: 200 Q) of better than 10 dB to 200 MHz. The nominal
common-mode input voltage to the part is Vros/2, but the AD8366
can be dc-coupled to parts with lower common modes if these
parts can sink current. The amount of current sinking required
depends on the input common-mode level and is given by

Isivk (per leg) = (Vpos/2 — Viem)/100
The input common-mode range is 1.5 V to Vreos/2.

OUTPUTS

The outputs of the digitally-controlled VGAs are differential and
can be either ac- or dc-coupled. The AD8366 synthesizes a 25 Q
differential output impedance, with a return loss (re: 25 Q) of
better than 10 dB to 120 MHz. The nominal common-mode
output voltage is Vros/2; however, it can be lowered or raised by
driving the VCMA or VCMB pins.

OUTPUT DIFFERENTIAL OFFSET CORRECTION

To prevent significant levels of offset from appearing at the
outputs of the AD8366, each digitally controlled VGA has a
differential offset correction loop, as shown in Figure 47. This
loop senses any differential offset at the output and corrects for
it by injecting an opposing current at the input differential ground.
The loop is able to correct for input dc offsets of up to +20 mV.
Because the loop automatically nulls out any dc or low frequency
offset, the effect of the loop is to introduce a high-pass corner into
the transfer function of the digitally controlled VGA. The
location of this high-pass corner depends on both the gain
setting and the value of the capacitor connected to the OFSx pin
(OFSA for DVGA A and OFSB for DVGA B) and is given by

4300(1.037)°C + 4000
kHz)=
f3dB,HP( Z) 2“(C0Fs +10)

where:

GC is the gain code (a value from 0 to 63).

Cors is the value of the capacitance connected to OFSA or OFSB,
in picofarads (pF).

The offset correction loop can be disabled by grounding either
OFSA or OFSB.
VARIABLE-GAIN  OUTPUT
STAGE

BUFFER
I A O OUTP
| z>
O OUTM
INP O—w S
Im2 Om1| 3
INM O—a4 3
Cors OFFSET o
;; COMPENSATION g
LooP 3

Figure 47. Differential Offset Correction Loop

OUTPUT COMMON-MODE CONTROL

To interface to ADCs that require different input common-mode
voltages, the AD8366 has an adjustable output common-mode
level. The output common-mode level is normally set to Veos/2;
however, it can be changed between 1.6 V and 3 V by driving
the VCMA pin or the VCMB pin. The input equivalent circuit
for the VCMA pin is shown in Figure 48; the VCMB pin has the
same input equivalent circuit.

1%
Vpos/2 O—WA—

q
500Q
VCMA O—w—

07584-072

Figure 48. Input Equivalent Circuit for VCMA
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GAIN CONTROL INTERFACE 0 H0
The AD8366 provides two methods of digital gain control: e o8
serial or parallel. When the SENB pin is pulled low, the part 200 =d 06
is in parallel gain control mode. In this mode, the two digitally 175 /'/ 0.4
controlled VGAs can be programmed simultaneously, or one at & 150 A -~ 0.2
a time, depending on the levels at DENA and DENB. If the SENB § 125 — [ ’IL f L_ 0
pin is pulled high, the part is in serial gain control mode, with 3 100 M = —\'I 02
Pin 24, Pin 23, and Pin 22 corresponding to the CS, SDAT, and v

75 . 0.4
SCLK signals, respectively. //

5.0 06
The voltage gain of the AD8366 is well approximated by g 08

25 -

Gain (dB) = GainCode x 0.253 + 4.5 o 10
0 5 10 15 20 25 30 35 40 45 50 55 60

Note that at several major transitions (15 to 16, 31 to 32, and 47 to
48), the gain changes significantly less (0 dB step) or significantly
more (0.5 dB step) than the desired 0.25 dB step. This is inherent
in the design of the part and is related to the partitioning of the
variable gain block into a fine-gain and a coarse-gain section.

GAIN CODE

Figure 49. Gain and Gain Step Error vs. Gain Code at 10 MHz
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APPLICATIONS INFORMATION

BASIC CONNECTIONS

Figure 50 shows the basic connections for operating the AD8366.

A voltage from 4.75 V to 5.25 V must be applied to the supply
pins. Each supply pin must be decoupled with at least one low
inductance, surface-mount ceramic capacitor of 0.1 pF placed as
close as possible to the device.

The differential input impedance is 200 Q) and sits at a nominal
common-mode voltage of Vros/2. The inputs can be dc-coupled
or ac-coupled. If using direct dc coupling, the common-mode
voltage, Vew, can range from 1.5 V to Veos/2.

Vv 8200pF

¥ od

0.01uF
Vv 0.01uF

The output buffers of the AD8366 are low impedance around
25 Q) designed to drive ADC inputs. The output common-mode
voltage defaults to Vros/2; however, it can be adjusted by applying a
desired external voltage to VCMA/VCMB. The common-mode
voltage can be adjusted from 1.6 V to 3.0 V without significant
harmonic distortion degradation.

To enable the AD8366, the ENBL pin must be pulled high. Taking
ENBL low disables the device, reducing current consumption to
approximately 3 mA at ambient temperature.

—]
VPOS O TT TTITTTITTITITIT
L A < IIcCLD
0.1yF == 0.1pF SH<<35<e
(18 o w
v v 16352859 _
H| vPsIA BITO/CS g
CHANNEL A H| 1PPA BIT1/SDAT Fu
INPUT H 1PMA BIT2/SCLK 52
[T
VPOS O H| ENBL BIT3 o
—T- 0.1pF —T- 0.1uF ‘7: ICOM ADB366 OoCcoM dE
;; ;; I—: IPMB BIT4 2=
i z
H| 1PPB BITS 0
cHANTR LT H| vesiB © DENA EEE
mom020Q0m0am [e)
on=>Spnpa =z (@]
wwwooaogoo w
VPOS O—¢ L 4 000>>000
i()lpFiOluF TT TT TT 1T T TT TT 1T
v 0.01pF \% CHANNEL B
F' L 5 OuTPUT
0.01pF
V 82000F ._% 0.01pF
= o.01uF
v g
o 3
VPOS g

Figure 50. Basic Connections
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Figure 51. Direct Conversion Receiver Block Diagram

DIRECT CONVERSION RECEIVER DESIGN

A direct conversion receiver directly demodulates an RF modulated
carrier to baseband frequencies, where the signals can be detected
and the conveyed information recovered. Eliminating the IF
stages and directly converting the signal to effectively zero IF
results in reduced component count. The image problems
associated with the traditional superheterodyne architectures
can be ignored as well. However, there are different challenges
associated with direct conversion that include LO leakage, dc
offsets, quadrature imperfections, and image rejection. LO
leakage causes self mixing that results in squaring of the LO
waveform which generates a dc offset that falls in band for the
direct conversion receiver. Residual dc offsets create a similar
interfering signal that falls in band. I/Q amplitude and phase
mismatch lead to degraded SNR performance and poor image
rejection in the direct conversion system. Figure 51 shows the
block diagram for a direct conversion receiver system.

QUADRATURE ERRORS AND IMAGE REJECTION

An overall RF-to-baseband EVM performance was measured
with the ADL5380 IQ demodulator preceding the AD8366, as
shown in Figure 56. In this setup, no LC low-pass filters were used
between the ADL5380 and AD8366. A 1900 MHz W-CDMA RF
signal with a 3.84 MHz symbol rate was used. The local oscillator
(LO) is set at 1900 MHz to obtain a zero IF baseband signal.
The gain of the AD8366 is set to maximum gain (~20.25 dB).
Figure 52 shows the SNR vs. the input power of the cascaded
system for a 5 MHz analysis bandwidth. The broad input power
range over which the system exhibits strong SNR performance
reflects the superior dynamic range of the AD8366.
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Figure 52. SNR vs. RF Input Power Level

The image rejection ratio is the ratio of the intermediate frequency
(IF) signal level produced by the desired input frequency to that
produced by the image frequency. The image rejection ratio is
expressed in decibels (dB). Appropriate image rejection is critical
because the image power can be much higher than that of the
desired signal, thereby plaguing the downconversion process.
Amplitude and phase balance between the I/Q channels are
critical for high levels of image rejection. Image rejection of
greater than 47 dB was measured for the combined ADL5380
and the AD8366 for a 5 MHz baseband frequency, as seen in
Figure 53. This level of image rejection corresponds to a +0.5°
phase mismatch and a +0.05 dB of amplitude mismatch for the
combined ADL5380 and AD8366. Looking back to Figure 7 and
Figure 10, the AD8366 exhibits only +0.05 dB of amplitude mismatch
and +0.05° of phase mismatch, thus implying that the AD8366
does not introduce additional amplitude and phase imbalance.
55

50

N
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IMAGE REJECTION (dB)
w IN
a S

w
o

25
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Figure 53. Image Rejection vs. RF Frequency
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LOW FREQUENCY IMD3 PERFORMANCE

To measure the IMD3 data at low frequencies, wideband
transformer baluns from North Hills Signal Processing Corp.
were used, specifically the 0301BB and the 0520BB. Figure 55
shows the IMD3 performance vs. frequency fora 2 V p-p
composite output. The IMD3 performance was also measured
for the combined ADL5380 and AD8366 system, as shown in
Figure 56, with an FFT spectrum analyzer. An FFT spectrum
analyzer works very similar to a typical ADC, the input signal
is digitized at a high sampling rate that is then passed through an
antialiasing filter. The resulting signal is transformed to the
frequency domain using fast Fourier transforms (FFT).

The single-ended RF signal from the source generator is converted
to a differential signal using a balun that gets demodulated and

down converted to differential IF signals through the ADL5380.

This differential IF signal drives the AD8366, thus eliminating
the need for low frequency baluns. Figure 54 shows the IMD3
performance vs. frequency over the 500 kHz to 5 MHz range
for minimum and maximum gain code setting on the AD8366.
During the measurements, the output was set to 2 V p-p composite.

OIP3 (dBm)
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BASEBAND INTERFACE

In most direct-conversion receiver designs, it is desirable to select a
wanted carrier within a specified band. The desired channel can be
demodulated by tuning the LO to the appropriate carrier frequency.
If the desired RF band contains multiple carriers of interest, the
adjacent carriers would also be down converted to a lower IF
frequency. These adjacent carriers can be a problem if they are
large relative to the desired carrier because they can overdrive
the baseband signal detection circuitry. As a result, it is often
necessary to insert a filter to provide sufficient rejection of the
adjacent carriers.

It is necessary to consider the overall source and load impedance
presented by the AD8366 and the ADC input to design the
filter network. The differential baseband output impedance of
the AD8366 is 25 Q) and is designed to drive a high impedance
ADC input. It may be desirable to terminate the ADC input down
to the lower impedance by using a terminating resistor, such as
500 Q. The terminating resistor helps to better define the input
impedance at the ADC input at the cost of a slightly reduced gain.

Table 4. Typical Values for Fourth-Order, Chebyshev, Low-Pass Filter

The order and type of filter network depends on the desired high
frequency rejection required, pass-band ripple, and group delay.

Figure 57 shows the schematic for a typical fourth-order, Chebyshev,
low-pass filter. Table 4 shows the typical values of the filter
components for a fourth-order, Chebyshev, low-pass filter with
a differential source impedance of 25 Q) and a differential load

impedance of 200 Q.
L1 L3
Y Y'Y\
$ Zsource ClT= C2=  Zoan s
o ~m g
L2 L4 g

Figure 57. Schematic of a Fourth-Order, Chebyshev, Low-Pass Filter

3 dB Corner (MHz) Zsource (Q) Zioao (Q) L1 (uH) L2 (uH) L3 (uH) L4 (uH) C1 (pF) C2 (pF)
5 25 200 6.6 6.6 6.0 6.0 220 180

10 25 200 33 33 3 3 110 920

28 25 200 1.2 1.2 1 1 39 33
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CHARACTERIZATION SETUPS

Figure 58 and Figure 59 are characterization setups used the output of the device under test (DUT), and 2 V p-p composite
extensively to characterize the AD8366. Characterization was output for two-tone measurements. To measure harmonic
done on single-ended and differential evaluation boards. The distortion, band-pass and band-reject filters were used on
bulk of the characterization was done using an automated VEE the input and output of the DUT.

program to control the equipment as shown in Figure 58. This
setup was used to measure P1dB, OIP3, OIP2, IMD2, IMD3,
harmonic distortion, gain, gain error, supply current, and noise

Figure 59 shows the setup used to make differential measurements.
All measurements on this setup were done in a 50 Q) system and

i 5 post processed to reference the measurements to a 200 Q) system.
density. All measurements were done with a 200 Q2 load. All balun, Gain and phase mismatch were measured with 2 V p-p on the

output matching network, and filter losses were de-embedded. output, and small signal frequency responses were measured
Gain error was measured with constant input power. All other with 30 dBm on the input of the DUT,

measurements were done on 2 V p-p (4 dBm, re: 200 Q) on
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Figure 58. Characterization Setup, Single-Ended Measurements
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EVALUATION BOARD

The schematic for the AD8366 evaluation board is shown in Figure 60. The board can be used for single-ended or differential baseband
analysis. The default configuration of the board is for single-ended baseband analysis.
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Figure 60. Evaluation Board Schematic
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Figure 61. AD8366 Evaluation Board Printed Circuit Board (PCB), Top Side

Table 5. Evaluation Board Configuration Options

07584-058

Figure 62. AD8366 Evaluation Board PCB, Bottom Side

Components

Function

Default Conditions

C1,C13to C16,R3toR6

Power supply decoupling. Nominal supply decoupling consists of a
0.1 YF capacitor to ground followed by 0.01 uF capacitors to ground
positioned as close to the device as possible.

C1=0.1 yF (size 0603),
C13to C16 =0.01 pF (size 0402),
R3 to R6 = 0 Q (size 0603)

T1,T2,C5,C18, C20, C21,
R12 to R21, R44 to R48,
R50, R54, R58, R62, R63

Input interface. The default configuration of the evaluation board is
for single-ended operation. T1 and T2 are 4:1 impedance ratio baluns to
transform a 50 Q single-ended input into a 200 Q balanced differential
signal. R12 to R14 and R15, R16, and R19 are populated for appropriate
balun interface. R44 to R48 and R50, R54, R58, R62, and R63 are
provided for generic placement of matching components. C5, C18,
C20, and C21 are balun decoupling capacitors. R17, R18, R20, and
R21 can be populated with 0 Q, and the balun interfacing resistors
can be removed to bypass T1 and T2 for differential interfacing.

T1,T2 = ADT4-6T+ (Mini-Circuits),
C5,C20 = 0.1 pF (size 0402),
C18,C21 =do not install,

R12to R16,R19,R44toR47=0Q
(size 0402),

R17, R18, R20, R21,R48, R50, R54,
R58, R62, and R63 = open (size 0402)

T3,T4,C24to C27,R29 to
R31, R33 to R39, R65, R67
to R74, R80

Output interface. The default configuration of the evaluation board
is for single-ended operation. T3 and T4 are 4:1 impedance ratio
baluns to transform a 50 Q) single-ended output into a 200 Q balanced
differential load. R29 to R31, R33, R38, and R39 are populated for
appropriate balun interface. R65, R67 to R74, and R80 are provided
for generic placement of matching components. C24, C25, C26, and
C27 are balun decoupling capacitors. R34 to R37 can be populated
with 0 Q, and the balun interfacing resistors can be removed to
bypass T3 and T4 for differential interfacing.

T3,T4 = ADT4-6T+ (Mini-Circuits),

C24, C25 = 0.1 pF (size 0402),

C26,C27 = do not install,

R29 to R31, R33, R38, R39, R65, R67,
R68, R80 = 0 Q) (size 0402),

R34 to R37, R69 to R74 = open (size 0402)
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Components Function Default Conditions
S1,S5,57,R53, R57, R79, Enable interface includes device enable and data enable. S1,S5,S7 =installed,
€29, €30, C31 Device enable. The AD8366 is enabled by applying a logic high R53, R57 = 5.1 kQ (size 0603),

voltage to the ENBL pin. The device is enabled when the S1 switch is
set in the down position (high), connecting the ENBL pin to VPSI_A.
Data enable. DENA and DENB are used to enable the data path for
Channel A and Channel B, respectively. Channel A is enabled when
the S5 switch is set in the down position (high), connecting the DENA
pin to VPSI_A. Likewise, Channel B is enabled when the S7 switch is
set in the down position (high), connecting the DENB pin to VPSI_A.
Both channels are disabled by setting the switches to the up position,
connecting the DENA and DENB pins to GND.

R79 = 10 kQ (size 0402),
C30=0.01 pF (size 0402),
C29, C31 = 1500 pF (size 0402)

S2, 53, 54, 56, S8, 59, 510
R26, R32, R40 to R43, R61,
R64, C23, C33, U1

Serial/parallel interface control. SENB is used to set the data control
either in parallel or serial mode. The parallel interface is enabled when
S4is in the up position (low). The serial interface is enabled when S4
is in the down position (high).

For SENB pulled low, BITO (S9) sets 0.25 dB gain, BIT1 (S2) sets 0.5 dB
gain, BIT2 (S3) sets 1 dB gain, BIT3 (S6) sets 2 dB gain, BIT4 (S8) sets

4 dB gain, and BIT5 (S10) sets 8 dB gain.

For SENB pulled high, BITO becomes a chip select (CS), BIT1 becomes
a serial data input (SDAT), and BIT2 becomes serial clock (SCLK). BIT3 to
BIT5 are not used in serial mode. U1 is used to deglitch the SCLK signal.

S2,S3, 54, S6, S8, 59, S10 = installed,
R26 = 698 k() (size 0603),

R32, R40 to R43, R61, R64 = 5.1 kQ
(size 0603),

(€23, C33 = 1500 pF (size 0603),

U1 = SN74LVC2G14 inverter chip

S11,512,C9,C10

DC offset correction loop compensation.

The dc offset correction loop is enabled (high) with S11 and S12 for
Channel A and Channel B, respectively, when the enabled pins, OFSA/
OFSB, are connected to ground through the C9 and C10 capacitors.
When disabled (low), OFSA/OFSB are connected to ground directly.

S11,S12 =installed,
C9, C10 = 8200 pF (size 0402)

R10, R22, R24, R28, C22,
C28

Output common-mode setpoint. The output common mode on
Channel A and Channel B can be set externally when applied to
VCMA and VCMB. The resistive change through the potentiometer
sets a variable VCMA voltage. If left open, the output common mode
defaults to Veos/2.

R10, R24 = 10 kQ potentiometers,
R22,R28=0Q,
C22,C28 =0.1 pF (size 0402)

C2,C3,C11,C12

Reference output decoupling capacitor to circuit common.

C2, C3=0.1 pF (size 0402),
C11,C12=0.01 pF (size 0402)
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OUTLINE DIMENSIONS
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Figure 63. 32-Lead Lead Frame Chip Scale Package [LFCSP]
5mm x5 mm Body and 0.75 mm Package Height
(CP-32-21)

Dimensions shown in millimeters
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ORDERING GUIDE
Model’ Temperature Range Package Description Package Option
AD8366ACPZ-R7 —40°C to +85°C 32-Lead Lead Frame Chip Scale Package [LFCSP] CP-32-21

AD8366-EVALZ

Evaluation Board

' Z = RoHS Compliant Part.
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