

Features

- Glass Passivated Die Construction
- Low Forward Voltage Drop
- High Current Capability
- High Surge Current Capability
- Designed for Surface Mount Application
- Plastic Material – UL Recognition Flammability Classification 94V-O
- UL Recognized File # E223064
- Green Products in Compliance with the RoHS Directive

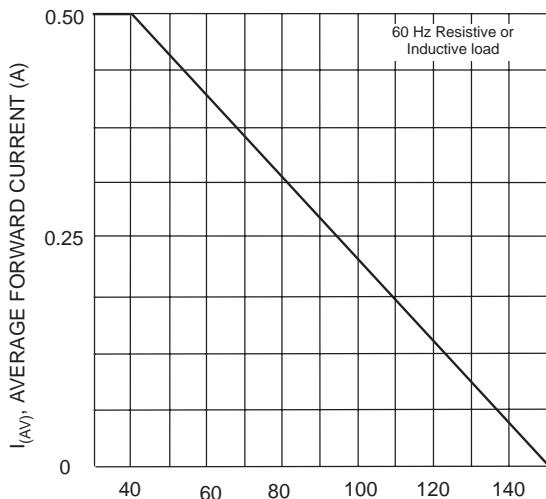
Mechanical Data

- Case: Molded Plastic
- Terminals: Plated Leads Solderable per MIL-STD-202, Method 208
- Polarity: As Marked on Case
- Weight: 0.22 grams (approx.)
- Mounting Position: Any
- Marking: Type Number

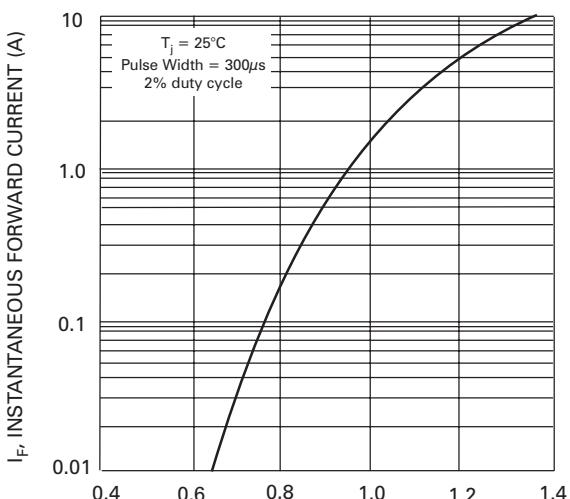
MB-S				
Dim	Min	Max	Min	Max
A	4.50	4.90	0.177	0.193
B	3.80	4.20	0.150	0.165
C	0.006	0.35	0.0002	0.014
D	—	0.20	—	0.008
E	—	7.0	—	0.276
G	0.70	1.10	0.028	0.043
H	1.30	1.70	0.051	0.067
J	2.30	2.70	0.091	0.106
K	2.30	2.70	0.091	0.106
L	—	3.00	—	0.118
M	0.50	0.80	0.020	0.031
		In mm	In inch	

Maximum Ratings and Electrical Characteristics $\text{@T}_A=25^\circ\text{C}$ unless otherwise specified

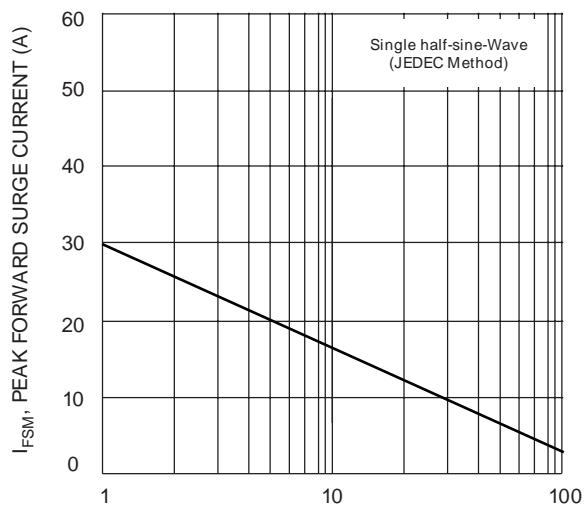
Single Phase, half wave, 60Hz, resistive or inductive load.
For capacitive load, derate current by 20%.

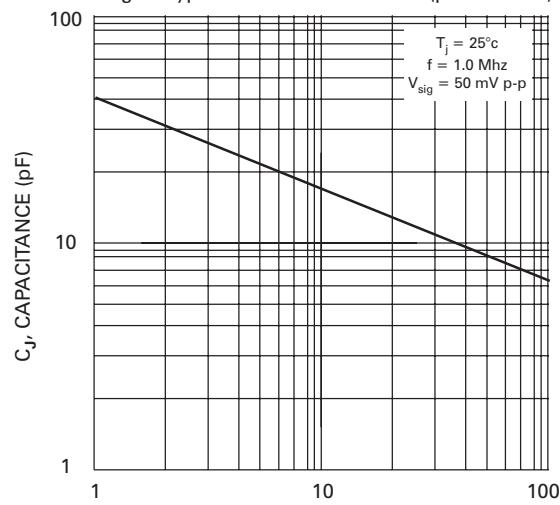

Characteristic	Symbol	MB1S-G	MB2S-G	MB4S-G	MB6S-G	MB8S-G	Unit
Peak Repetitive Reverse Voltage	V_{RRM}						
Working Peak Reverse Voltage	V_{RWM}	100	200	400	600	800	V
DC Blocking Voltage	V_R						
RMS Reverse Voltage	$V_{R(\text{RMS})}$	70	140	280	420	560	V
Average Rectified Output Current $\text{@T}_A = 40^\circ\text{C}$	I_o			0.5			A
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	I_{FSM}			30			A
I^2t Rating for Fusing ($t < 8.35\text{ms}$)	I^2t			10			A^2s
Forward Voltage per element $\text{@I}_F = 0.5\text{A}$	V_{FM}			1.0			V
Peak Reverse Current $\text{@T}_A = 25^\circ\text{C}$ At Rated DC Blocking Voltage $\text{@T}_A = 125^\circ\text{C}$	I_{RM}			5.0			μA
500							
Typical Junction Capacitance (per leg) (Note 1)	C_j			25			pF
Typical Thermal Resistance (per leg) (Note 2)	$R_{\theta JA}$			85			K/W
Operating and Storage Temperature Range	T_j, T_{STG}			-55 to +150			$^\circ\text{C}$

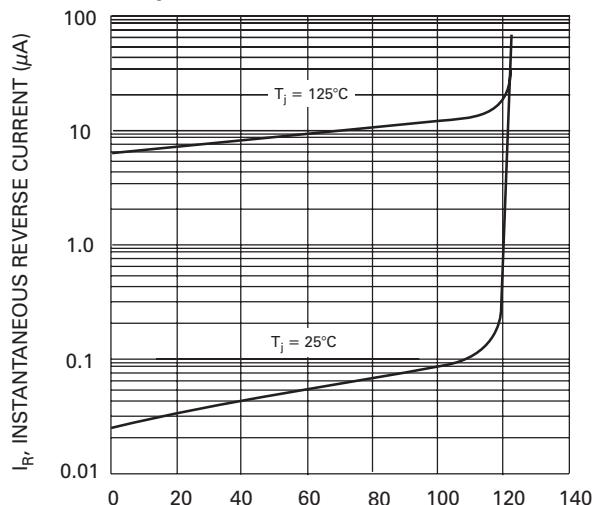
Note: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.


2. Thermal resistance junction to ambient mounted on PC board with 13mm² copper pads.

Data Sheet 1384, Rev. A


Green Products


T_A , AMBIENT TEMPERATURE (°C)
Fig. 1 Output Current Derating Curve


V_F , INSTANTANEOUS FORWARD VOLTAGE (V)
Fig. 2 Typ Forward Characteristics (per element)

NUMBER OF CYCLES AT 60 Hz
Fig. 3 Max Non-Repetitive Peak Forward Surge Current

V_R , REVERSE VOLTAGE (V)
Fig. 4 Typ Junction Capacitance (per element)

PERCENT OF RATED PEAK REVERSE VOLTAGE (%)
Fig. 5 Typ Reverse Characteristics (per element)

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.