GNJUIWI

Cat. No. W186-E1-4

SYSMAC
C500-ASCO04

ASCII Unit

OPERATION MANUAL

OMmRON.

C500-ASC04 ASCII Unit

Operation Manual
Revised February 2001

Terms and Conditions of Sale

OMmRON

1.

oo

9.

10.

11.

12.

Offer; Acceptance. These terms and conditions (these "Terms") are deemed
part of all quotes, agreements, purchase orders, acknowledgments, price lists,
catalogs, manuals, brochures and other documents, whether electronic or in
writing, relating to the sale of products or services (collectively, the "Products")
by Omron Electronics LLC and its subsidiary companies (“Omron”). Omron
objects to any terms or conditions proposed in Buyer's purchase order or other
documents which are inconsistent with, or in addition to, these Terms.
Prices; Payment Terms. All prices stated are current, subject to change with-
out notice by Omron. Omron reserves the right to increase or decrease prices
on any unshipped portions of outstanding orders. Payments for Products are
due net 30 days unless otherwise stated in the invoice.
Discounts. Cash discounts, if any, will apply only on the net amount of invoices
sent to Buyer after deducting transportation charges, taxes and duties, and will
be allowed only if (i) the invoice is paid according to Omron’s payment terms
and (ii) Buyer has no past due amounts.
Interest. Omron, at its option, may charge Buyer 1-1/2% interest per month or
the maximum legal rate, whichever is less, on any balance not paid within the
stated terms.
Orders. Omron will accept no order less than $200 net billing.
Governmental Approvals. Buyer shall be responsible for, and shall bear all
costs involved in, obtaining any government approvals required for the impor-
tation or sale of the Products.
Taxes. All taxes, duties and other governmental charges (other than general
real property and income taxes), including any interest or penalties thereon,
imposed directly or indirectly on Omron or required to be collected directly or
indirectly by Omron for the manufacture, production, sale, delivery, importa-
tion, consumption or use of the Products sold hereunder (including customs
duties and sales, excise, use, turnover and license taxes) shall be charged to
and remitted by Buyer to Omron.
Financial. If the financial position of Buyer at any time becomes unsatisfactory
to Omron, Omron reserves the right to stop shipments or require satisfactory
security or payment in advance. If Buyer fails to make payment or otherwise
comply with these Terms or any related agreement, Omron may (without liabil-
ity and in addition to other remedies) cancel any unshipped portion of Prod-
ucts sold hereunder and stop any Products in transit until Buyer pays all
amounts, including amounts payable hereunder, whether or not then due,
which are owing to it by Buyer. Buyer shall in any event remain liable for all
unpaid accounts.

Cancellation; Etc. Orders are not subject to rescheduling or cancellation

unless Buyer indemnifies Omron against all related costs or expenses.

Force Majeure. Omron shall not be liable for any delay or failure in delivery

resulting from causes beyond its control, including earthquakes, fires, floods,

strikes or other labor disputes, shortage of labor or materials, accidents to
machinery, acts of sabotage, riots, delay in or lack of transportation or the
requirements of any government authority.

Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron:

a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship
except in “break down” situations.

b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall
constitute delivery to Buyer;

c. All sales and shipments of Products shall be FOB shipping point (unless oth-
erwise stated in writing by Omron), at which point title and risk of loss shall
pass from Omron to Buyer; provided that Omron shall retain a security inter-
est in the Products until the full purchase price is paid;

d. Delivery and shipping dates are estimates only; and

e.Omron will package Products as it deems proper for protection against nor-
mal handling and extra charges apply to special conditions.

Claims. Any claim by Buyer against Omron for shortage or damage to the

Products occurring before delivery to the carrier must be presented in writing

to Omron within 30 days of receipt of shipment and include the original trans-

portation bill signed by the carrier noting that the carrier received the Products
from Omron in the condition claimed.

. Warranties. (a) Exclusive Warranty. Omron’s exclusive warranty is that the

Products will be free from defects in materials and workmanship for a period of
twelve months from the date of sale by Omron (or such other period expressed
in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION,
EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABIL-

14.

15.

16.

17.

18.

ITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS.
BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. Omron further disclaims all warranties and responsibility of
any type for claims or expenses based on infringement by the Products or oth-
erwise of any intellectual property right. (c) Buyer Remedy. Omron’s sole obli-
gation hereunder shall be, at Omron’s election, to (i) replace (in the form
originally shipped with Buyer responsible for labor charges for removal or
replacement thereof) the non-complying Product, (ii) repair the non-complying
Product, or (iii) repay or credit Buyer an amount equal to the purchase price of
the non-complying Product; provided that in no event shall Omron be responsi-
ble for warranty, repair, indemnity or any other claims or expenses regarding
the Products unless Omron’s analysis confirms that the Products were prop-
erly handled, stored, installed and maintained and not subject to contamina-
tion, abuse, misuse or inappropriate modification. Return of any Products by
Buyer must be approved in writing by Omron before shipment. Omron Compa-
nies shall not be liable for the suitability or unsuitability or the results from the
use of Products in combination with any electrical or electronic components,
circuits, system assemblies or any other materials or substances or environ-
ments. Any advice, recommendations or information given orally or in writing,
are not to be construed as an amendment or addition to the above warranty.
See http://oeweb.omron.com or contact your Omron representative for pub-
lished information.

Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE
FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY
WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS
BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual
price of the Product on which liability is asserted.

Indemnities. Buyer shall indemnify and hold harmless Omron Companies and
their employees from and against all liabilities, losses, claims, costs and
expenses (including attorney's fees and expenses) related to any claim, inves-
tigation, litigation or proceeding (whether or not Omron is a party) which arises
or is alleged to arise from Buyer's acts or omissions under these Terms or in
any way with respect to the Products. Without limiting the foregoing, Buyer (at
its own expense) shall indemnify and hold harmless Omron and defend or set-
tle any action brought against such Companies to the extent based on a claim
that any Product made to Buyer specifications infringed intellectual property
rights of another party.

Property; Confidentiality. Any intellectual property in the Products is the exclu-
sive property of Omron Companies and Buyer shall not attempt to duplicate it
in any way without the written permission of Omron. Notwithstanding any
charges to Buyer for engineering or tooling, all engineering and tooling shall
remain the exclusive property of Omron. All information and materials supplied
by Omron to Buyer relating to the Products are confidential and proprietary,
and Buyer shall limit distribution thereof to its trusted employees and strictly
prevent disclosure to any third party.

Export Controls. Buyer shall comply with all applicable laws, regulations and
licenses regarding (i) export of products or information; (iii) sale of products to
“forbidden” or other proscribed persons; and (ii) disclosure to non-citizens of
regulated technology or information.

Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right
and no course of dealing between Buyer and Omron shall operate as a waiver
of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder
without Omron's written consent. (c) Law. These Terms are governed by the
law of the jurisdiction of the home office of the Omron company from which
Buyer is purchasing the Products (without regard to conflict of law princi-
ples). (d) Amendment. These Terms constitute the entire agreement between
Buyer and Omron relating to the Products, and no provision may be changed
or waived unless in writing signed by the parties. (e) Severability. If any provi-
sion hereof is rendered ineffective or invalid, such provision shall not invalidate
any other provision. (f) Setoff. Buyer shall have no right to set off any amounts
against the amount owing in respect of this invoice. (g) Definitions. As used
herein, “including” means “including without limitation”; and “Omron Compa-
nies” (or similar words) mean Omron Corporation and any direct or indirect
subsidiary or affiliate thereof.

Certain Precautions on Specifications and Use

1.

Suitability of Use. Omron Companies shall not be responsible for conformity
with any standards, codes or regulations which apply to the combination of the
Product in the Buyer's application or use of the Product. At Buyer’s request,
Omron will provide applicable third party certification documents identifying
ratings and limitations of use which apply to the Product. This information by
itself is not sufficient for a complete determination of the suitability of the Prod-
uct in combination with the end product, machine, system, or other application
or use. Buyer shall be solely responsible for determining appropriateness of
the particular Product with respect to Buyer’s application, product or system.
Buyer shall take application responsibility in all cases but the following is a
non-exhaustive list of applications for which particular attention must be given:
(i) Outdoor use, uses involving potential chemical contamination or electrical
interference, or conditions or uses not described in this document.

(i) Use in consumer products or any use in significant quantities.

(iii) Energy control systems, combustion systems, railroad systems, aviation
systems, medical equipment, amusement machines, vehicles, safety equip-
ment, and installations subject to separate industry or government regulations.
(iv) Systems, machines and equipment that could present a risk to life or prop-
erty. Please know and observe all prohibitions of use applicable to this Prod-
uct.

NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS
RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT
ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON’S PRODUCT IS PROP-
ERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE
OVERALL EQUIPMENT OR SYSTEM.

Programmable Products. Omron Companies shall not be responsible for the
user’s programming of a programmable Product, or any consequence thereof.
Performance Data. Data presented in Omron Company websites, catalogs
and other materials is provided as a guide for the user in determining suitabil-
ity and does not constitute a warranty. It may represent the result of Omron’s
test conditions, and the user must correlate it to actual application require-
ments. Actual performance is subject to the Omron’s Warranty and Limitations
of Liability.

Change in Specifications. Product specifications and accessories may be
changed at any time based on improvements and other reasons. It is our prac-
tice to change part numbers when published ratings or features are changed,
or when significant construction changes are made. However, some specifica-
tions of the Product may be changed without any notice. When in doubt, spe-
cial part numbers may be assigned to fix or establish key specifications for
your application. Please consult with your Omron’s representative at any time
to confirm actual specifications of purchased Product.

Errors and Omissions. Information presented by Omron Companies has been
checked and is believed to be accurate; however, no responsibility is assumed
for clerical, typographical or proofreading errors or omissions.

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify warnings in this manual. Always heed the
information provided with them.

& DANGER Indicates information that, if not heeded, is likely to result in loss of life or serious injury.

&WARNING Indicates information that, if not heeded, could possibly result in loss of life or serious injury.

&Caution Indicates information that, if not heeded, could result in relatively serious or minor injury, dam-
age to the product, or faulty operation.

OMRON Product References

All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1,2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1991

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

TABLE OF CONTENTS
PRECAUTIONSttt iiiiiiiieiieennnes

IIntended Audience i e
2 General Precautions
3 Safety Precautions e
4 Operating Environment Precautions i
5 Application Precautions

SECTION 1
Hardwareooitiiiitieneeeeeeeeceaacannnss

1-1 Front Panel
1-2 Back Panel
1-3 ASCH Unit Internal Configuration i iinnnnen..
1-4 System Configuration i
1-5 MoOUNtng . ..o

SECTION 2

DataAllOcatiOnS.................................
2-1 Bits and WOrdSt
2-2 Data Configurationttt

SECTION 3
Programming and Communications

3-1 Programst
3-2 Program Transfer
3-3 Running the BASIC Program
3-4 Assembly Routines e

SECTION 4
BASIC Programmingccceeeeeeenecccons

4-1 Program Configuration ittt
4-2 Commands, Statements, and Functions

SECTION 5
Assembly Programmingc000iiiiinnn.

5-1 Assembly Language Programming it
5-2 Terminology and Formatting
5-3 Monitor Mode Commandso ..

SECTION 6
Program Examplescciiiiiiiiiinnnnnns

6-1 Timing Considerationsttt
6-2 Programs in Two-word Mode
6-3 Programs in Four-word Mode
6-4 Assembly Language Examples

Appendices
A Standard Models
B Specifications
C PC Statements and Refresh Timing
D Formatting and Data CONVversionttt
E Memory Map e
F Troubleshooting e e e e
G BASIC Commands, Statements, and Functions

GloSSArY ...t nnnnnsnsnssnsnnnnnnnas
Indexiiiiiiiiiiiiiiiiiiiiiieeneeeennnnnnnns
Revision HiStorycovviiiiieeeneececccncnnnnns

vii

About this Manual:

This manual describes the installation and operation of the C500-ASC04 ASCII Unit. The ASCII Unit can
be mounted to a C500, C1000H, C2000H, or CV-series PC to control ASCII data 1/O through a BASIC
program stored in the ASCII Unit. The C500-ASC04 must be used with a PC that supports the I/O READ
and I/0 WRITE instructions (READ(88) and WRIT(87) or READ(190) and WRIT(191)).

It has been assumed in the writing of this manual that the reader is already familiar with the hardware,
programming, and terminology of OMRON PC’s. If a review of this information is necessary, the reader
should refer to the appropriate OMRON PC manuals for assistance.

This manual contains the following sections. Please read this manual completely and be sure you under-
stand the information provide before attempting to install and operation the ASCII Unit.

Section 7 explains the external hardware of the ASCII Unit and how it connects to a PC system.

Section 8 explains the format of the PC memory area accessed by the ASCII Unit. This area is where the
ASCII Unit and the PC exchange data.

Section 9 explains how the ASCII Unit program and the PC program communicate as well as how to write,
load, save, and run an BASIC program for the ASCII Unit.

Section 10 presents the BASIC programming language used by the ASCII Unit. Since many of the BASIC
commands are nonstandard and peculiar to an ASCII Unit-PC system, it is recommended that even read-
ers already proficient in BASIC pay careful attention to this section.

Section 11 explains the assembly language programming environment and how it relates to the ASCII
Unit’s BASIC program. It also explains in detail how to write, edit, and run an assembly language program.

Section 12 presents programming examples that are meant to bring together all of the concepts pres-
ented in this manual. Most of the programs deal with data transfer and illustrate how the ASCII Unit and
the PC work together in various applications. Also in this section are several examples used to illustrate
the execution sequence of the hardware during execution of the ASCII Unit and PC programs.

Detailed technical information not immediately necessary for the understanding of a particular section
has been put into one of the seven appendices and should be used for reference when needed. For a list
of the appendices, see the table of contents.

Note In this manual, ladder diagram instructions are given by mnemonics with the function codes in
parentheses following them. The first function code is for C-series PCs and the second function
code is for CV-series PCs. For example, in MOV(21/030) (the MOVE instruction), the function
code for C-series PCs is 21; for CV-series PCs, 030.

&WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

ix

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the PC. You must read
this section and understand the information contained before attempting to set up or operate a PC system.

ITIntended AUIENCEottt e
2 General Precattionsot ittt
3 Safety Precattionsttt e
4 Operating Environment Precautionst
5 Application Precattions ottt e

xi

Operating Environment Precautions 4

1

2

3

xii

Intended Audience

This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

¢ Personnel in charge of installing FA systems.
¢ Personnel in charge of designing FA systems.
e Personnel in charge of managing FA systems and facilities.

General Precautions

/N\ WARNING

The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating OMRON PCs.
Be sure to read this manual before attempting to use the software and keep this
manual close at hand for reference during operation.

It is extreme important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the abovementioned
applications.

Safety Precautions

/N\ WARNING

/N\ WARNING

/N\ WARNING

Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

Operating Environment Precautions

&Caution

Do not operate the control system in the following locations:

e Locations subject to direct sunlight.

e Locations subject to temperatures or humidity outside the range specified in
the specifications.

¢ Locations subject to condensation as the result of severe changes in tempera-
ture.

Application Precautions

&Caution

&Caution

e Locations subject to corrosive or flammable gases.

¢ Locations subject to dust (especially iron dust) or salts.

¢ Locations subject to exposure to water, oil, or chemicals.
¢ Locations subject to shock or vibration.

Take appropriate and sufficient countermeasures when installing systems in the
following locations:

¢ Locations subject to static electricity or other forms of noise.
e Locations subject to strong electromagnetic fields.

¢ Locations subject to possible exposure to radioactivity.

e Locations close to power supplies.

The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions

Observe the following precautions when using the PC system.

&WARNING Always heed these precautions. Failure to abide by the following precautions

&Caution

could lead to serious or possibly fatal injury.

¢ Always ground the system to 100 Q or less when installing the Units. Not con-
necting to a ground of 100 Q or less may result in electric shock.

o Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

e Mounting or dismounting I/O Units, CPU Units, Memory Units Power Sup-
ply Units, or any other Units.

e Assembling the Units.

¢ Setting DIP switches or rotary switches.

e Connecting cables or wiring the system.

¢ Connecting or disconnecting the connectors.

Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

e Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

¢ Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

o Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

o Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

xiii

Application Precautions

5

Xiv

¢ Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

¢ Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

¢ Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

¢ Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

¢ Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

e Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

¢ Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

e Wire correctly. Incorrect wiring may result in burning.
e Mount Units only after checking terminal blocks and connectors completely.

¢ Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.
e Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.
¢ Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.
e Changing the operating mode of the PC.
¢ Force-setting/force-resetting any bit in memory.
¢ Changing the present value of any word or any set value in memory.

¢ Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

¢ Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

¢ Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

¢ Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

¢ When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

¢ Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

SECTION 1
Hardware

This section describes the external hardware of the ASCII Unit. The front and back panels of the ASCII Unit contain switches,
buttons, connectors, and indicators which enable the user to setup, control, and monitor ASCII Unit operations. The ASCII
Unit’s internal configuration as well as a typical system configuration are also illustrated.

1-1 Front Panel
1.2 BackPanel
1-3 ASCII Unit Internal Configuration
1-4 System Configuration
1-5 Mounting

Front Panel

Section 1-1

1-1

Ports

Switches

Battery Compartment
Front Panel

Front Panel

On the front panel of the ASCII Unit, there are six indicator lights, the reset
switch, the START/STOP switch, two RS-232C connectors, and a battery com-
partment. In addition, behind the LED Display Panel, is an 8-pin DIP switch used
for setting various control parameters.

The front panel of the ASCII Unit contains two RS-232C ports. These ports
are used for connecting peripheral I/0O devices to the ASCII Unit. Both ports
can be used for communication devices such as printers, terminals, and mo-
dems. Only port 1 can be used for uploading or downloading a BASIC pro-
gram. The standard configuration is a personal computer connected to port 1
and a printer or other I/O device connected to port 2.

The START/STOP switch is a toggle switch and is used for initiating and halt-
ing execution of the ASCII Unit program.

The RESET switch is used for resetting the ASCII Unit.
The battery compartment holds the C500-BAT08 Battery.

LED display
Indicates the operating
status of the ASCII Unit.

DIP switch
DIP switch is visible when the
indicator panel is removed.

RESET switch
Resets the ASCII Unit
. k| RS-232C connector port 1
g;ﬁggﬁggg:gg‘:h g Connects peripheral devices. Is generally
program execution. % used to input the BASIC program but can be
% used for other peripheral devices as well.
RS-232C connector port 2
Connects peripheral devices. Cannot be
e used to input a BASIC program. Is generally
i used for a printer or other RS-232C devices.

Indicator LEDs

Battery compartment
Holds the C500-BATO08 Battery.

The following table describes the ASCII Unit’s indicators.

Name Indication Function
RUN Lit (green) Lit when the ASCII Unit is operating normally. Unlit if an error
occurs.
T/R for ports 1 and 2 Blinking (green) Blinks during data transmission (port 1 and port 2).
ERROR 1 (port 1) Lit (red) Lit if a reception buffer overflows or an error such as parity error
ERROR 2 (port 2) occurs (see note), or while the ASCII Unit is waiting for specific
transmission conditions to be satisfied.
BASIC Lit (green) Lit while the BASIC program is running.
Blinking (green) Blinks when the BASIC program stops, or when the ASCII Unit is
waiting for input while the BASIC program is running.
Unlit (green) Unlit when in monitor mode.
BAT ERR Blinking (red) Blinks when the battery voltage has fallen below the rated level or
if the battery is not inserted correctly.
4CH Lit (green) Lit when the ASCII Unit is set for 4-word mode. Unlit when the
ASCII Unit is set for 2-word mode.

Front Panel Section 1-1

Note When a reception buffer overflows or transmission error occurs, the red indicator
is lit and will not be turned off even if the transmission error or reception buffer
overflow is corrected, because the error log must be kept. To turn off the indica-
tor, execute the CLOSE instruction or stop the program.

Front Panel DIP Switch In order to access the front panel DIP switch, the indicator cover must be re-
moved with a standard screwdriver as shown in the illustration below. To set the
DIP switch, the power to the ASCII Unit must be OFF. The DIP switch must be set
before the ASCII Unit is mounted to the PC. Make sure the power to the PC is off
when mounting the ASCII Unit.

ASCO4 CH

Standard
Screwdriver

Front Panel

Section 1-1

DIP Switch Settings

ON :1

| OFF -0 Yaidaaaae

Start mode Screen size
Pin No. 1 Function PinNo. | 6 | 7 | 8 Screen Size
Setting Manual start mode Setting | 0 | 0 | 0 |40 columns x 7 lines

In this mode, the BASIC program is 1 0 0 | 40 columns x 8 lines
0 not started upon power application. .

To start the program, either press 0 1 0 | 40 columns x 15 lines

the START/STOP switch or issue a 1] 4 | 16 i

start command from the personal 0 0 columns x 16 lines

computer connected to port 1. 0 0 1 80 columns x 15 lines

Automatic start mode 1 0 1 80 columns x 16 lines
1 In this mode, the BASIC program 0 1 1 80 columns X 24 lines

is started automatically on power

application. 1 1 1 80 columns x 25 lines

Automatic program transfer from EEPROM to RAM— | —— Specifies 2 or 4 word setting for

the Data Section.

PinNo.| 2 Function Pin No.

5

Function

Setting | o Set this pin to “0” if only the Setting
RAM is to be used.

Set this pin to “1” to automati-
cally transfer the program
from the EEPROM to RAM on
power application or reset.

0

Two word setting. Choose this setting
to use WRIT(87/191)/READ(88/190)

Four word setting. This setting is used
when the ASCII Unit is mounted to a
Slave Rack or when the PC does not
support WRIT(87/191)/READ(88/190).

Program No.

These pins select which program will be executed on power
application or reset. The program number can be changed
later with the PGEN command.

PinNo.| 3 4 Function
Setting| O 0 |No.1

1 0

0 1 No. 2

1 1 No. 3

Back Panel Section 1-2

1-2 Back Panel

The back panel of the ASCII Unit houses the PC connector and an 8-pin DIP
switch used for setting the communication parameters.

Back Panel
[S Mounting Screw
ta For mounting the ASCII Unit
to the PC Rack
Connector ———
Connects the ASCII Unit
to the PC
P
DIP Switch
For setting the communi-
Mounting Screw

cation parameters
For mounting the ASCII Unit
to the PC Rack

Back Panel DIP Switch
e Pins 1, 2, and 3 are used for setting the baud rate of port 1.

¢ Pins 4, 5, and 6 are used for setting the baud rate of port 2.

¢ Pins 7 and 8 are not used but must be set to OFF. If they are left ON, the Hard-
ware Test program will be executed and all RAM data will be lost.

The DIP switch settings are described in more detail in the following diagram.

ST TTTTTT
12345678
Baud rate selection for port 1 ——L’_,
: Not used (Always set these pins to OFF.)
PinNo. | 1 | 2 | 3 | Baud Rate Baud rate selection for port 2
Setting | 0 0 0 300 bps PinNo. | 4 5 6 | Baud Rate
1 0 0 600 bps Setting |0 | O 0 300 bps
0 1 0 1,200 bps 1 0 0 600 bps
1 1 0 2,400 bps 0 1 0 1,200 bps
0 0 1 4,800 bps 1 1 0 2,400 bps
1 0 1 9,600 bps 0 0 1 4,800 bps
0 1 1 1 0 1 9,600 bps
1 1 1 0 1 1 19,200 bps
1 1 1

ASCII Unit Internal Conﬁéruration Section 1-3

1-3 ASCII Unit Internal Configuration

PC

CPU

I/0 Bus

LED Indicators

DIP Switches

The Common Memory can be accessed using the ASCII Unit's PC READ or PC
WRITE statements. It can also be accessed using the PC’s WRIT(87/191) and
READ(88/190) instructions. I/O data can be accessed using the ASCII Unit's PC
GET, PC PUT, and ON PC statements. It can also be accessed using the
MOV (21/030) instruction.

The following figure illustrates these instructions and their relationship to the
Common Memory and the I/O data.

11

ASCII Unit
CPU
Common System
Memory Memory
Interface
Circuit Work
Memory
I/O Data BASIC
Program
Memory
BASIC Data
N 7| Memory
EEPROM [&—>
RS-232C RS-232C
Interface Port 1
/0
RS-232C Connectors
Interface Port 2
RESET START
/STOP

Mounting Section 1-5

1-4 System Configuration

The ASCII Unit can be mounted to any slot on the CPU Backplane. Before
mounting the ASCII Unit, the DIP switches must be set. Make sure that the pow-
er supply to the PC is turned OFF during installation of the ASCII Unit. A personal
computer used for entering the BASIC program should be connected to Port 1
and other peripheral 1/0 devices such as a printer or a display terminal can be
connected to Port 2 (refer to the following diagram). For more detailed informa-
tion on peripheral interface connections and timing, refer to Appendix B.

C500/C1000H/C2000H

CV Series

C500
Expansion
I/0 Rack

1-5 Mounting

The ASCII Unit can be mounted to any I/O slot. The control panel must allow
enough space for the connectors, as shown in the figure below.

*1. Height of the ASCII Unit including the base (100
mm)

*2. Height of the ASCII Unit with an RS-232C con-
nector attached (approximately 160 to 180 mm)

.

f—k]|

* 2

T

A\

SECTION 2
Data Allocations

This section explains the words of the PC used to communicate with the ASCII Unit.

2-1 Bitsand WOrds
2-2 Data Configuration ittt e
2-2-1 Two-word Configuration
2-2-2 Four-Word Configuration

Data Configuration

Section 2-2

2-1 Bits and Words

The PC’s memory is divided up into many sections, each of which has its own
unique name and purpose. The ASCII Unit can access any of these memory
areas using the BASIC READ and WRITE statements (this is explained in more
detail in Section 4 BASIC Programming). However, there are words in the PC’s
IR data area that are uniquely assigned to each ASCII Unit.

The PC’s memory is organized into units called words. Information is usually
stored in word or multiple word units. Each word has a unique address in the
computer memory and can be accessed by specifying its address.

Each word contains 16 bits. A bit is the smallest piece of information that can be
stored or accessed by a computer. A bit is always in one of two states: zero or
one (OFF or ON). Certain bits can be accessed individually and are used as
flags. A flag is turned ON and OFF by the hardware to indicate some state of the
computer or to enable or disable certain operations. Bits can also be set or
cleared by the programmer to communicate certain parameters or conditions to
the CPU.

For example, when the ASCII Unit program requests data to be sent from the PC
using the BASIC GET statement, the PC’s Write Flag is turned OFF, indicating
that the ASCII Unit must wait while the PC prepares the data. When the PC has
collected the data, it turns ON the Write Flag, signaling the ASCII Unit that it may
proceed to read the data.

2-2 Data Configuration

Each ASCII Unit is assigned a section of memory in the PC. The data has two
configurations, two-word and four-word. The data configuration is selected by
setting pin 5 of the front panel DIP switch before power is applied to the ASCII
Unit.

The basic difference between the two-word and four-word configurations is that
in two-word mode the WRIT(87/191)/READ(88/190) instructions are supported
for data transfer while in four-word mode they are not supported. The structure
and application of the words in each of the two modes is explained next.

2-2-1 Two-word Configuration

Data Bit Definitions

10

WRIT(87/191) and READ(88/190) are supported in the two-word configuration.
WRIT(87/191) is the PC’s I/O WRITE instruction and READ(88/190) is the PC’s
I/0 READ instruction.

When the PC uses these instructions for data transfer, up to 255 words of data
can be transferred at one time. In order to transfer multiple data words at the
same time, however, the ASCII Unit must be programmed to use the PC READ
or PC WRITE statements. In addition the A or S formats must be used. Refer to
Appendix D for more information on formats.

The following PCs support WRIT(87/191)/READ(88/190):

C500: 3G2C3-CPU11-EV1

C120: 3G2C4-SC024-EV1

All C1000H, C2000H, CV-series PCs.

When WRIT(87/191)/READ(88/190) are not supported or not used, data is
transferred using the PC’s MOV(21/030) instruction. When the MOV(21/030) is
used, only one word of data is transferred at a time.

To output (word n) data using the MOV(21/030), set bits 00, 01, 02 and 03 to
zero.

The following table identifies the individual bits in the two words allocated to the
ASCII Unit. In the following Bit Definition table, entries in the Bit column enclosed

Data Configuration

Section 2-2

in parentheses are reserved for use by WRIT(87/191)/READ(88/190) and are
not available for general programming application.

Word Bit Function Description
n (00) PC busy Reserved for WRIT(87/191)/READ(88/190)
(01) PC WRITE complete
(02) PC READ complete
03 Restart The ASCII Unit is activated when this bit goes OFF
04 t0 07 | --- Not Used
08 to 15 | Output data bits 0 to | Data output from the PC to the ASCII Unit. Read by the PC GET statement.
7
n+1 (00) ASCII busy Reserved for WRIT(87/191)/READ(88/190)
(01) PC READ complete
(02) PC WRITE complete
03 ASCI!I error Turns ON when an error occurs in the ASCII Unit, when the RESET
activates, or when the ASCII Unit restarts.
04 Port 1 error Turns ON when a buffer overflows or transmission error occurs in Port 1.
Turns OFF when the CLOSE statement is executed or the program is
stopped.
05 Port 2 error Turns ON when a reception buffer overflows or transmission error occurs in
Port 2. Turns OFF when the CLOSE statement is executed or the program is
stopped.
06 Battery error Turns ON when the battery is low or removed
07 BASIC RUN Turns ON when a BASIC program is running
08 to 15 | Input data bits 0 to 7 | Data output from the ASCII Unit to the PC. Written by the PC PUT

statement.

Program Execution

Note When the reset switch is turned ON, the data in word n+1 will be $FFF9. Restart-
ing can be checked using bit 03 of word n+1.

PC

Application
Program

When the ASCII Unit is restarted, the data of word n+1 will be 0000.

The following diagram illustrates how the words and bits allocated to the ASCII
Unit relate to program execution.

WRIT(87/191) is executed when the data communication condition for
WRIT(87/191) is satisfied and the ASCII busy flag is cleared. If these conditions
are not met, the WRIT(87/191) is treated as a NOP.

READ(88/190) is executed when the data communication condition is satisfied
and the ASCII busy flag and ASCII write complete flag are OFF. If these condi-
tions are not met, the READ(88/190) is treated as a NOP.

WRIT(87/191) | Write Datainn |
(n) i PC READ ASCII Unit

Common
Memory

READ(88/190) Read data in n+1 BASIC

n+1) PC WRITE Program

MOV(21/030)/OUT _ Output Data PC GET
(n) 08 to 15

MOV (21/030)/LD/OR Input Data PC PUT
(n+1) 08 to 15

Timing

The WRIT(87/191) and READ(88/190) instructions are executed and the com-
mon memory is refreshed every time the PC completes one cycle of the pro-
gram. 1/O data, however, does not use the common memory (see above dia-
gram) and is refreshed when the PC refreshes all the I/O data. Consequently

11

Data Configuration Section 2-2

there is a time difference between when common memory data is set and when
I/0O data is set. This time difference must be taken into consideration when pre-
paring both the ASCII Unit and PC programs.

&— 1cycle

O refresh
MOV(21/030) WRIT(87/191) | = o'
Y \ 4

With WRIT(87/191) time

Data set in common Output data set
memory

The following diagram illustrates the various timing relationships between the
PC and ASCII Unit during data transfer.

Relationship between READ and WRITE Timing

Application Program
PC WRITE PC READ

PC busy: n (00)

Write/Read data: n or n+1 ' PC — ASCI|
PC Unit << common memory

CASCI — PO

PC write complete: n (01)

PC read complete: n (02)

BASIC Program
ASCII busy n+1 (00)

i

L

ASCII read complete: n+1 (01)

Read data P READ\:
common memory — ASCII C !

Write data :/
ASCIl — common memory PC WRITE

ASCII write complete: n+1 (02)

Relationship between Output and Input Timing

Output data X
PC — ASCII: n (08 to 15) PC — ASCII . PC — AsCII

Input data j
ASCIl = PC: n+1 (08 to 15) ASCIl = PC : ASCIl — PC

1/O refresh

2-2-2 Four-Word Configuration

In four-word mode, WRIT(87/191) and READ(88/190) instructions cannot be
used. The ASCII Unit can be set to four-word mode by setting pin 5 of the front
panel DIP switch to ON.

Bit Allocation The following two tables identify the individual bits in the four words allocated to
the ASCII Unit. Notice that words n and n+1 are used for output and words n+2

12

Data Configuration

Section 2-2

and n+3 are used for input. In this case, input and output are from the point of

view

of the PC.

Bit

Word n (OUT)

Word n+1 (OUT)

Word n+2 (IN)

Word n+3 (IN)

00

Write Data 00

PC busy

Read Data 00

ASCII busy

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Write Data 01

PC write complete

Read Data 01

PC read complete

ASCII read complete

ASCII write complete

Restart

Interrupt No. 00

Interrupt No. 03

ASCII error

Port 1 error

Port 2 error

Battery error

Write Data 15

Output Data 00

Output Data 07

BASIC RUN

Read Data 15

Input Data 00

Input Data 07

13

Data Configuration

Section 2-2

Bit Definitions

14

Word Bit Function Description
n 00 to 15 | Write data bits Data that will be written to the common memory from the PC by the MOV(21/030)
00to 15 and read with the PC READ statement.
n+1 00 PC busy Set by the PC program when the PC accesses common memory, and cleared
when memory access is terminated. The ASCII Unit cannot access the common
memory while this bit is set.
01 PC write Momentarily set by the PC program when the PC has completed writing data to
complete the common memory. When this bit goes ON, the ASCII Unit read complete flag
n+3 (01) goes ON as well.
02 PC read Momentarily set by the PC program when the PC has completed reading data
complete from the common memory. When this bit goes ON, the ASCII Unit write complete
flag n+3 (02) goes OFF as well.
03 Restart The ASCII Unit is activated at the trailing edge of this flag (when the flag goes
OFF). A differentiated signal must be used for the Restart signal.
04 to 07 | Interrupt number | Serves as an interrupt number when the ON PC statement is used.When bits 00
bits 00 to 03 to 03 are converted into hexadecimal 00 to 15, 00 is ignored and 01 to 15 are
used as valid interrupt numbers.
08 to 15 | Output data bits | Data output from the PC to the ASCII Unit, written by the MOV and read with the
00 to 07 PC GET statement.
n+2 00 to 15 | Read data bits Data that will be written to the common memory from the ASCII Unit with the PC
00to 15 WRITE statement and read with the MOV.
n+3 00 ASCII busy Set when the ASCII Unit accesses the common memory and cleared when
memory access is terminated. The PC cannot access common memory while this
bit is set.
01 ASCII read Momentarily set when the PC write complete flag goes ON enabling the ASCII
complete Unit to read from common memory. This flag is cleared when the ASCII Unit
terminates the read operation.
02 ASCII write Set at the time the ASCII Unit terminates a write operation to the common
complete memory and cleared when the PC read complete flag goes ON.
03 ASCII error Set when an ASCII Unit error occurs, when RESET is activated, or when the
ASCII Unit restarts.
04 Port 1 error Set when a reception buffer overflows or transmission error occurs at Port 1.
Turns OFF when the CLOSE statement is executed or the program is stopped.
05 Port 2 error Set when a reception buffer overflows or transmission error occurs at Port 2.
Turns OFF when the CLOSE statement is executed or the program is stopped.
06 Battery error Set when the battery is low or removed.
07 BASIC RUN Set when the BASIC program is running.
08 to 15 | Input data bits Data written with the PC PUT statement and read with the MOV.
00 to 07
Note 1. Apart from the data used to read bit 00 to 15 of word n+2, the input data of bit

08 to 15 of word n+2 can be used for program control of the PC by transmit-
ting the 8-bit data to the PC.

2. When the reset switch is turned ON, the data in word n+1 will be $FFF9. Re-

starting can be checked using bit 03 of word n+1.
When the ASCII Unit is restarted, the data of word n+1 will be 0000.

Data Configuration Section 2-2

Program Execution The following diagram illustrates how the words and bits allocated to the ASCII
Unit relate to program execution.

MOV(21/030), | Write data in n
PC PC READ ASCII Unit
Common
Memory
Application MOV(21/030) Read data in n+2 BASIC
Program PC WRITE Program
MOV/OUT Output Data PC GET N
n+108to 15
MOV/LD/OR Input Data PC PUT
n+3 08 to 15
Timing The following diagram illustrates the various timing relationships between the
PC and ASCII Unit during data transfer.
Relationship between READ and WRITE Timing
Application program PC WRITE PC READ
/PC busy: n+1 (00) . : N
Write/Read data: n or n+2 .‘/PC SN ASCII\: X X v ASCIl — pé:
PC Unit <> common memory ' ! '
PC write complete: n+1 (01) |_\|, : X
\\PC read complete: n+1 (02) ! : :
» ASCII READ , ASCII WRITE

BASIC Program
ASCII busy n+3 (00)

ASCII read complete: n+3 (01)

i !

:

Read data: n PC READ
common memory — ASCII

Write data: n+2

PC WRITE
ASCIlI — common memory

\ASCII write complete: n+3 (02) N

Relationship between Output and Input Timing

Output data)
PC — ASCII: n+1 (08 to 15) PC— ASCIl | PC — ASCII

Input data .
ASCII — PC: n+3 (08 to 15) ASCIl—>PC ASCIl — PC

1/O refresh

15

SECTION 3
Programming and Communications

The first part of this section explains how the ASCII Unit and the PC exchange information.

The second part of this section explains how to transfer programs from one device to another. The ASCII Unit’s BASIC pro-
gram is written on a personal computer. To run the program, it must be transferred to the RAM of the ASCII Unit. The ASCII
Unit program can be permanently stored in the ASCII Unit’s EEPROM and also loaded from the EEPROM. The program can
also be transferred back to the personal computer or other storage device.

The last part of this section explains how to run a BASIC program once it has been transferred to the ASCII Unit.

3.1 Programs . . .o vt e
3-2 Program Transferottt
3-3 Running the BASIC Program

3-4 Assembly Routines

17

Program Transfer

3-1

Section 3-2

Programs

PC program

To use the ASCII Unit in conjunction with the PC, an ASCII Unit program written
in BASIC is needed. A data exchange routine must also be incorporated into the
PC program. The PC data exchange routine must set the number of words to be
transferred, the base address, and the specific memory area. This can be done
using the PC’s MOV(21/030) instruction.

There are two ways the ASCII Unit can communicate with the PC. In the first
method, the PC controls the timing of the data transfer between the two devices.
The ASCII Unit “requests” access to the PC data memory area using the PC
READ, PC WRITE, PC GET, or PC PUT statements, and then waits for the PC to
respond by setting either the read or write flag. The PC data exchange routine
performs the designated operations. When the PC is ready, the appropriate flag
is set and the ASCII Unit proceeds with the data transfer.

In the second method, the WRIT(87/191) and READ(88/190) instructions are
used in conjunction with the PC READ, PC WRITE, PC GET, and PC PUT state-
ments to transfer data.

This diagram illustrates the PC and ASCII Unit programs.
ASCII Unit program

General Program

—— Data exchange

— Data exchange processing or 1/O

code

General Program program

Write/read
data —
exchange

I/O data
exchange ™ |

This diagram illustrates the relationship between the PC data exchange code
and the ASCII Unit program.

PC program ASCII Unit program

MOV (21/030) — = [PC READ command

Common

memory

MOV(21/030) -— -— PC WRITE command

MOV(21/030), OUT, etc. J— L > PC GET command

I/0

memory

MOV(21/030), OUT, etc. ‘ — PC PUT command

3-2 Program Transfer
Preparation

18

For the personal computer to communicate with the ASCII Unit, set the comput-
er communication software as follows:

Baud rate: same as ASCII Unit
Data length: 8 bits
Parity: none

No. stop bits: 2
Also: Full duplex, no echo, no XON/XOFF buffer busy control, no auto line feed.

Set the ASCII Unit DIP switches to the desired configuration (refer to Section 1
Hardware).

Program Transfer

Section 3-2

Transfer

aun

Note

SAVE #1, “COMU:” 1 R

The ASCII Unit's BASIC or assembly language program must be written on a
personal computer which is connected to port 1 of the ASCII Unit through an
RS-232C interface. A program can be transferred to the ASCII Unit from the per-
sonal computer or any other storage device connected to one of the communi-
cation ports with the BASIC LOAD command or the S and L commands. Pro-
grams can also be transferred from the ASCII Unit's EEPROM to the ASCII
Unit's RAM using the LOAD command.

Programs can be transferred from the ASCII Unit's RAM to the EEPROM or to a
personal computer or other storage device connected to one of the communica-
tion ports using the BASIC SAVE command.

The ASCII Unit can be booted on power up by a program stored in the EEPROM.
To do this set pin 2 of the front panel DIP switch on the ASCII Unit to ON.

1. During data transfer, an overflow may occur if the buffering capacity of the
baud rate settings of the computer and the ASCII Unit are not matched. If an
overflow error does occur, set either a slower baud rate or specify XON with
the OPEN command.

2. Programs named with PNAME cannot be transferred. Delete the name by
executing PNAME “ ” if necessary before attempting to transfer a program.

The FIT or LSS can be used to back up BASIC programs onto floppy disks, con-
sult the FIT or LSS Operation Manual.

The following figure illustrates the direction of data transfer when using the
SAVE and LOAD commands.

» | Computer or [&—> _ _____.
LOAD #1, “COMU:” other periph-
F® 4 eraldevice | 0 ... --- .
PORT i% : ‘. - ’ :
HEN | oLl
e I
SAVE #2, “COMU:”) VT T
w55 —> Computer. orfe—» ______.
2fex LOAD #2, “COMU:” other periph-
- eraldevice | = --_-____ ,
s [T
= Gl
Note 1. The EEPROM’sn lifetime is limited to 5,000 write operations.

2. Refer to the explanation of the OPEN statement for details on
COMU.

19

Assembly Routines

Section 3-4

3-3 Running the BASIC Program

The ASCII Unit can store and access three separate BASIC programs. Each

program has an associated program number. The user can specify which pro-

gram is to be used by setting pins 3 and 4 of the front panel DIP switch. This must

be done before the Unit is activated.

There are three ways to execute the specified BASIC program:

¢ Enter the RUN command from the keyboard of the personal computer. (Keying
in CTRL+X will abort the program.)

¢ Press the START/STOP switch. Press it again to stop the program.

o If pin 1 of the front panel DIP switch is set to the ON position, the specified pro-
gram will be executed automatically when the Unit is turned ON or reset.

3-4 Assembly Routines

20

Use the monitor mode of the ASCII Unit for writing assembly language routines
to execute operations that cannot be processed with BASIC programs. The
ASCII Unit incorporates the Hitachi HD6303 CPU.

Assembly language routines can be written for the ASCII Unit and called from
the BASIC program with the USR statement. An assembly program can be
saved to the personal computer with the S command and loaded from the per-
sonal computer with the L command. Assembly programs are stored in the S
format.

SECTION 4
BASIC Programming

This section contains an explanation of the terminology, components, structure, and use of the BASIC programming language
on the ASCII Unit. Even those familiar with BASIC should study this section carefully as many of the ASCII Unit BASIC
commands, statements, and functions are non-standard, especially those that control I/O operations. Readers should pay spe-
cial attention to the explanations of statements that are prefixed with “PC.” Also pay special attention to the OPEN statement.

4-1 Program Configurationottt e
4-2 Commands, Statements, and Functions
4-2-1 BASICFormat e e e
4-2-2 Commandst
4-2-3 General Statements
4-2-4 Device Control Statementsttt
4-2-5 Arithmetic Operation Functions i,
4-2-6 Character String Functions i i
4-2-7 Special Functions i e

21

Program Configuration

Section 4-1

4-1 Program Configuration

A BASIC program consists of commands, statements, and functions.

General statement
— Statement {
Device control statement

BASIC Language — Command

Lines and Statements

Line Numbers

Character Set

Constants

22

Arithmetic operation function

— Function Character string function

Special function

Basic Statements designate and control the flow of programs and are generally
used in program lines within a program. Statements are usually created as pro-
grams and executed by the RUN command. Statements can be directly input
and executed from the keyboard.

Basic Commands are usually entered from the command line and control oper-
ations external to the program such as printing and listing. Commands must be
directly input and executed from the keyboard. Commands cannot be inserted
into programs and executed by the RUN command. If commands are inserted
into programs and executed, the commands may not work properly.

Examples: print, list, run

Functions are self-contained programs which accept one or more arguments,
perform predefined calculations, and return a result(s). There are predefined
BASIC functions for arithmetic and string operations as well as user defined
functions.

Examples: INT(x), LOG(x), SQR(x)

A program written in BASIC is a series of lines, each of which consists of one or
more statements. If several statement are written on the same line, they must be
separated with colons(:). A line can be no longer than 255 characters. Use single
quote marks (’) to separate comments.

Example of four statements on a line:
10 FOR L=1 TO 100: J=L*I: PRINT J: NEXT L

Every BASIC program line begins with a line number. Line numbers indicate the
order in which the program lines are stored in memory and are also used as ref-
erences for branching and editing. Line numbers must be in the range of 0 to
63999. A period may be used in AUTO, DELETE, EDIT, and LIST commands to
refer to the current line.

Examples: LIST. EDIT. AUTO DEL 100-

The BASIC character set is comprised of alphabetical characters, numeric char-
acters, and special characters.

The alphabetic characters in BASIC are the upper case and lower case letters of
the alphabet. The numeric characters in BASIC are the digits 0 through 9.

The following special characters are recognized by BASIC:
SP (space) ! "#$& () *+,—./:;<=>?2[\}"_

The following can be used as constants:

Program Configuration

Section 4-1

Constants—————— Character
Numeric Integer — Decimal
| Octal
Hexadecimal

Character Constants

Integers Constants

Octal Constants

Hexadecimal
Constants

Floating Point

Constants
1,2, 3.
1,2 3.
Variables
Variable Name
Note

Type Declarator

Real Number Single-precision
|: Double-precision

A character constant is a character string enclosed by double quotation marks
(7). It can be up to 255 characters long. If it has no character, it is called an “empty
character string” or a null string.

Example: “CF-BASIC”
Whole numbers between —32768 and 32767 can be used. An optional percent

sign (%) can be added to specifically indicate an integer constant. Integer con-
stants do not have decimal points.

Examples: 1234 —1234 12

Octal numbers from 0 to 7 beginning with the prefix “&” and within the range of &0
to &177777 can be used.

Examples: &0127 &7777
Hexadecimal numbers with the prefix “&H”, from 0 to F (0 to 9,A,B,C,D,E,F) and
in the range &H0000 to &HFFFF can be used.
Examples: &H5E &HBF4
Single precision: This type of constant is stored with seven-digit precision and is
output as a six-digit constant with the seventh digit rounded off. It is represented
by one of the following methods:
1. As a number with seven or less digits: 1234.5
2. As a number in exponential form using E: 1.2E+3
3. As a number with the character “I” at the end: 2.34!
Double precision: This type of constant is stored with 16-digit precision and is
output as 16 digits or less. It is represented by one of the following methods:
1. As a number with 8 or more valid digits: 1.23456789
2. As a number in exponential form using D: —1.2D-3
3. As a number with the character “#” at the end: 2.34#

Variables are names used to represent values that are used in a BASIC pro-
gram. The value of a variable may be assigned as the result of calculations or
explicitly by the programmer with an assignment statement. If no value is as-
signed to a numeric variable, it is assumed to be zero. If no value is assigned to a
character variable, it is assumed to be a null string.

A variable may be up to 255 alphanumeric characters long, but only the first 16
characters are actually valid. No variable can start with “FN” or a valid BASIC
command name.

A syntax error will occur if a variable begins with a reserved word (i.e., in the case
of TOTAL or ABSOL, a syntax error will occur because TO and ABS are reserved
words).

The variable TYPE must be declared. This is done using a type declarator which
is placed after the variable name. Even if two variables have the same name,
they will be treated differently if they are declared as different types of variables.

Integer: Uses 2 bytes per variable.

23

Program Configuration

Section 4-1

Variable Array

Type Conversion

Expressions

24

1,2, 3.

I Single-precision real: Uses 4 bytes per variable.
Double-precision real: Uses 8 bytes per variable.
$ Character: Uses a maximum of 255 characters.

There is a second way to declare variable types. The BASIC statements DE-
FINT, DEFSTR, DEFSNG, and DEFDBL may be used to declare the types for
certain variable names.

An array is a group of values of the same TYPE that is stored and referenced as a
unit by the same variable name. Each element in an array has a unique position
and is referenced by the name of the array subscripted with an integer or integer
expression.

There can be many dimensions to an array. The most common types are one,
two, and three dimensional arrays. An array has one subscript for each dimen-
sion in the array.

For example, T(4) would reference the fourth element in the one-dimensional
array T. R(2,3) would reference the value located in the second row and third
column of the two-dimensional array R.

The maximum number of dimensions of an array is 255. The maximum number
of elements per dimension is 32767. The array size and number of dimensions
must be declared with the DIM statement. The subscript value zero is the posi-
tion of the first element in an array. All elements of an array must be of the same
TYPE.

When necessary, BASIC will convert a numeric constant from one TYPE to
another. The following rules and examples apply:

1. If the numeric data on the right side of an assignment statement differs from
the type of data on the left side, the right side is converted to match the left.
However, character data cannot be converted to numerical data, or vice ver-
sa.

Example: A =12.3: if Ais an integer then, “12” is assigned to A.

2. Double-precision data is converted to single-precision data when assigned

to a single-precision variable.

Example:
IF “A” is a single-precision variable and the statement:

LET A = 12.3456789# occurs in a program, then 12.3456789# will be con-
verted to a single-precision number and then assigned to “A.”

3. When an arithmetic operation is performed using both single-precision and
double-precision values, the single-precision value is converted to
double-precision first, and then the operation is performed. Therefore, the
result is a double-precision value.

Example: 0#/3 (double-precision)

4. In logic operations, all numeric data is first converted into integer data. If any
value cannot be converted into an integer within the range of —32768 to
32767, an error will occur.

Example: LET A =NOT 12.34, —13 is assigned as A.

5. When a real number is converted into an integer, everything to the right of

the decimal point is rounded off.

Example: A =12.3: “12” is assigned to A.

Expressions refer to constants, variables, and functions that have been com-
bined by operators. Numeric values, variables, or characters alone can also
form expressions. There are four types of expressions:

¢ Arithmetic

Program Configuration

Section 4-1

Arithmetic Operators

¢ Relational
e Logical
e Character

Of these, the first three produce numeric values as a result, and are thus called,
“numeric expressions.” The last type is called a “character expression.”

An arithmetic expression is made up of constants, variables, and functions com-
bined using arithmetic operators. A list of valid arithmetic operators is shown in
the following table.

Arithmetic Operator Example Operation

+ A+B Addition

- A-B,-A Subtraction or negation

* A*B Multiplication

/ A/B Real number division

\ A\B Integer division

MOD A MOD B Remainder after integer division
A ArB Exponentiation

Note If A or B is a real number in an expression using the \ or MOD operator, the deci-

Relational Operators

mal part is first rounded up to convert the real number into an integer, and then
the operation is performed.

Relational operators compare two values. The output is “—1” (&HFFFF) if the two
values are equal and “0” if they are not.

Relational Operator Example Operation
= A=B Equal
<>>< A<>B Not equal
< A<B Less than
> A>B Greater than
< A<B Less than or equal to
2 A>B Greater than or equal to

Character Operator

Logical Operators

A character expression is made up of character constants and variables that are
linked with the character operator “+”. Instead of adding characters together, the
“+” operator links the characters together to form one character value.

Input: A$=“CF” B$="BASIC” PRINT A$+“—"+B$

Output: “CF-BASIC” is displayed.
Logical Operators perform tests on multiple relations, bit manipulation, or bool-
ean operations. The logical operator returns a bit result which is either “true” (not

0) or “false” (0). In an expression, logical operations are performed after arithme-
tic and relational operations. The outcome of a logical operation is determined

25

Program Configuration Section 4-1

as shown in the following table. The operators are listed in the order of prece-

dence.
Logical Operator Description, Example, and Result

NOT (negation) A NOT A
0
0 1

AND (logical product) A B A AND B
11 1
10 0
0 1 0
00 0

logical sum) A B AORB
11 1
10 1
0 1 1
00 0

(exclusive-OR) A B AXORB
11 0
10 1
0 1 1
00 0

IMP (implication) A B AIMPB
11 1
10 0
0 1 1
00 1

EQV (equivalence) A B AEQVB
11 1
10 0
0 1 0
00 1

Operator Priority Arithmetic and logical operations are performed in the following order. Note,

however, that an expression or function enclosed by parentheses is executed
first, irrespective of operator priority.

1. A (exponentiation) 8. NOT
2. — (negation) 9. AND
3. * 10. OR
4. \ 11. XOR
5. MOD 12. EQV
6. +. — 13. IMP
7. Relational operators

26

Commands, Statements, and Functions Section 4-2

4-2

4-2-1

Calculation Examples of Logical Expressions
NOT (negation)

A =1=0000000000000001

NOT 1 = 1111111111111110 = -2

NOTA=-2
AND (logical product)

A =5 =0000000000000101

B = 6 = 0000000000000110

A AND B = 0000000000000100 = 4
OR (logical sum)

A =4 =0000000000000100

B = 3 = 0000000000000011

A OR B = 0000000000000111 =7
XOR (exclusive OR)

A=-4=1111111111111100

B = 5 = 0000000000000101

A XOR B = 1111111111111001 = -7
EQV (equivalent)

A =-4 =1111111111111100

B = 5 = 0000000000000101

A EQV B = 0000000000000110 = 6
IMP (implication)

A=-4=1111111111111100

B =5 =0000000000000101

A IMP B = 0000000000000111 =7

Commands, Statements, and Functions

This section explains, in detail, the BASIC commands, statements and func-
tions. They are presented in alphabetical order by section. Each description is
formatted as described below.

BASIC Format

Purpose: Explains the purpose or use of the instruction
Format: Shows the correct format for the instruction

The following rules apply to the format descriptions of all commands, instruc-

tions, and functions:

e Items in CAPITAL LETTERS must be input as shown.

e Items in lower case letters enclosed in angle brackets (< >) are to be supplied
by the user.

e Iltems in square brackets ([]) are optional.

e All punctuation marks except angle and square brackets (i.e., comas, hy-

phens, semicolons, parentheses, and equal signs) must be included where
shown.

e Arguments to functions are always enclosed in parentheses. In the formats
given for the functions in this chapter, the arguments have been abbreviated as

follows:
xandy: represent numeric expressions
land J: represent integer expressions
A$ and B$: represent string expressions

27

Commands, Statements, and Functions Section 4-2

4-2-2 Commands

AUTO Command

CONT Command

DEL Command

28

Remarks: Explain in detail how to use the instruction

Examples: Show sample code to demonstrate the use of the instruction

This section describes all of the BASIC commands for the ASCII Unit.

Purpose: To automatically generate line numbers for each line of the pro-
gram

Format: AUTO [<line>][,[<increment>]]
<line> is a an integer from O to 63999.

<increment> is an integer value that specifies the increment of
the generated line numbers.

Examples: AUTO 100, 10
AUTO 500, 100

Remarks:

Auto begins numbering at <line> and increments each subsequent line number
by <increment>. The default value for both <line> and <increment> is 10.

The AUTO Command can be canceled by entering CTRL+C.

If an already existing line number is specified, an asterisk (*) is displayed imme-
diately after the line number. If a new line number is input followed by a CR key,
the new line number will be used instead. Pressing only the CR key leaves the
line number unchanged.

Purpose: To resume execution of a program after a Ctrl+Break has been
typed, a STOP or END statement has been executed, or an error
has occurred

Format: CONT

Remarks:

Execution resumes at the point where the break occurred. If CTRL+X is pressed
during data exchange with an external device, execution is aborted and the pro-
gram cannot be resumed.

If the program is modified after execution has been stopped, the program can
not be resumed.

CONT is usually used in conjunction with STOP for debugging.

Purpose: To Delete the specified program lines
Format: DEL [<first>] [-<last>] or DEL <first> -
<first> is the first line number deleted.

<last> is the last line number deleted.

Examples:

DEL 100 Deletes line 100

DEL 100- Deletes all lines from line 100
DEL -150 Deletes all lines up to line 150

DEL 100-150 Deletes all lines between 100 and 150

Commands, Statements, and Functions Section 4-2

EDIT Command

LIST Command

LOAD Command

1,2, 3.

Remarks:
A period may be used in place of the line number to indicate the current line.

Purpose: To Edit one line of the program
Format: EDIT <line>

<line> is the line number to be edited.
Remarks:

The EDIT Command is used to display a specified line and to position the cursor
at the beginning of that line. The cursor can then be moved within the specified
line and characters can be inserted or deleted. Executing “EDIT .” will bring up

“w

the previously entered program line. “.” refers to the last line referenced by an
EDIT statement, LIST statement, of error message.

Purpose: To list the program currently in memory on the screen or other
specified device

Format: LIST [<line>] [-[<line>]]
LLIST [<line>] [-[<line>]]
<line> is a valid line number from 0 to 63339.

Remarks:

LIST displays a program or a range of lines on the screen or other specified de-
vice.

If the line range is omitted, the entire program is listed. “LIST.” displays or prints
the line that was last input or was last displayed.

Output can be aborted by entering CTRL+B or CTRL+X. If CTRL+B is used, list-
ing can be resumed by entering CTRL+B again.

LIST/LLIST Commands can be written into the program, but the following state-
ment will not be executed and the ASCII Unit will enter command input wait sta-
tus.

The LIST Command automatically outputs to port 1 and the LLIST Command
automatically outputs to port 2.

The LLIST Command outputs data to the device “LPRT” independently of the
OPEN statement.

When the dash (-) is used in a line range, three options are available:
1. If only the first number is given, that line and all higher numbered lines are
listed.

2. If only the second number is given, all lines from the beginning of the pro-
gram through the given line are listed.

3. If both numbers are given, the inclusive range is listed.

Examples:

LIST -500 List everything up to line 500

LIST 10-100 List all lines ranging from 10 through 100
LIST 200- List everything from line 200 on

Purpose: To load a program from the EPROM into memory
Format: LOAD

Remarks:

The contents of the program area specified with the MSET Command are
loaded from the EEPROM.

29

Commands, Statements, and Functions Section 4-2

MON Command

MSET Command

30

Purpose: To load a program sent from an RS-232C device to the current
program area

Format: LOAD #<port>,“COMU:[<spec>,<vs|>]

<port> is either port 1 or port 2.

<spec>: see OPEN statement tables.

<vsl>: valid signal line—refer to the OPEN statement tables.
Example: LOAD #1,"COMU:(43)

Remarks:

When this command is executed, the BASIC indicator LED will begin blinking
rapidly. Make sure the RS-232C device is connected at this time.

During execution of the LOAD command, the START/STOP switch and key in-
put from port 1 will not be acknowledged.

The program area currently used is cleared immediately after the LOAD com-
mand is executed.

For details on communication parameters, valid signal lines, and COMU refer to
the OPEN instruction.

Purpose: To change to monitor mode
Format: MON

Remarks:

This Command passes control from BASIC mode to monitor mode.
To return to BASIC mode, enter CTRL+B.
In monitor mode, all Roman characters used must be in upper case.

Purpose: To reserve memory space for an assembly program
Format: MSET [<address>]

<address> is a hexadecimal number between &H200 and
&H7FFF.

Example: MSET &H5000

Remarks:

When an assembly program is to be used in conjunction with a BASIC program,
special memory space must be reserved for the assembly program.

The MSET command sets the lowest possible address that a BASIC program
can occupy. The assembly program is then stored “below” the BASIC program in
memory. It is necessary to reserve enough space for the assembly program to
“fit”.

If no MSET address is specified, the default MSET boundary address will be set
at &H2000. Do not specify an address higher than &H7FFF or the system stack
will be overwritten.

The address specified by this command is maintained even if system power is
turned OFF. To cancel the effect of this command, execute MSET &H2000.

Commands, Statements, and Functions

Section 4-2

Under normal conditions

This diagram illustrates the PC memory map before and after the MSET com-
mand is executed.

When MSET is executed

&HO0000 &HO0000
I/O Area I/O Area

&H0020 &H0020
System area System area

&H2000 &H2000 w
Basic text area &H5000 R‘\gggggé\

Basic text area

System stack area (Standard 1K byte) System stack area (Standard 1K byte)
Character String area Character String area

&H8000 &H8000
System area System area

&HFFFF &HFFFF
NEW Command

PGEN Command

PINF Command

Purpose: To delete the program currently in memory and clear all variables

Format: NEW

Remarks:

New is used to clear memory before a new program is entered. New causes all
files and ports to be closed.

Programs named with the PNAME command cannot be erased. The name must
therefore be erased first by executing PNAME “” before the NEW command is
executed.

Purpose: To select one of three program areas for the current program
Format: PGEN <num>
<num> is an integer of value 1, 2, or 3.

Remarks:
The occupied capacity of the selected program area will be displayed. (Refer to

the discussion of the PINF command.)
Purpose: To display memory area information
Format: PINF [<arg>]

<arg> is either an integer of value 1, 2, or 3 or the character
string “ALL”. ALL is entered without quotes.

Examples: PINF 1
PINF ALL

Remarks:

This Command displays the amount of program area currently being used and
the program names that have been assigned by the PNAME command. Specify
1, 2, or 3 as <arg> for a specific program area.

31

Commands, Statements, and Functions Section 4-2

PNAME Command

RENUM Command

RUN Command

32

If <arg> is not specified, information on the area currently being used is dis-
played.

If ALL is specified, information on all three program areas will be displayed.

Purpose: To assign a name to a program stored in the area specified with
the PGEN command or to cancel a previously assigned program
name

Format: PNAME <string>

<string> is the chosen name (enclosed in quotes) for the pro-
gram or the null string, “”

Examples: PNAME “PROG1”
PNAME “”

Remarks:
The chosen name must be eight characters or less.

Program areas assigned a name with the PNAME command are protected from
execution of the LOAD and NEW commands which erase program area con-
tents. It is necessary to erase all assigned program names with the PNAME “”
command before execution of the LOAD or NEW commands.

Purpose: To renumber program lines
Format: RENUM [<new number>] [,[<old number>][,<inc>]]

<new number> is the first line number to be used in the new se-
quence. The default is 10.

<old numbers is the line in the current program where the re-
numbering is to begin. The default is the first line of the program.

<inc> is the increment to be used in the new sequence. The de-
fault is 10.

Examples: RENUM 200
RENUM 500, 200, 10

Remarks:

RENUM will also change all line number references following GOTO, GOSUB,
THEN, ELSE, ON ... GOTO, ON ... GOSUB, RESTORE, RENAME, and ERL
statements to reflect the new line numbers.

Statement numbers greater than 63999 cannot be used.

Purpose: To execute a program
Format: RUN [<line>]
<line> is any line number less than 63999.

Remarks:

If a line number is specified, execution begins from that line. If the line number is
omitted, execution starts from the first line of the program.

The RUN command clears all variables and closes all open files before execut-
ing the designated program.

Program execution can be aborted with CTRL+X, or the START/STOP switch.

Program execution can also be aborted from within the program by an END or
STOP statement.

Commands, Statements, and Functions Section 4-2

SAVE Command

Purpose: To write the program area to the EEPROM
Format: SAVE

Remarks:

The contents of the BASIC program area and the assembly language program
area reserved with the MSET command are written to the EEPROM.

If the START/STOP switch is pressed during execution of the SAVE command,
the process will be aborted.

Purpose: To write a program in the current program area to a storage de-
vice connected to one of the ports.

Format: SAVE #<port>,“COMU:[(<valid signal line>)]”

<port> is one of the two ports (1,2).

<valid signal line>: refer to the OPEN statement tables.
Example: SAVE #1,“COMU:(43)”

Remarks:

When this command is executed, the BASIC LED indicator on the ASCII Unit will
blink rapidly warning the user to prepare the peripheral device for data transfer.
When the device is set, press the START/STOP switch.

During execution of this command the START/STOP switch and key input
through port 1 are inhibited.

For further details on COMU refer to the OPEN command.

TRON and TROFF Commands

VERIFY Command

Purpose: To trace execution of a program
Format: TRON

Remarks:

The TRON command is a debugging tool that enables the programmer to follow
the execution of a program line by line. Execution of the TRON command will
cause the line numbers of subsequent program statements to be displayed on
the screen as they are executed.

The trace can be canceled with the TROFF command, the NEW command, by
turning off the power or, with the RESET switch.

Purpose: To verify the contents of the EEPROM by comparing them to the
contents of the program area

Format: VERIFY

Remarks:

If the contents of the program area are identical to those of the EEPROM, the
message “READY” will be displayed; otherwise, the message “PROM ERROR”
is displayed.

4-2-3 General Statements

CLEAR Statement

Purpose: To initialize numeric and character variables and set the size of
the character memory area

Example: CLEAR [<size>]

<size> is the size of memory area used to process character
strings and is specified in byte units.

33

Commands, Statements, and Functions Section 4-2

COM Statement

DATA Statement

34

Remarks:

This command initializes numeric variables to zero and character strings to
empty. It also clears all user functions defined by the DEF FN statement.

This statement must be executed before the ON ERROR GOTO statement.
<size> is automatically set to 200 bytes upon power application or after reset.

Purpose: To enable, disable, or stop an interrupt defined by the ON COM
GOSUB statement.

Format: COM([<port number>] ON/OFF/STOP
<port number> is an integer (1 or 2).
Example: COM1 ON

Remarks:

The COM ON statement enables an interrupt defined by the ON COM GOSUB
statement.

After this statement has been executed, an interrupt will be generated each time
data is written to the specified port buffer. The interrupt will cause program ex-
ecution to branch to a routine defined by the associated ON COM GOSUB state-
ment.

The COM OFF statement disables the com port interrupts. Even if data is written
to a com port buffer, branching will not take place.

The COM STOP statement stops the com port interrupts from branching pro-
gram execution. However, if the COM ON statement is subsequently executed,
branching to the specified interrupt service routine based on the “STOPPED” in-
terrupt will then take place.

If no port number is specified, port 1 is selected as the default port.
Execute the COM OFF statement at the end of the program.

The COM ON/OFF/STOP statement can be executed only after the ON COM
GOSUB statement has been executed.

Program Example:
10 OPEN #2, “COMU:”
20 ON COM2 GOSUB 100
30 COM2 ON

40 GOTO 40
100 IF LOC(2)<>0 THEN A$=INPUT$ (LOC(2), #2)
110 RETURN

Purpose: Defines numeric and character constants to be specified in a
subsequent READ statement

Format: DATA <constant>[,<constant>]...

<constant> may be a numeric constant in any format; i.e.,
fixed-point, floating-point, or integer. <constant> can also be a
character string. Quotes are only necessary if the constant con-
tains comas, colons, or spaces.

Example: DATA CF, 10, 2.5, “A.:B”

Remarks:

Any number of DATA statements can be used in a program. READ statements
access DATA statements in order (by line number). The data contained therein

Commands, Statements, and Functions Section 4-2

DEF FN statement

may be thought of as one continuous list of items, regardless of how many items
are on a line or where the lines are placed in the program.

DATA statements are non-executable and can be placed anywhere in a pro-
gram. A data statement can contain as many constants as will fit on one line
(separated by comas).

The variable type given in the READ statement must agree with the correspond-
ing constant in the DATA statement.

DATA statements may be re-read from the beginning by use of the RESTORE
statement.

No comment (with “” or “”) can be written after the DATA statement.

Purpose: To define and name a function written by the user
Format: DEF FN<name>[(<arg1>[,<arg2>]...)] = <def>

<name>, which must be a legal variable name, is the name of
the function.

<argn> is a list of variable names called parameters that will be
replaced with values calculated when the function is called. The
items in the list are separated by comas.

<def> is an expression that performs the operation of the func-
tion and is limited to one line.

Example: DEF FNA (X, Y, Z) = SQR(X**2 + Y**2 + Z**2)

Remarks:

A user function must be defined with the DEF FN statement before it can be
called. To call a user function once it has been defined, append FN to the as-
signed name of the function and set it equal to some variable.

distance = FNA(X,5,5)

Variable names that appear in the defining expression serve only to define the
function; they do not affect program variables that have the same name.

The variables in the parameter list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

This statement may define either numeric or string functions. If a type is speci-
fied in the function name, the value of the expression is forced to that type before
it is returned to the calling statement.

If a type is specified in the function name and the argument type does not match,
an error will occur.

DEF INT/SNG/DBL/STR Statement

Purpose: To declare variable types as integer, single-precision,
double-precision, or string

Format: DEF <type><letter>[-<letter>]
[<letter>[-<letter>]]...
<type> is INT, SNG, DBL, or STR

Remarks:

Any variable names beginning with the <letter(s)> listed will automatically be as-
signed to the specified variable type.

The “, “I”, and “$” declaration characters take precedence over a DEF <type>
statement.

If no type declaration statements are encountered, BASIC assumes all variables
without declaration characters to be single-precision variables.

35

Commands, Statements, and Functions Section 4-2

DEF USER Statement

DIM Statement

END Statement

36

Example: DEFINT A-D, X

All variables beginning with A, B, C, D, and X will be integer variables.

Purpose: To specify the starting address of an assembly language subrou-
tine that will be called via the USR function

Format: DEF USR [<«digit>] = <offset>

<digit> is an integer from 0 to 9. The digit corresponds to the
USR routine number whose address is being specified. If <digit>
is omitted, DEF USRO is assumed.

<offset> is the starting address of the USR routine.

Remarks:

Any number of DEF USR statements may appear in a program to redefine sub-
routine starting addresses, thus allowing access to as many subroutines as nec-
essary.

Program Example:
100 DEF USR1=&H2100

110 POKE &H2100, &H39
120 A=USR1 (A)
130 PRINT A

Purpose: To specify the maximum values for array variable subscripts and
allocate storage accordingly

Format: DIM <variable>(<subscripts>)
[,<variable>(<subscripts>)]...
<variable> is a legal variable name.

<subscripts> are the maximum number of elements for each di-
mension of the array. There can be up to 255 subscripts but the
maximum size of the array cannot exceed the amount of memory
available.

Example: DIM A (10,20), B$(30)

Remarks:

If an array variable name is used without a DIM statement, the maximum value of
the array’s subscript(s) is assumed to be 10. If a subscript is used that is greater
than the maximum specified, an error will occur. The minimum value for a sub-
script is zero.

The DIM statement initializes all the elements of numeric arrays to zero. String
array elements are initialized to NULL.

Purpose: To terminate program execution, close all files, and return to
command level

Format: END

Remarks:

END statements may be placed anywhere in the program to terminate execu-
tion. Unlike the STOP statement, END closes all open files or devices. An END
statement at the end of the program is optional. BASIC always returns to com-
mand level after an END is executed.

Commands, Statements, and Functions Section 4-2

ERROR Statement

FOR and NEXT Statements

Purpose: To simulate the occurrence of an error, or to allow error codes to
be defined by the user

Format: ERROR <n>

<n> is the error code to be simulated.

Remarks:

Error code numbers 1 to 255 are predefined and reserved by BASIC. Higher
numbers can be used for user-defined error code messages. User-defined error
codes can be used together with the ON ERROR GOTO statement to branch the
program to an error handling routine.

When the ERROR statement is executed without an accompanying ON ERROR
GOTO statement, the error message corresponding to the specified error num-
ber is output and program execution is stopped. The message UNDEFINED ER-
ROR is displayed if an undefined error occurs.

The error number is assigned to the variable ERR and the line number where the
error occurred is assigned to the variable ERL.

Purpose: To allow a series of instructions to be performed in a loop a given
number of times

Format: For <var>=<x> TO <y> [STEP<z>]

<x>, <y>, and <z> are numeric expressions.
Example: 100 FORY =base TO 10 STEP 2

110 NEXT Y

Remarks:

<var> is used as a counter. The first numeric expression (<x>) is the initial value
of the counter. The second numeric expression (<y>) is the final value of the
counter.

The program lines following the FOR statement are executed until the NEXT
statement is encountered. Then the counter is incremented by the amount spe-
cified by STEP.

A check is performed to see if the value of the counter is now greater than the
final value (<y>). If it is not greater, execution branches back to the first state-
ment after the FOR statement and the process is repeated. If it is greater, execu-
tion continues with the statement following the NEXT statement. This is a
FOR...NEXT loop.

If STEP is not specified, the increment is assumed to be one. If STEP is negative,
the counter will count down instead of up. In this case, the loop will be executed
until the counter is less than the final value.

The body of the loop will never be executed if the initial value of the loop is great-
er than the final value.

NESTED LOOPS

FOR...NEXT loops may be nested, that is, a loop can be placed inside of another
loop. When loops are nested, each loop must have a unique variable name for its
counter. The NEXT statement for the inside loop must come before the NEXT
statement for the outer loop.

If nested loops have the same end point, the same NEXT statement can be used
for both of them.

If a NEXT statement is encountered before its corresponding FOR statement,
an error message is issued and execution is terminated.

37

Commands, Statements, and Functions Section 4-2

GOSUB and RETURN Statements

GOTO Statement

IF...THEN Statements

38

Purpose: To branch to and return from a subroutine
Format: GOSUB <line>

<line> is the first line number of the subroutine.

Remarks:

A subroutine may be called any number of times in a program, and a subroutine
may be called from within another subroutine.

The RETURN statement(s) in a subroutine causes execution to branch back to
the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement should logic dic-
tate a return at different points in the subroutine.

Subroutines can appear anywhere in the program, but it is recommended that
subroutines be readily distinguishable from the main program.

To prevent inadvertent entry into a subroutine, the subroutine may be preceded
by a STOP, END, or GOTO statement to direct program execution around the
subroutine.

Program Example:

10 T=Time

20 GOSUB 100

30 {stuff}

40

50

60 .

90 GOTO 150
100

110 T=T+TIME
120 RETURN
130 {stuff}

Purpose: To unconditionally branch program execution to the specified line
number

Format: GOTO <line>
<line> is a valid line number.

Remarks:

If <line> is a non-executable statement, execution will proceed at the first ex-
ecutable statement encountered after <line>.

Purpose: To control program flow based on the results returned by an
arithmetic or logical expression
Format: IF <expression> [,] THEN <statement(s)> or <line>
[ELSE <statement(s)> or <line>]
IF <expression> [,] GOTO <line>
[[,] ELSE <statement(s)> or <line>]

Example: IF B=10 THEN PRINT “hello” ELSE 500

Commands, Statements, and Functions Section 4-2

INPUT Statement

KEY(n) Statement

Remarks:

If the result of <expression> is not zero, the THEN or GOTO clause will be ex-
ecuted (GOTO is always followed by a line number). THEN may be followed by
either a line number for branching or one or more statements to be executed.

If the result of <expression> is zero, the THEN or GOTO clause will be ignored
and the ELSE clause, if present, will be executed. IF there is no ELSE clause,
execution will continue with the next executable statement.

Purpose: To allow input from the keyboard during program execution
Format: INPUT [;] [#<port>][<“prompt’>;]<variable>

[,<variable>]...

#<port> is the port number (1 or 2).

<“prompt”> is a message that will be displayed when the INPUT
statement is executed.

Examples: INPUT “DATA” : A$
INPUT #2, “DATA” , A$, B$

Remarks:

When an INPUT statement is executed, program execution pauses and a ques-
tion mark is displayed to indicate the program is waiting for data. If <“prompt”> is
included, the string is displayed before the question mark. The program will not
continue execution until the user has entered the required data.

A coma may be used instead of a semicolon after the prompt string to suppress
the question mark.

Data is not excepted by the INPUT statement until a carriage return is entered.
Therefore input can be edited with the backspace and delete keys.

When more than two variables are input, they must be delimited by a coma(s).

The data entered is assigned to the variables specified by the INPUT statement.
The number of values entered must be the same as the number of variables in
the INPUT statement.

The variable names in the list may be numeric or string variable types as well as
subscripted variables (array variable). The type of each entered data item must
agree with the type specified by the variable name.

Strings input to an INPUT statement need not be surrounded by quotation
marks.

Responding to INPUT with too many or too few items will cause an error mes-
sage to be displayed prompting the user to re-enter the data.

If a peripheral device other than TERM or COMU is selected by the OPEN state-
ment, neither the prompt statement nor “?” is displayed.

To eliminate “?” when COMU, etc., is selected by the OPEN statement, use the
LINE INPUT command.

The INPUT statement cannot be executed in direct mode. If the port number is
omitted, port 1 is assumed as the default port.

Purpose: To enable, disable, or stop an interrupt invoked by key input and
defined by the ON KEY GOTO or ON KEY GOSUB statements
Format: KEY(<n>) ON/OFF/STOP
<n> is the key number (1-8).

Example: KEY(4) ON

39

Commands, Statements, and Functions Section 4-2

LET Statement

LINE INPUT Statement

40

Remarks:

The KEY ON statement enables an interrupt invoked by keyboard input. After
this statement has been executed, an interrupt will be triggered each time the
specified key is input. Program execution then branches to an interrupt service
routine defined with the ON KEY GOTO or ON KEY GOSUB statements.

The KEY OFF statement disables the interrupt; key input will no longer trigger an
interrupt.

The KEY STOP statement also disables the interrupt. However, if the interrupt is
subsequently enabled with the KEY ON statement, execution will then branch to
the interrupt service routine defined by the ON KEY GOTO or ON KEY GOSUB
statements.

Execute the KEY OFF statement at the end of the program.
Program Example:

10 OPEN #1, “TERM:(42)”

20 ONKEY 1 GOSUB 100

30 OnKEY 2 GOSUB 200

40 A=0

50 KEY ON

60 GOTO 60
100 PC READ “147;A
110 RETURN

200 PC WRITE “14”;,A
210 RETURN

Purpose: To assign the value of an expression on the right side of an equal
sign to the variable on the left side

Format: [LET] <variable>=<expression>
Example: LETA=1.2

Remarks:

Notice the word LET is optional, i.e., the equal sign is sufficient when assigning
an expression to a variable name.

Assignment of a character variable to a numeric variable, and the reverse, are
not permitted.

When assigning unmatched types of numeric variables, the variable type on the
right side of the equal sign is converted into the type on the left before the assign-
ment is performed.

String assignments should be enclosed in double quotation marks.
Purpose: To input an entire line of characters (up to 255) from the key-
board or other input device without the use of delimiters
Format: LINE INPUT [#<port>,] [“<prompt>”;]<string>
<port> is the port number (1 or 2).

“<prompt>” is a message displayed on the screen prompting the
user for input.

<string> is a string variable that is assigned to the input charac-
ter string.

Example: LINE INPUT #2,”"DATE";A$

Commands, Statements, and Functions Section 4-2

MID$ Statement

ON COM GOSUB Statement

Remarks:

All of the characters input from the end of the prompt to the carriage return are
assigned to the character variable as a series of data. (Comas and colons are
also treated as character data.)

A question mark is not displayed unless it is part of the prompt string.

The prompt statement is not displayed if a peripheral device other than TERM or
COMU is selected with the OPEN statement.

The character string is not assigned to the variable until the carriage return key is
pressed. Until then, the BASIC LED indicator on the ASCII Unit will blink indicat-
ing that the Unit is waiting for input of a carriage return.

If the port number is omitted, port 1 is assumed as the default port.

Purpose: To replace a portion of one string with another string
Format: MID$(<string 1>,<n>[,<m>]) = <string 2>

<string 1> is a string variable.

<n> is an integer expression from 1 to 255.

<m> is an integer expression from 0 to 255.

<string 2> is a string expression.
Example: MID$(A$,2,4) = “ABCDEFGH”

Remarks:

The characters in <string 1>, beginning at position <n> are replaced by the char-
acters in <string 2>.

The optional <m> refers to the number of characters from <string 2> that will be
used in the replacement. If <m> is omitted, all of <string 2> is used. However,
regardless of whether <m> is included or not, the replacement of characters
never goes beyond the original length of <string 1>.

Refer to the discussion of the MID$ function

Purpose: Defines an interrupt service routine to handle data coming into a
com port buffer

Format: ON COM(<n>) GOSUB <line>
<n> is the port number (1 or 2).

<line> is the line number of the first statement of the interrupt
service routine.

Example: ON COM1 GOSUB 1000

Remarks:

This statement is not valid unless it is executed after the specified port has been
opened.

An interrupt service routine cannot be interrupted by another interrupt. If a new
interrupt occurs during processing of a previous interrupt, branching to handle
the new interrupt will not take place until after the RETURN statement of the first
interrupt service routine is executed. This means that, depending on the branch
timing, nothing may be in the buffer when execution branches to the interrupt
routine. It is therefore necessary to check whether data is in the buffer by execut-
ing the LOC or EOF Command at the beginning of the interrupt routine.

All subroutines must end with a RETURN statement.

If a statement specified by the branch line number is non-executable, execution
will begin with the first executable statement following the branch line number.

41

Commands, Statements, and Functions Section 4-2

ON ERROR Statement

If zero is specified as the branch line number, it is assumed that the COM OFF
statement has been executed.

If the port number is omitted, port 1 is selected.

The ON COM GOTO statement is enabled with the COM ON statement and dis-
abled with the COM OFF statement.

Program Example:
10 OPEN #1, “COMU:(40)"

20 ON COM GOSUB 100
30 COMON
40 PC READ “214”;A,B
50 PRINTA,B
60 GOTO 30
100 IF LOC (1)=0 THEN 120
110 PRINT INPUTS$ (LOC(1),#1)
120 RETURN
Program Remarks:
If an interrupt from port 1 is detected, the buffer contents are displayed.

Purpose: To enable error processing and to specify the first line number of
the error handling routine

Format: ON ERROR GOTO <line>

<line> is any valid line number.

Remarks:

When an error occurs, this statement directs execution to the proper error handl-
ing routine. When an error is detected, the error number is assigned to the vari-
able ERR and the line number where the error occurred is assigned to ERL.
To disable error processing, execute ON ERROR GOTO 0. Subsequent errors
will cause an error message to be printed and execution to be halted.

If an error occurs during execution of an error handling subroutine, a BASIC er-
ror message will be printed and execution terminated.

Refer to the discussion of the RESUME Command, and the ERR and ERL func-
tions.

ON GOSUB and ON GOTO Statements

42

Purpose: To branch to one of several specified line numbers, depending
on the resultant evaluation of a numeric or logical expression

Format: ON <expression> GOTO <list>

ON <expression> GOSUB <«list>

<expression> is any valid expression.

<list> is a list of valid line numbers separated by comas.
Example: ON X-2 GOSUB 50,100,150

Remarks:

The value of <expression> determines which line number in the list will be used
for branching. For example, if the result is 2, then the second line number in the
list will be chosen for branching. If the resultant value is not an integer, the frac-
tional part is rounded off.

In the ON...GOSUB statement, each line number in the list must be the first line
number of a subroutine.

Commands, Statements, and Functions Section 4-2

ON KEY GOSUB Statement

ON KEY GOTO Statement

If the value of <expression> is zero or greater than the number of items in the list,
execution continues with the next executable statement. If the value of <expres-
sion> is negative or greater than 255, an error message will be displayed.

Purpose: Defines an interrupt service subroutine to handle specific key-
board input

Format: ON KEY(<n>) GOSUB <line>

<n> is a numeric expression from one to eight indicating a spe-
cific key.

Example: ON KEY 1 GOSUB 1000

Remarks:

An interrupt service routine cannot be interrupted by another interrupt. If a new
interrupt occurs during processing of a previous interrupt, branching to handle
the new interrupt will not take place until after the RETURN statement of the first
interrupt service routine is executed.

If a statement specified by the branch line number is non-executable, execution
will begin with the first executable statement following the branch line number.

If zero is specified as the branch line number, it is assumed that the KEY OFF
statement has been executed.

If the port number is omitted, port 1 is selected.
There should be only one ON KEY GOTO statement for each key number.

Key input will not be processed during execution of an assembly language pro-
gram.

The ON KEY GOSUB statement is enabled with the KEY ON statement and dis-
abled with the KEY OFF statement.

Program Example:
10 OPEN #1,“TERM:(42)"

20 ONKEY 1 GOSUB 100
30 ONKEY 2 GOSUB 200
40 ONKEY 3 GOSUB 300

50 KEY ON
100 PRINTA
110 RETURN
200 PRINTB
210 RETURN
300 PRINTC

310 RETURN

Program Remarks:

“A”, “B”, and “C” are displayed by pressing keys 1, 2, and 3, respectively. To can-
cel the specification, write 0 as the branch destination.

Purpose: To branch program execution to a specified line number in re-
sponse to a specific key input

Format: ON KEY<n> GOTO <line>
<n> is an integer in the range of 1 to 8.

<line> is any valid line number.

43

Commands, Statements, and Functions Section 4-2

ON PC ... GOSUB Statement

44

Example: ONKEY 1 GOTO 1000

Remarks:

If a statement specified by the branch line number is non-executable, execution
will begin with the first executable statement following the branch line number.

If zero is specified as the branch line number, it is assumed that the KEY OFF
statement has been executed.

If the port number is omitted, port 1 is selected.
There should be only one ON KEY GOTO statement for each key number.

Key input will not be processed during execution of an assembly language pro-
gram.

The ON KEY GOTO statement is enabled with the KEY ON statement and dis-
abled with the KEY OFF statement.

Program Example:
10 OPEN #1,“TERM:(42)"
20 ONKEY 1 GOTO 100
30 ONKEY 2 GOTO 200
40 ONKEY 3 GOTO 300
50 KEY ON

100 PRINT “A”

110 GOTO 500

200 PRINT “B”

210 GOTO 5000

300 PRINT “C”

500 {cont. processing}

Program Remarks:

“A”, “B”, and “C” are displayed by pressing keys 1, 2, and 3, respectively. To can-
cel the specification, write 0 as the branch destination.

Purpose: Defines an interrupt service routine invoked by the PC
Format: ON PC [<int num>] GOSUB <line>

<int num> is an integer from 1 to 15.

<line> is a valid line number.
Example: ON PC 3 GOSUB 1000

Remarks:

In four-word mode, the interrupt source number is indicated with bits 04 to 07 (1
to F in hexadecimal) of word n+1. In two-word mode, the interrupt source num-
ber is indicated with bits 00 to 07 of word n.

An interrupt routine invoked by the ON PC statement cannot be interrupted by
another interrupt. If a new interrupt occurs during processing of a previous inter-
rupt, branching to handle the new interrupt will not take place until after the RE-
TURN statement of the first interrupt service routine is executed.

If the statement specified by the branch line number is non-executable, execu-
tion will begin with the first executable statement following the branch line num-
ber.

If zero is specified as the branch line number, it is assumed that the KEY OFF
statement has been executed.

If the interrupt number is omitted, the same branch destination is assumed for all
interrupt numbers, 1 to 15.

Commands, Statements, and Functions Section 4-2

PC GET Statement

PC ... ON/STOP Statements

The ON PC GOSUB statement is enabled with the PC ON statement and dis-
abled with the PC OFF statement.

Program Example:
10 ON PC 1 GOSUB 100

20 ONPC 2 GOSUB 200
30 PCON
40 GOTO 40
100 PC READ “H4,1271, J
110 PRINTI, J
120 RETURN
200 INPUT A
210 PC READ “H4,12”K,L
220 PC WRITE “14”; A
230 RETURN
Program Remarks:
When interrupt 1 is invoked, program execution branches to statement 100,
reads two words of data from the PC, and displays them on the CRT.
When interrupt 2 is invoked, program execution branches to statement 200 and
writes data entered through the keyboard to the PC.

Purpose: To read output data from the PC
Format: PC GET <var 1>[,<var 2>]
Example: PC GET I,J

Remarks:

In two-word mode, bits 0 to 7 of word (n) are read and assigned to <var 1>. Bits 8
to 15 of data word (n) are read and assigned to <var 2>. In four-word mode, the
same bits are assigned from word (n+1).

The ASCII Unit converts the hexadecimal data into decimal data (0 to 255) be-
fore assigning it to the specified variables.

Purpose: To enable or stop a PC interrupt defined with an ON PC GOSUB
statement

Format: PC [<num>] ON/STOP
<num> is a specific interrupt number.

Remarks:

The PC ON statement enables an interrupt defined by the ON PC GOSUB state-
ment.

After this statement has been executed, each PC interrupt will cause program
execution to branch to a routine defined by the associated ON PC GOSUB state-
ment.

The PC STOP statement disables PC interrupts from branching program execu-
tion. However, if the PC ON statement is subsequently executed, execution will
branch to the specified interrupt service routine based on the “STOPPED” inter-
rupt.

The PC ON/STOP statements can be executed only after the ON PC GOSUB
statement has been executed.

If there is more than one interrupt routine in the program the specific interrupt
number should be specified. If there are two or more routines and the interrupt

45

Commands, Statements, and Functions Section 4-2

PC PUT Statement

PC READ Statement

46

number is not specified, the routine closest to the end of the program or at the
highest line number will be executed regardless of which interrupt is invoked.

After the ON PC GOSUB statement is executed, PC ON becomes valid. Refer to
the following example.

Program Example:
10 ONPC GOSUB 100
20 PC ON
30 GOTO 30
100 PC READ “3I2”; A, B, C
110 PRINT A, B, C
120 RETURN

Purpose: To write data to the PC’s ASCII Unit Data Memory Area
Format: PC PUT <num exp>

<num exp> is a valid numeric expression between 0 and 255.
Examples: PC PUT |

PC PUT 123

Remarks:

In two-word mode, data is written to bits 8 to 15 of word n+1. In four-word mode,
data is written to bits 8 to 15 of word n+3.

If the value of the numeric expression is not an integer, the INT function is inter-
nally executed to round it off. If the value of the numeric expression is negative or
greater than 255, zero is written to the PC.

Purpose: To read data from the PC

Format: PC READ “<format>[,<format>,<format>, ...]”;
<vari>[,<var2>]...

<format> specifies how the data will be read. For specific format
information, refer to Appendix C.

Examples:

PC READ “2H1, A3, 14, 02”; X, Y, A%, |, J

Remarks:

When the PC has written the data to the ASCII Unit, the PC READ statement is
executed.

If the PC has not written the data to the ASCII Unit, the ASCII Unit will wait for the
data, and the PC READ statement is not executed until the data comes.

If the number of data items output by the PC is greater than that specified by the
format parameters, the excess part of the output data will be ignored.

The maximum number of data items that can be transferred with one READ
statement specification is 255 in the S or A formats.

If an amount of memory greater than the actual memory area is specified by the
READ statement, a FORMAT ERROR will occur.

The PC READ statement’s formatting parameters can be assigned to a single
character variable and that variable may then be used in the PC READ state-
ment.

Refer to Appendix C for details on READ and WRITE statement formatting.
Example:

A$ = “2H1, A3, 14, O2”

PC READ A$;X, Y, AS$, I, J

Commands, Statements, and Functions Section 4-2

PC WRITE Statement

POKE Statement

PRINT Statement

Note

Purpose: To write data to the PC

Format: PC WRITE “<format>[,<format> ...]";<exp1>
[,<exp2>, ...]

For parameter definitions, refer to the PC READ instruction.

Examples:
PC WRITE “H4, A2, 13, 04”; 1234, “AB”, K, L
Remarks:

If the data of the previous PC WRITE statement has not been read by the PC, the
next PC WRITE statement cannot be executed until the previous one is com-
pleted.

The maximum number of data items that can be transferred with one WRITE
statement specification is 255 in the S or A formats.

If an amount of memory greater than the actual memory area is specified by the
WRITE instruction, a FORMAT ERROR will occur.

If the value of <exp> is not an integer, the INF function is internally executed to
round it off.

Single-precision and double-precision numeric expressions are internally con-
verted into integer expressions.

The PC WRITE statement’s formatting parameters can be assigned to a single
character variable and that variable may then be used in the PC WRITE state-
ment.

Example:
A$=“H4, A2, I3, O4”
PC WRITE A$; 1234, “AB”, K, L

Purpose: To write one byte to a specified memory address

Format: POKE <address>,<data>
<address> is the memory location where data will be POKEGd.
<data> is an integer from 0 to 255.

Example: POKE &H2000,&H39

Remarks:

The address must be a 2-byte integer ranging from 0 to 65535 (&HFFFF). Do not
write data to addresses &H0000 to &H1FFF, and &H8000 to &HFFFF; they are
reserved for system use.

Purpose: To output data and text to the screen or printer
Format: PRINT [#<port>,] [<list of exp>][;]
LPRINT

<port> is an integer (1 or 2).

<list of exp> can be numeric or character expressions. Character
expressions should be enclosed in double quotation marks.

Example: PRINT #1,A,B$;“BASIC”

Remarks:

The list of expressions must be separated by comas, semicolons, or blanks.
When the expressions are separated with blanks or semicolons, the next value

47

Commands, Statements, and Functions Section 4-2

LPRINT USING Statement

RANDOM Statement

48

is output immediately after the preceding value. When the expressions are sep-
arated with comas, the values are output at intervals of nine characters.

If the list of expressions is not terminated with a semicolon, a carriage return is
appended after the last expression.

If numeric expressions are used, a blank is output before and after the resultant
value. The blank before the value is used for a minus sign, if one is required.

If <list of exp> is omitted, execution of this statement causes a carriage return to
be output.

If the port specification is omitted, port 1 is assumed for the PRINT statement,
and port 2 for the LPRINT statement.

The LPRINT statement outputs data under control of the device connected to
port 2, irrespective of the OPEN statement directives.

Purpose: To output strings or numbers according to a specified format
Format: PRINT [#<port>,] USING “<format>"; <list of exp>

Example: PRINT #1, USING “####,# \\###”;A;B

Remarks:

The following characters control the format of the output:
! Outputs the first character only.

& & Outputs the characters enclosed by &.
@ Outputs the corresponding character string.
Outputs the corresponding character string.

Inserts a decimal point at any desired place.
+ Places a plus sign before and after a numeric value.

- Places a minus sign before and after a numeric value. (Write this
character at the end of the format character string.)

* %

Places two asterisks in the blank, upper digit positions of a nu-

meric value.

\\ Places one \ in the blank digit position immediately before a nu-
meric value.

**\ Combines the functions of ** and \\.

Delimits an integer at every third digit position from the right.

MM Indicates the output in exponential format (E+nn). Add this char-
acter after #.

”9

is output before the numeric value if the specified number of dig-
its is too great.

If the port number is omitted, port 1 is assumed for the PRINT USING statement
and port 2 for the LPRINT USING statement.

The LPRINT statement outputs data under control of the peripheral device con-
nected to port 2 irrespective of the OPEN statement directives.

Purpose: To reseed the random number generator

Format: RANDOM [<exp>]

<exp> is a single or double-precision integer that is used as the
random number seed.

Commands, Statements, and Functions Section 4-2

READ Statement

REM Statement

RESTORE Statement

Example: RANDOM 5649

Remarks:

The value of <exp> should be from -32768 to 32767. If the expression is omitted,
a message requesting the random number seed will be displayed.

If the random number generator is not reseeded, the RND function returns the
same sequence of random numbers each time the program is run. To change
the sequence of random numbers each time the program is RUN, place a RAN-
DOM statement at the beginning of the program and change the seed with each
RUN.

For more information, refer to the explanation of RND.

Purpose: To read values from a DATA statement and assign them to the
specified variables

Format: READ <list of var>
Example: READ A,B$

Remarks:

A read statement must always be used in conjunction with a DATA statement.
READ statements assign variables to DATA statement values on a one-to-one
basis. READ statement variables may be numeric or string, and the values read
must be the same type as the corresponding variable. If they do not agree, a syn-
tax error will occur.

A single READ statement may access one or more DATA statements (they will
be accessed in order), or several READ statements may access the same DATA
statement.

If the number of variables in <list of var> exceeds the number of elements in the
DATA statement(s), an error message will be displayed. If the number of vari-
ables specified is fewer than the number of elements in the DATA statement(s),
subsequent READ statements will begin reading data at the first unread ele-
ment. If there are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the beginning, use the RESTORE statement.

Purpose: To insert non-executable comments in a program
Format: REM <remark>
<remark> text does not need to be enclosed in quotes.

Example: REM SAMPLE PROGRAM

Remarks:

The REM statement is used to provide titles to programs and to insert helpful
comments to be used during program debugging or modification.

Remarks may be added to the end of a line by preceding the remark with a single
quotation mark instead of REM.

Do not use a REM statement in a DATA statement as it will be taken as legal
data.

Purpose: To allow DATA statements to be reread from a specified line
Format: RESTORE [<line>]
<line> should be the line number of a valid DATA statement.

Example: RESTORE 1000

49

Commands, Statements, and Functions Section 4-2

RESUME Statement

STOP Statement

WAIT Statement

50

Remarks:

This statement causes the next READ statement to read the first element in the
first DATA statement that exists in the program. If <line> is specified, the next
READ statement accesses the first item in the specified DATA statement.

Purpose: To resume program execution after an error handling procedure
has been performed

Formats: RESUME [0]: execution resumes at the statement which caused
the error.

RESUME NEXT: execution resumes at the statement immediate-
ly following the one which caused the error.

RESUME <line>: execution resumes at <line>.
Example: RESUME 100

Remarks: Any one of the above formats may be used.

Purpose: To terminate program execution and return to the BASIC com-
mand level

Format: STOP

Remarks:

Execution of this statement causes the message “BREAK IN xxxx” to be dis-
played and the ASCII Unit to return to the command level.

The ports will not be closed.
Program execution can be resumed with the CONT command.

Purpose: Sets a time limit for the execution of a specific statement
Format: WAIT “<wait time>"[,<line number>]

<wait time> is the allowable time for the monitored statement to
be executed.

<line number> is any valid line number.
Example: WAIT “10:30.5”,100

Remarks:

The delay time is set in the form MM.SS.F, where:
MM is the number of minutes - up to 59
SS is the number of seconds
F is tenths of seconds.

The statement immediately following the WAIT statement is the monitored state-
ment. If execution of this statement is not completed within the set wait time, pro-
gram execution will branch to <line number>.

Interrupts invoked by the ON COM, ON KEY, ON PC, or ON ERROR statements
will not be recognized until after the WAIT statement or the monitored statement
has been processed.

The WAIT statement can monitor the following statements:

INPUT, INPUT$, LINE INPUT, PC READ, PC WRITE, PRINT, LPRINT, PRINT
USING, LPRINT USING

If a statement other than one of those listed above is specified to be monitored by
a WAIT statement, and if execution of that statement is not completed within the
set time of the WAIT statement, an error will occur.

Commands, Statements, and Functions Section 4-2

Program Example:
10 WAIT “10.0”, 100

20 PC READ “314”; A, B, C,
30 PRINTA,B,C

40 END
100 PRINT “PC ERR”
110 GOTO 40

Program Remarks:

This example will display the message “PC ERR” if the PC READ statement is
not executed within 10 seconds.

4-2-4 Device Control Statements

CLOSE Statement

CLS Statement

OPEN Statement

This section describes statements that control hardware and communications.

Purpose: To close a port
Format: CLOSE [#<port>]

<port> is an integer (1 or 2).
Remarks:

If the port number is omitted, both ports will be closed.

Once the port has been closed, it cannot be used for data transfer until it is
opened again.

Be sure to execute the CLOSE statement to correctly end the output process.
CLOSE dumps any data remaining in the buffer from output operations. It does
not dump data from input operations.

To turn OFF the error indicators at Port 1 and Port 2 or error bits that are ON due
to a transmission error or reception buffer overflow, execute the CLOSE state-
ment.

The END statement and the NEW command automatically close the ports, but
the STOP statement does not.

Purpose: To clear the screen
Format: CLS [#<port>]
<port> is an integer (1 or 2).

Remarks:

This statement clears the screen and moves the cursor to the home position. If
the port number is omitted, port 1 is assumed.

Purpose: To allow input/output operations to take place through the speci-
fied port

Format: OPEN #<port>, “<device name>:[(<com spec. or vsI>)]”
<port> is an integer (1 or 2).
<device name> identifies the device.
<com spec> stands for the communication specifications.
<vsl> stands for valid signal line.

Examples: OPEN #1,“KYBD:”
OPEN #2,“COMU:(14)"

51

Commands, Statements, and Functions Section 4-2

52

Note

The following three tables define the communication parameters for the OPEN
Statement.

Peripheral Device Name Output from Input to ASCII
ASCII Unit Unit
Terminal TERM: YES YES
Keyboard KYBD: NO YES
Display SCRN: YES NO
Printer LPRT: YES NO
RS-232C device COMU: YES YES
TERM cannot be used with port 2.
Communication | Character Length Parity Stop Bit
Specifications
0 7 bits Even 2 bits
1 7 bits Odd 2 bits
2 7 bits Even 1 bit
3 7 bits Odd 1 bit
4 8 bits None 2 bits
5 8 bits None 1 bit
6 8 bits Even 1 bit
7 8 bits Odd 1 bit
Signal Line CTS DSR RTS XON / XOFF
0 Valid Valid Valid Invalid
1 Valid Valid Invalid
2 Valid Invalid Valid
3 Valid Invalid Invalid
4 Invalid Valid Valid
5 Invalid Valid Invalid
6 Invalid Invalid Valid
7 Invalid Invalid Invalid
8 Valid Valid Valid Valid
9 Valid Valid Invalid
A Valid Invalid Valid
B Valid Invalid Invalid
C Invalid Valid Valid
D Invalid Valid Invalid
E Invalid Invalid Valid
F Invalid Invalid Invalid

Note To make the CTS signal invalid at port 2, pull the CTS line high or connect it to the

RTS line.

When the RTS is specified to be ON (valid), the RTS signal goes high when the
port is opened and remains high until the port is closed. When the RTS signal is
specified to be OFF (invalid), the RTS signal remains low unless an 1/O state-
ment such as PRINT or INPUT is executed.

If XON is designated, the XOFF code will be transmitted and the ASCII Unit will
request the interruption of transmission when the buffer is 3/4 full at the time of
data reception. The XON code will be transmitted and the ASCII Unit will request
the restart of transmission if the buffer becomes 1/4 full. Data transmission will
be interrupted if the XOFF code is received and data transmission will restart
when the XON code is received. If XOFF is designated, control is not possible.
This means, if the buffer is full, no more data can be received.

Commands, Statements, and Functions

Section 4-2

If the communication specification and the valid signal line are omitted, their de-

faults are:
Peripheral Device Communication Valid Signal Line
Conditions
Terminal 4 3
Keyboard 4 3
Display 4 3
RS-232C device 4 3
Printer 4 3

Ports already open cannot be opened again. When the OPEN and CLOSE
statements are used, port 1 is assumed to be for a terminal and port 2 is as-
sumed to be for a printer. Port 2 cannot be selected for a terminal.

I/0O statements specifying #<port> cannot be used to transfer data through a port
that has not been opened with the OPEN statement. To input/output data in the
case where the OPEN statement has not been executed, use the 1/O statements
without the #<port> specification.

The following two tables illustrate peripheral device output levels during execu-
tion of the OPEN statement.

Device When Opened During Operation
RTS DTR RTS DTR
TERM LOW HIGH HIGH No change
SCRN LOW LOW HIGH No change
KEYB LOW HIGH HIGH No change
CcOomMU LOW HIGH HIGH No change
LPRT LOW LOW HIGH No change
Device When Closed
RTS DTR
1 LOW HIGH
2 LOW LOW

Note The default selection for the ports is as follows:

Port 1: Terminal device
Port 2: Printer

The following table presents the output control codes for the terminal, printer,
and COMU device.

SCRN TERM

Clears the screen buffer when code &HOC (CLR) is output.The column position is set to O (i.e., the
leftmost position) when code &HOA (LF), &HOD (CR), &HOB (HOME), or &H08 (BS) is output. The
cursor is moved as specified on the screen when code &HO08 (BS), &H1C (->), or &H1D (<-) is
output. Codes &HO00 to &HO09 and &HOE to &H1B are ignored (no output) at Port 1 but are output at
Port 2.

When Closed: Nothing is executed.

LPRT

Set the column position to 0O (i.e., the leftmost position) when code &HOA, &HOD, &HOB, or &HOC is
output. Characters exceeding 80th character are output with code &HOA (LF) appended.

When Closed: If characters (80 characters or less) remain in the buffer, they are output along with
&HOA (LF).

CcomMuU

If characters are input to the buffer, they are output.

When Closed: If characters remain in the buffer, they are output.

53

Commands, Statements, and Functions

Section 4-2

4-2-5 Arithmetic Operation Functions

ABS Function

Purpose: To return the absolute value of the numeric expression specified
by the argument
Format: ABS(<x>)
Example: A =ABS (-1.5)
ACOS Function
Purpose: To return the arc cosine of the numeric expression given by the
argument
Format: ACOS(<x>)
<x> is a number in the range of -1 to 1.
Example: A =ACOS (1)
Remarks: The arc cosine is given in radian units in the range of 0 to pi.
ASIN Function
Purpose: To return the arc sine of the value given by the argument
Format: ASIN(<x>)
<x> is a number in the range of -1 to 1.
Example: A =ASIN (1)
Remarks: The arc sine is given in radian units in the range of -pi/2 to pi/2.
ATN Function
Purpose: To return the arc tangent of the value given by the argument
Format: ATN(<x>)
<x> is a number in the range of -1 to 1.
Example: A=ATN (1)
Remarks: The arc tangent is given in radian units in the range of -pi/2 to
pi/2.
CDBL Function
Purpose: To convert a single-precision numeric value into double-precision
Format: CDBL(<x>)
Example: CDBL (2/3)
CINT Function
Purpose: To round off a numeric value at the decimal point and convert it
into an integer
Format: CINT(<x>)
Example: A = CINT(B#)
COS Function
Purpose: To return the cosine of the numeric value given by the argument
Format: COS(<x>)
<x> is an expression in radian units.
Example: A = COS(pi/2)

54

Commands, Statements, and Functions Section 4-2

CSNG Function

FIX Function

INT Function

LOG Function

RND Function

SGN Function

Purpose: To convert a numeric value into a single-precision real number
Format: CSNG(<x>)
Example: B = CSNG(C#)

Purpose: To return the integer part of the expression specified by the argu-
ment

Format: FIX(<x>)
Example: A =FIX(B/3)

Remarks: If the value of the argument is negative, this function returns a
different value than the INF function returns.

Purpose: To return the truncated integer of a numeric value
Format: INT(<x>)
Example: A =INT(B)

Remarks: Returns the largest integer value less than or equal to the value
specified by the argument.
If the value of the argument is negative, this function returns a
different value than the FIX function returns.

Purpose: To return the natural logarithm of the argument
Format: LOG(<x>)
<x> must be greater than O.

Example: A =LOG(5)

Purpose: To return a random number between 0 and 1.
Format: RND [<x>]

Example: A =RND(1)

Remarks:

If <x> is negative, a new random number is generated.

If <x> is omitted, or if it is positive, the next random number of the sequence is
generated.

If <x> is 0, the last generated random number is repeated.
The sequence can be changed by executing the RANDOM statement.

Purpose: To return the sign of an argument
Format: SIGN(<x>)

Example: B = SGN(A)

Remarks:

If the value of <x> is positive, SGN returns 1.
If the value of <x> is negative, SGN returns -1.
If the the value of <x> is 0, SGN returns 0.

55

Commands, Statements, and Functions Section 4-2

SIN Function

TAN Function

Purpose: To return the sine of the numeric value given by the argument
Format: SIN(<x>)

<x> is an expression in radian units.

Example: A = SIN(pi)

Purpose: To return the tangent of the numeric value given by the argument
Format: TAN(<x>)
<x> is an expression in radian units.

Example: A = TAN(3.141592/2)

4-2-6 Character String Functions

ASC Function

CHRS$ Function

HEXS$ Function

INSTR Function

56

Purpose: To return the ASCII character code of the first character of the
given string

Format: ASC(<x$>)

Example: A =ASC(A$)

Remarks:

An empty string cannot be specified. The word R$ function performs the inverse

operation.

Purpose: To return a character corresponding to the specified character
code

Format: CHR$(<i>)

Example: A$ = word R$(&H41)

Remarks:

<i> must be from 0 to 255. If <i> is a real number, it will be rounded off and con-
verted into an integer. The ASC function performs the inverse operation.

Purpose: To return a string which represents the hexadecimal value of the
decimal argument

Format: HEX$(<x>)

Example: A$ =HEX$(52)

Remarks: If the value of the decimal number includes a decimal point, the
INF function is internally executed to round it off to an integer.

Purpose: To return the position of the first occurrence of string <y$> within
string <$x>

Format: INSTR([<i>,]<x$>,<y$>)

<i> is the position from where the search starts. <i> must be be-
tween one and 255.

<x$> is the string to be searched.

<y$> is the desired string.

Commands, Statements, and Functions Section 4-2

Example: A =INSTR(5,B$,“BASIC”)

Remarks: If <i> is omitted, the search begins with the first character in
<x$>. If the data cannot be found, 0 is returned as the function
value. If <y$> is an empty string, INSTR returns <i> or 1.

LEFTS$ Function
Purpose: To return the specified number of characters beginning from the

leftmost character of the character string
Format: LEFT$(<x$>,<i>)

<x$> is the string to be searched.

<i> is the number of characters to be returned.
Example: A$=LEFT$(B$,5)

Remarks: <i> must be an integer from 0 to 255. If <i> is 0, an empty string
is returned as the function value. If <i> is greater than the num-
ber of characters in <x$>, the entire character string is returned.

LEN Function
Purpose: To return the number of characters in a character string

Format: LEN(<x$>)

Example: A =LEN(A$)

Remarks: A value of 0 is returned if the “character expression” is an empty
string.

MID$ Function

Purpose: To return the requested part of a given string

Format: MID$(<x$>,<i>[,<j>])
<x$> is the given string.
<i> is the position of the first character to be returned.
<j> is the number of characters to be returned.

Example:B$ = MID$(A$,2,5)

Remarks:
<i> must be from 1 to 255.
<j> must be from 0 to 255.

If <j> is O, or if the value of the specified character position (<i>) is greater than
the number of characters in the character expression (x$), an empty string is re-
turned.

If <j> is omitted, or if <j> exceeds the number of characters to the right of the
specified position (<i>) in the character expression, all the characters to the right
are returned.

OCT$ Function
Purpose: To convert the specified decimal number into an octal character

string
Format: OCT$(<x>)
<x> is a numeric expression in the range of -32768 to 32767.

Example: A$=OCT$(B)

57

Commands, Statements, and Functions Section 4-2

RIGHT$ Function

SPACES$ Function

STRS$ Function

STRING$ Function

TAB Function

58

Remarks:

If the value of <x> includes a decimal point, the INT function is internally ex-
ecuted to round it off.

Purpose: To return the specified number of characters from the rightmost
character of the character string

Format: RIGHT$(<x$>,<i>)
<x$> is the string to be searched.
<i> is the number of characters to be returned.

Example: A$ = RIGHT$(B$,5)

Remarks:
<i> must be an integer from 0 to 255. If <i> is 0, an empty string is returned as the

function value. If <i> is greater than the number of characters in <x$>, the entire
character string is returned.
Purpose: To return a string of spaces of the specified length
Format: SPACES$(<x>)
<x> is the number of spaces.

Example: A$ = “CF"+SPACES$(5)+“BASIC”

Remarks:
<x> must be from 0 to 255. If <x> is not an integer, it will be rounded off. If 0 is

specified, an empty character string is returned.

Purpose: Converts the specified numeric value into a character string
Format: STR$(<x>)

Example: B$ = “A"+STR$(123)

Remarks: The VAL function performs the inverse operation.

Purpose: To return a character string of the specified character and length
Formats: STRINGS$(<i>,<j>)

STRINGS$(<i>,<x$>)

<i> is the number of characters to be returned.

<j> is the ASCII code of some character.

<x$> is a given string.
Example: A$ = STRING$(10,“A”)

Remarks:

<i> and <j> must be from 0 to 255.

An empty string is returned if the <i> is 0.

If the <x$> is made up of two or more characters, only the first character is used.

Purpose: To move the cursor to a specific position on the terminal display

Format: TAB(<i>)

Commands, Statements, and Functions Section 4-2

VAL Function

<i> is the cursor position counting from the leftmost side of the
display.

Example: PRINT “CF” TAB (10) “BASIC”
Remarks:

The “column position” must be from 1 to 255.

If the current print position is already beyond <i>, the cursor moves to the <i>th
position on the next line. TAB is only valid for the PRINT and LPRINT state-
ments.

Purpose: To convert a character string into a numeric value
Format: VAL(<x$>)
Example: A =VAL(A$)

Remarks:

The VAL function also strips leading blanks, tabs, and linefeeds from the argu-
ment string. If the first character of <x$> is not numeric, zero is returned.

4-2-7 Special Functions

DATES$ Function

DAY Function

Purpose: To set or display the current date
Format: As a statement: DATES = <x$>
As a variable: <y$> = DATE$
<x$>: the date in one of the following formats:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy

mm/dd/yyyy
<y$>: A ten character string in mm-dd-yyyy format:

mm: two digit value for the month (01-12)

dd: two digit value for the day (01-31)

yy: two digit value for the year

yyyy: for digit value for the year
Example: DATES$ = “89/05/23"

Remarks:

If DATES is on the right side of the assignment statement or in a PRINT state-
ment, the current date is assigned or printed, respectively. If DATES is on the left
side of the assignment, the right side of the assignment statement becomes the
new current date. If any of the values are out of range or are missing, an error
message will be displayed.

Purpose: To give or set the current day of the week

Format: DAY = <num>
| = DAY
Remarks:

In the first format, DAY returns a number between 0 and 6, corresponding to
Sunday through Saturday. In the second format, the day of the week is assigned
to DAY.

59

Commands, Statements, and Functions Section 4-2

EOF Function

ERR and ERL Variables

FRE Function

INKEY$ Function

INPUTS Function

60

Purpose: To check whether the specified port buffer is empty
Format: EOF (<port#>)
Example: IF EOF (2) THEN CLOSE#1 ELSE GOTO 100

Remarks:

This function returns true (-1) if the specified port is empty. If not, it returns false
(0). Note that the port specified by <port#> must already be open and in the input
mode.

Purpose: To return the error code and the location (line number) of the

error
Format: x = ERL
y = ERR

Remarks:

When an error occurs, the error code is assigned to the variable ERR and the
statement number is assigned to ERL.

If the statement that caused the error was executed in direct mode, statement
number 65535 is assigned to ERL.

ERL and ERR can be used in error handling routines to control the execution
flow of the program.

Purpose: To return the amount of unused memory
Format: FRE(0)

FRE(<x$>)
Example: PRINT FRE (0)

Remarks:

If the argument is numeric, the number of unused bytes in the program area is
given.

If the argument is a character expression, the number of unused bytes in the
character variable area is given.

When this instruction is executed, the unnecessary parameter area will be filled.

To avoid long interruption times, execute this instruction intermittently so that
each interruption will be a short one.

Purpose: To return the character code of the key being pressed
Format: INKEY$ [#<port>]
Example: A$ =INKEY$

Remarks:

A null string is returned if no key is being pressed. Any key input other than
CTRL+X is valid. Port 1 is the default port.

Purpose: To Read a string of characters from the keyboard or from a pe-
ripheral device

Format: INPUT$ (<num>[,#<port>])

<num> is the number of characters to be input. <num> must be
from 1 to 255.

Commands, Statements, and Functions Section 4-2

LOC Function

PEEK Function

TIMES$ Function

<port> is the port number (1 or 2).
Example: A$ = INPUT$(10,#1)

Remarks:

All characters except CTRL+X can be read, including CR and LF: CR and LF
cannot be read with the LINE INPUT statement.

The BASIC LED indicator on the ASCII Unit will blink indicating that the unit is
waiting for input. It will continue blinking until the specified number of characters
is entered.

Example Program:
10 CLS

20 A$=INPUTS (1)
30 A$=HEX$ (ASC(A$))

40 PRINT A$
50 GOTO 20
Remarks:

displays key character codes.

Purpose: To return the number of data items in the specified port buffer.
Format: x = LOC(<port#>)
Example: A =LOC(2)

Remarks:

The port specified must already be open and in input mode. The number of data
items in the buffer of the specified port is given in byte units.

Purpose: To read the contents of a specified memory address

Format: PEEK(<I>)

<I> is the memory location and must be in the range of 0 to
65535 (&HFFFF).

Example: A = PEEK(&H3000)
Remarks:

If the specified address is not an integer, it is converted into one.

Do not try to read reserved system addresses &H0000 to &H1FFF and &H8000
to HFFFF.

Purpose: Sets or gives the time
Format: TIMES$ = <x$>

<y$> = TIMES

<x$> is a string expression indicating the time to be set. The fol-
lowing formats may be used:

hh: sets the hour (minutes and seconds 00)
hh:mm: sets the hours and minutes (seconds 00)

hh:mm:ss: sets the hours, minutes, and seconds

<y$> is a string variable to which the current value of the time is
to be assigned.

61

Commands, Statements, and Functions Section 4-2

USR Function

62

Example: TIMES$ = “09:10:00”
PRINT TIME$

Remarks:
In the form <y$> = TIMES$, TIMES$ returns an eight character string in the
form: hh:mm:ss. If <x$> is not a valid string, an error message will be displayed.

Purpose: To call a user-written assembly language program.
Format: USR [<number>](<argument>)[,W]

<number> is a digit from 1 to 9 that was previously assigned to
the given assembly program with the DEF USR statement.

<x> is an argument used to pass data from the BASIC program
to the assembly program.

Example: J=USR2(l),W

Remarks:

If <number> is omitted, the default value is zero.

If the W parameter in the USR statement is not specified then the watchdog timer
refresh will be performed as usual. If the W parameter is specified, then the user
must include a watchdog timer refresh routine in the assembly program.

The watchdog timer prevents the program from overrunning. When the set time
has run out, the ASCII Unit is reset, and the message “I/O ERR” is displayed on
the programming console of the PC.

By refreshing the watchdog timer before its set value is up, the program can be
continuously executed.

To refresh the watchdog timer in the assembly program, execute the following
two steps every 90 milliseconds when, W has been designated:

AIM #DF,03

OIM #20,03

The following table lists the Argument type and its corresponding Accumulator
code number.

Accumulator Argument Type
Value
2 Integer
3 Character
4 Single-precision, real number
5 Double-precision, real number

Index register X contains the memory address where the argument is stored.
The address differs as shown below depending on the type of the argument.

Commands, Statements, and Functions Section 4-2

Integer Type

Higher 8 bits

Lower 8 bits

Single-Precision, Real
Number Type

Character Type

Length of character string «— X

Address storing argument (higher)

Address storing argument (lower)

Double-Precision, Real
Number Type

Exponent

«— X Exponent «—X

Higher 8 bits of mantissa

(MSB is always 1.) (MSB is always 1.)
Higher 8 bits of mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

Lower 8 bits of mantissa

Sign (most significant bit)

Sign (most significant bit)

VARPTR Function

Program Example:
BASIC Program:
100 A$=&H1234

110 DEF USRO = &H2000
120 A =USER (A)
130 PRINT A

140 END

Assembly Language Program:
2000 PSHA

2001 PSHX

2002 LDD 2,X
2004 ADD #10
2007 STD2X

2009 PULX
2010 PULA
2011 RTS

Program Remarks:

When program execution branches to the assembly language routine, the TYPE
of <argument> is stored in the accumulator A, and the memory address where
the argument is stored is input to the index register X. The value of the argument
is stored in the accumulator D, to whose contents 10 will be added. The result of
the addition is written to the address of <argument>

Purpose: Returns the memory address of the variable argument

63

Commands, Statements, and Functions Section 4-2

64

Integer Type

Format: <x> = VARPTR(<variable>)
<variable> is a number, string, or array variable.

Example: B = VARPTR (A)

Remarks:

The VARPTR function returns the address of the first byte of data identified with
the variable. A value must be assigned to the variable prior to the call to VARPTR
or an error will result. Any type variable name may be used (numeric, string,
array).

Note that all simple variables should be assigned before calling VARPTR for an
array because addresses of arrays change whenever a new simple variable is
assigned.

VARPTR is used to obtain the address of a variable or array so that it may be
passed to an assembly language subroutine. A function call of the form
VARPTR(A(0)) is specified when passing an array, so that the lowest addressed
element of the array is returned.

The following figure illustrates the relationship between the variable type and the
address indicated by VARPTR.

Character Type

0010 Variable name length -1 0011 Variable name length -1

Variable name

U

Variable name

U
!
!

Higher 8 bits < Address | Length of character string < Address
Lower 8 bits Storage address of variable (MSB)
Storage address of variable (LSB)
Single-precision, Real Number Type Double-precision, Real Number Type
0100 Variable name length -1 1000 Variable name length -1

Variable name

Variable name

U
U
U

Exponent

< Address | Exponent < Address

Sign and higher 7 bits of mantissa Sign and higher 7 bits of mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

Lower 8 bits of mantissa

Commands, Statements, and Functions

Section 4-2

Integer Array Type Character Array Type
0010 Variable name length -1 0011 Variable name length -1
Variable name Variable name
Higher 8 bits of total data length Higher 8 bits of total data length
Lower 8 bits of total data length Lower 8 bits of total data length
Y U .] - - Y
Number of subscripts Number of subscripts (Dimension num-
(Dimension number of array) ber of array)
Size of subscript n (MSB) Size of subscript n (MSB)
Size of subscript n (LSB) Size of subscript n (LSB)
Subscript =~ = —_ _— Subscript
information -~ ~ informa-
tion
Size of subscript 2 (MSB) Size of subscript 2 (MSB)
Size of subscript 2 (LSB) Size of subscript 2 (LSB)
Size of subscript 1 (MSB) Size of subscript 1 (MSB)
]{ Size of subscript 1 (LSB) Size of subscript 1 (LSB) Y
-k Y U
Element data (0,0---0) (MSB) Address— Length of character string of element (0, 0--0))
- ’ —|¢<— Address
Element data (0,0---0) (LSB) | Storage address of element (0, 0--0) (MSB) _|
Element data (1,0--0) (MSB) < Address Storage address of element (0, 0--0) (LSB)
Element data (1,0---0) (LSB) Address— | Length of character string of element (1, 0--0)
A » Element data (2,0---0) (MSB) <— Address | Storage address of element (1, 0--0) (MSB) g‘:;[z?rl]
ctual data |- — — = .
Element data (2,0---0) (LSB) Storage address of element (1, 0--0) (LSB) formation
Address—s Length of character string of element (2, 0--0)
- - | Storage address of element 2 (MSB)
Storage address of element 2 (LSB)
Element data (a,b---x) (MSB) <— Address
v Element data (a,b---x) (LSB)
*Each element of array requires to be specified. =
Address— | Length of character string of element (a, b--x)
Element (a, b--X) The subscripts will be stored one | Storage address of element (3, b--x) (MSB) _
after another when they change. Storage address of element (a, b--x) (LSB)
A A
Subscript 3 . . I
. Each element of array requires specification.
Subscript 2
Subscript 1

Note The total number of bytes from the higher 8 bits of total data length (in the above
diagram) to element data (a,b---x) comprise the total length of the data.

65

SECTION 5
Assembly Programming

This section explains how to create, edit, transfer, and use an assembly language program. Assembly programs are faster and
use memory more efficiently than higher level programs such as BASIC. In certain situations it is advantageous to use assem-
bly routines instead of BASIC to perform specialized functions. An assembly routine can be called from the BASIC program
and used in much the same way as a BASIC subroutine.

Assembly programs are written, edited, and tested in what is called Monitor Mode. The monitor mode commands and exam-
ples of their use are presented in this section.

5-1 Assembly Language Programming
5-2 Terminology and Formatting
5-3 Monitor Mode Commands

67

Assembly Language Programming Section 5-1

5-1 Assembly Language Programming

Memory Area

Writing an Assembly
Program

Note

1,2, 3.

The Assembly Language
Program

68

The Hitachi HD6303X CPU is incorporated into the ASCII Unit. Mnemonics used
are those found in the HD6303X operation manual.

Special memory space for assembly language programs must be reserved with
the MSET command. When programming in assembly language, you cannot
use the BASIC program area to store the assembly program. The MSET com-
mand will move an existing BASIC program to another part of memory.

There are two ways to write an assembly language program:

¢ By using the monitor functions

e By directly writing the program to the memory using the POKE statement in
BASIC.

In most cases the first method is quicker and easier, however, the second meth-

od can be used to create short programs consisting of only a few steps.

Assembly language programs can be written to and read from RAM using the S
and L commands, respectively. They can also be written to or read from the EE-
PROM by using the SAVE and LOAD commands, respectively.

Addresses &H0000 to &H1FFF and &H8000 to &HFFFF are reserved for the
ASCII Unit operating system and must not be altered by the user.

When it is necessary to load or save data using a peripheral device other than
the input terminal connected to port 1, follow the peripheral data transfer proce-
dure described below.

1. Enter the command and key in a carriage return.

2. Disconnect the input terminal from port 1 and connect the peripheral device.
3. Press the START/STOP switch on the ASCII Unit to start data transfer.

4. Reconnect the input terminal and key in CTRL+x.

An assembly language program can be called from BASIC with the USR func-
tion:

USR [<number>][<argument>]

Before the USR function can be used, the DEF USR statement must be ex-
ecuted to reserve space for the assembly routine. When the USR function is ex-
ecuted, it calls the specified assembly routine and passes it an argument defined
in the BASIC program.

Variables other than the argument specified by the USR function can also be
passed to the assembly language program by using the VARPTR function.
The following arguments are passed to the assembly program:

Accumulator A contents: type of <argument>

Index register X contents: address of <argument>

The RTS command should be the last command of the assembly routine; it re-
turns execution back to the BASIC program.

The value of the stack pointer must not be altered by the assembly routine.
Therefore, the data should be pushed on the stack at the beginning of the routine
and then pulled off before executing the RTS command.

The assembly routine must store any data needed by the BASIC program in the
same address as that of the argument(s) passed by the USR or VARPTR func-
tions. Any data passed back to the BASIC program must be of the same TYPE
as the USR or VARPTR Function argument(s).

Do not disable any interrupts in the assembly language program.

It is recommended that the assembly language program be saved on an exter-
nal storage device or in the EEPROM for safety.

Monitor Mode Commands

Section 5-3

Monitor Mode

To enter monitor mode from BASIC mode, key in “mon” followed by a carriage
return when the message “READY” is displayed on the console:

READY
mon

*

wkyy

When in monitor mode a “*” is displayed on the left-side of the screen. Also,
when in monitor mode, the BASIC LED on the ASCII Unit front panel is unlit.

To return to BASIC mode, key in CTRL+B.

5-2 Terminology and Formatting

Terminology

Format

Start address refers to the first memory address where a group of values stored
in consecutive memory locations is stored: e.g., an array or a block of data.

For some monitor mode commands, indicating a start address is optional. For
these commands, the address immediately following the highest or largest ad-
dress used by the previous monitor command is taken to be the start address for
the current monitor command. To simplify following explanations, this address
will be called the base address.

An assembly language program can be edited, traced, and debugged in moni-
tor mode.

Note that the address held in the program counter is the base address used for
displaying and writing data when using the monitor commands.

The left and right arrow brackets “<” and “>” that have been previously used to
denote “user supplied text” in BASIC programming format statements are used
as actual operators in monitor mode. Therefore, whenever you see an arrow
bracket character in a monitor mode command, it must be entered as such.
The arrow character is used to delineate address ranges.

For monitor format statements only, left and right parentheses “()” will be used to
denote user supplied text.

Brackets “[]” still indicate optional entry. Pay close attention to periods “.”; they
must be entered as such whenever indicated.

The carriage return key is indicated with 1. Whenever this appears in a com-
mand, a carriage return must be entered by the user.

Do not insert spaces within a monitor command unless explicitly indi-
cated.

wkyy

character indi-

wky

In the following examples and also on the actual terminal the
cates that the user must enter a command. Lines of text that do not start with a
are generated by the computer in response to a user command.

5-3 Monitor Mode Commands

The following table lists the monitor mode commands with a short description of
each command’s function as well as the page number on which its detailed ex-
planation can be found.

To enter monitor mode, type mon and carriage return at the READY prompt.

Note Enter all command in all-caps while in monitor mode. Do not use lower case.

69

Monitor Mode Commands

Section 5-3

DUMP Command

70

1,2, 3.

Page Command Purpose
70 address Displays/changes memory contents at the specified
address.
71 M Transfers memory contents.
72 C Compares memory contents.
72 R Displays/changes register contents.
73 BP Sets/displays break points.
73 N Clears break points.
73 | Disassembler
74 S Outputs data to a port.
74 L Loads data from a port.
75 \Y Verifies data.
75 G Executes a program.
75 T Single-step program execution
76 Mini-assembler | Single-line assembly
76 Arithmetic Addition/subtraction of hexadecimal numbers.

Purpose: To display the contents of memory in hexadecimal
Format: [(display start address)].[(display end address)]

Remarks:

If the carriage return is input by itself, eight bytes of data, starting from the base
address will be displayed (refer to example 2.)

If an address is entered preceded by a dot, e.g., “.3000”, data stored in all the
addresses from the base address to the entered address will be displayed (refer
to examples 3 and 4.)

New data can be stored in memory as well; this data will overwrite existing data.
Input data must be in hexadecimal. Upper case characters must be used for the
alphanumeric values of A to F (hex). When the leftmost digit is a “0”, it can be
omitted.

There are two ways to poke data (directly store data to a specific address).
1. Specify the first address followed by a colon. Directly after the colon, enter

the data (1 or 2 byte hexadecimal values only) separated by spaces. Then
type a carriage return (refer to example 5.)

2. Enter a colon followed by the data and type a carriage return. Data will be
stored starting from the base address (refer to example 6.)

Examples:
1. Enter: *4000
Displayed: 4000-10
e Displays 1 byte of data from the specified address.
2. Enter: *
Displayed: *20 30 50 60 70 80 90 9F
e Displays 8 bytes of data, starting from the base address.
3. Enter: *4010A
Displayed: 4008—-A0 BO CO DO EO FO 00 10

4010-01 02 03 04 05 06 07 08
4018-12 34 56
e Displays all of the data from the base address to the specified address.

Monitor Mode Commands

Section 5-3

Move Command

4. Enter: *.3000
Displayed: 401B-78
e |f the “dot” address format is used and the entered address is lower than

the base address, the contents of the specified address will not be dis-
played. The contents of the base address will be displayed instead.

5. Enter: *3000:987654321
*3000.3007
Displayed: 3000-09 08 07 06 05 04 03 21
® Pokes data in a series of addresses starting from the specified address.
6. Enter: *:11 22 33 44 55
*3000.3007
Displayed: 3000-11 22 33 44 55 04 03 21

® Pokes data in a series of addresses starting from the base address.

Purpose: To transfer the data stored in a consecutive range of addresses
to another place in memory

Format: M(destination start address)< (source start address). (source
end address)

Remarks:

This command will transfer a block of data starting from (source start address)
and ending at (source end address) to (destination start address). Note that the
source address range must not overlap the destination address range; other-
wise, the data will not be transferred correctly.

Example:

Enter: *M3000<4000.4007 J
*4000.4007

Displayed: 4000-01 02 03 04 05 06 07 08

Enter: *3000.3007 4

Displayed: 3000-01 02 03 04 05 06 07 08

Example Remarks:

In the above example, the contents of addresses 4000 to 4007 are transferred to
an address range starting at address 3000.

The following diagram illustrates correct and incorrect usage of the Move com-
mand.

71

Monitor Mode Commands

Section 5-3

Source start
address

Source end
address

Source start
address

Source end
address

Compare Command

Register Command

72

Destination
address

D((jejtination Source start
adaress address

Source end
address

Proper Data Movement

In this example, the source start address is
smaller than the destination address and
the destination address is equal to or
smaller than the source end address.
Consequently, the data is not transferred

Destination correctly. Transfer the data to an area that

address has not been overlapped and transfer the
data again.

Improper Data Movement

Purpose: To compare two blocks of data

Format: (start address 1)<(start address 2).(end address 2)

Remarks:

Compares the data stored from (start address 2) to (end address 2) to a block of
data of the same size starting at (start address 1). If the contents of the two ad-
dress ranges differ, the corresponding address(es) where the data is not the
same is displayed with its contents.

Example:

Enter: *C3000<4000.4007
Displayed: 4003—-FF (03)

Enter: *3000.3007

Displayed: 3000-00 01 02 03 04 05 06 07
Enter: *4000.4007

Displayed: 4000-00 01 02 FF 04 05 06 07

Example Remarks:

In the above example, data stored in addresses 3000 to 3007 is compared with
data stored in addresses 4000 to 4007. In this example, the data stored in ad-
dress 3003 has been found to differ from the data stored in address 4003. Con-
sequently, the data stored in address 4003 (FF) and the data stored in address
3003 (03) are displayed.

Purpose: To display or change the contents of a register.

Format: R(register) = (data)
(register) is one of the hardware registers: C, A, B, X, S, or P.
(data) is a one or two digit hexadecimal number.

Monitor Mode Commands

Section 5-3

Break Point Command

New Command

Disassembler Command

Remarks:
If R is entered by itself, all of the registers and their contents will be displayed.
Examples:
1. Enter: *R
Displayed: C—-C0 A-00 B-01 X—ABCD S—2EFF P-5000
e The contents of all the registers are displayed.
2. Enter: *A=12
*X=FF00
R
Displayed: C-C0 A-12 B-01 X—FF00 S—2EFF P-5000
e The contents of the specified registers (A and X) are rewritten as speci-
fied.

Purpose: To set a break point at a specified address
Format: BP[(address)]

Remarks:

Up to two break points can be set at the same time. If BP is entered by itself, the
current break point(s) will be displayed. If BP is followed by an address, a new
break point will be set at that address.

Examples:
1. Enter: *BP3000

e Sets a Break point.
2. Enter: *BP J

Displayed: BP=3000

e Displays the currently set bread points.
3. Enter: *BP5000

*BP
Displayed: BP=5000 3000

e Up to two bread points can be set.

Purpose: To clear all bread points.

Format: N

Example:

Enter: *N 4
*BP A

Displayed: BP=0000 0000

Example Remarks:
Clears all the bread points currently set.

Purpose: To disassemble and display 20 lines of code starting from the
specified address.

Format: I(address)

73

Monitor Mode Commands Section 5-3
Examples:
1. Enter: *1 3000
Displayed: 3000-CE 10 00 LDX #$1000
3003-FF 40 00 STX $4000
3006-86 80 LDAA #$80
3030-81 12 CMPA #$12
e Disassembles and displays 20 lines of code starting from the specified
address.
2. Enter: *1, 1
Displayed: 3032—-26 02 BNE $3036
3034-A700 STAA $00, X
3036-39 RTS
3080-08 INX
e Each time || is subsequently entered, the next 20 lines of code will be dis-
played.
Save Command
Purpose: To transfer the specified block of data to port 1 in S format
Format: S(start address).(end address)
Remarks:

Load Command

74

Transfers the data stored from (start address) to (end address) in S format to the
port 1 buffer.

Example:
Step 1: *$3000.300F
Step 2: Press the START/STOP switch.

Example Remarks:

The data stored from &H3000 to &H300F will be transferred to port 1. If a periph-
eral device other than the input terminal needs to be connected for the data
transfer, follow the peripheral data transfer procedure explained at the begin-
ning of this section.

Purpose: To load a data file in S format through port 1
Format: L[(offset)]
Examples:
1. Enter: L
Enter: *L100

Press the START/STOP switch.
® Loads a data file in S format through port 1 and stores the file in memory.
2. Enter: *3100.310F
Displayed: 3100—CE 00 00 08 26 FD 08 26
3108-FD 86 55 97 17 CE 00 00

o When an offset address is specified, the loaded file is stored in memory
starting from an address whose value is the specified address plus the

Monitor Mode Commands

Section 5-3

Verify Command

Go Command

Step Command

offset. Data transfer will not start until the ASCII Unit START/STOP switch
is pressed.

Purpose: To verify whether data sent through port 1 is the same as data
stored in the specified memory locations

Format: V[(offset)]

Example:
Enter: *V100
Press the START/STOP switch.
Displayed: 3120-12
Remarks:

The input data is compared with the data stored in the specified address range.
The base address for data comparison is the specified address plus the offset.

If a discrepancy is found, the address at which it occurs and the data contained
therein are both displayed. Data will not be verified until the ASCII Unit START/
STOP switch is pressed.

If a peripheral device other than the input terminal needs to be connected for
data transfer, follow the peripheral data transfer procedure explained at the be-
ginning of this section.

Purpose: To execute a program
Format: G[(address)]

Example:
Enter: *13000 4
Displayed: 3000-86 80 LDAA #$80
3002-B7 40 00 STAA $4000
300520 F9 BRA $3000
Enter: *BP3005
*G3000
Displayed: C—C8 A-80 B—FF X-0000 S—2EFF P-3005
Remarks:

If an address is specified, the user program is executed starting from that ad-
dress. If no address is specified, execution will start from the address indicated
by the program counter.

If program execution is aborted due to a bread point, SW1, or an interrupt, the
register contents will be displayed.

If the stack pointer is not set to the assembly language area, this command will
not execute correctly.

Purpose: To execute a program one step at a time. This command is used
for debugging.

Format: T[(address)]

Example:
Enter: *T3000
Displayed: 3000-86 80 LDAA #%$80

C—C8 A-80 B—00 X—0000 S—2EFF P-3002

75

Monitor Mode Commands

Section 5-3

Mini-assembler

Arithmetic Using Hexadecimal

76

Note

1,2, 3.

Note

Remarks:

When (address) is specified, the instruction stored starting at (address) is ex-
ecuted. If (address) is not specified, the instruction stored at the address indi-
cated by the program counter is executed. To execute several program steps,
execute the Step command as many times as required.

When Step is executed, the instruction stored at the specified address is dis-
played as well as the contents of all the hardware registers.

Purpose: To assemble one line of the program at a time.

Mnemonics used in Hitachi’s HD6303X CPU operation manual are used here.
Procedure:

1. Keyin CTRL+A

2. Type in one line of code and a carriage return.
3. To stop, key in X followed by a carriage return.
Remarks:

Keying in CTRL+A puts the monitor in mini-assembler mode. Each time a line of
code followed by a carriage return is subsequently entered, the mini-assembler
will assemble and display it. To exit mini-assembler mode enter “x” followed by a
carriage return.

Always enter a space after the prompt (!) when using command without address-
es. Always enter a space between operands.
Example:
Enter: *CTRL+A J

|_3000:LDAA_ #$80
Displayed: 3000-86 80 LDAA #$80
Enter: |_LDAB_#3$7F
Displayed: 3002-C6 7F LDAB #$7F
Enter: |_STD_$4000
Displayed: 3004-FD 40 00 STD $4000
Enter: I_ASLA
Displayed: 3007 48 ASLA
Enter: I_BNE_$3000
Displayed: 3008 26 F6 BNE $3000
Enter: IX d

Purpose: To add or subtract 4-digit hexadecimal data.

Format: (hex data)+(hex data)
(hex data)—(hex data)

Examples:

Enter: *1234+5678
Displayed: 1234+5678=68AC
Enter: *ABCD+EF01
Displayed: ABCD+EF01=9ACE
Enter: *AB-12 J
Displayed: AB-12=0099

SECTION 6
Program Examples

In order for the PC and the ASCII Unit to communicate with each other, both an ASCII Unit program written in BASIC and a
PC program must be prepared. These two programs work with each other to coordinate the timing of communications and data
transfer between the two devices.

The ASCII Unit can be set in one of two modes: two-word mode or four-word mode. If the ASCII Unit is set in two-word
mode, the PC can use READ(88/190) and WRIT(87/191) for data transfer with the ASCII Unit. If the ASCII Unit is set in
four-word mode, the PC must use the MOV (21/030) instruction to transfer data with the ASCII Unit.

The first part of this section presents an explanation of the timing between the ASCII Unit and the PC when READ(88/190)
and WRIT(87/191) are used with the PC READ, PC WRITE, PC GET, and PC PUT statements. In order to understand the
programming examples in this section, it is necessary to fully understand the timing explained in this section. Please study this
section carefully before going on to the examples.

The second part of this section presents example programs written for the ASCII Unit and PC with the ASCII Unit set in
two-word mode.

The third part of this section presents example programs written for the ASCII Unit and PC with the ASCII Unit set in
four-word mode.

The fourth and last part of this section presents an assembly language programming example.

Some of the examples also present detailed explanations of what the PC and ASCII Unit are doing during execution of each
devices respective programs. When this material is present, it is listed under the heading Execution Sequence.

6-1 Timing Considerationsttt ittt et e
6-2 Programs in Two-word Mode i
6-3 Programs in Four-word Mode
6-4 Assembly Language Examples i

77

Timing Considerations
N

Section 6-1

6-1 Timing Considerations

78

READ(88/190) is the I/O READ instruction and WRIT(87/191) is I/O WRITE in-
struction. These are PC commands and are executed from within the PC ladder
diagram program. READ(88/190) and WRIT(87/191) give the PC the ability to
transfer large blocks of data during one cycle time: up to 255 words at a time. The
MOV (21/030) instruction can only transfer one word of data per cycle.

Because variable sized blocks of data can be transferred with one
READ(88/190)/WRIT(87/191) instruction, the amount of time needed to com-
plete execution of the READ(88/190)/WRIT(87/191) instruction will vary de-
pending on how many words of data are being transferred. Therefore, the PC
must have a method of informing the ASCII Unit when the data transfer opera-
tion is completed. The PC uses the Equals Flag for this purpose. When the PC is
in the midst of executing a READ(88/190)/WRIT(87/191) instruction, this flag is
turned OFF. When the READ(88/190)/WRIT(87/191) instruction finishes ex-
ecuting, this flag is turned ON.

The diagram on the following page illustrates the timing relationships between
READ(88/190) and the PC WRITE statement and WRIT(87/191) and the PC
READ statement.

Whenever the ASCII Unit is writing data with the PC WRITE statement, the PC is
reading data with READ(88/190) and whenever the PC is writing data with
WRIT(87/191), the ASCII Unit is reading data with the PC READ statement. This
illustrates two important points:

e Whenever the ASCII Unit and the PC communicate, one of them is reading and
the other one is writing.

¢ The device which is writing data always initiates data transfer.

The following rules are illustrated in the diagram on the next page:
B. If a READ(88/190) is executed before its corresponding PC WRITE
statement, it is treated as a NOP.

3. If a PC WRITE statement is executed before processing of a pre-
vious PC WRITE statement is completed, it must wait for execution
of the next READ(88/190) before data transfer can begin.

6. If a PC READ statement is executed before processing of a pre-
vious PC READ statement is completed, it must wait for the next
WRIT(87/191).

H. If a WRIT(87/191) instruction is executed before processing of the
previous WRIT(87/191) instruction is completed, it is treated as a
NOP.

Timing Considerations Section 6-1

Timing Between PC and ASCII Unit Instructions

READ(88/190) < PC WRITE, WRIT(87/191) — PC READ

E% 1 cycle + 1 cycle + 1 cycle + 1 cycle +

um End um End um End UM End
Execution | Refresh Execution | Refreshl Execution | Refresh Execution | Refresh
EXECUTABLE Y!ES NO Y!ES YES YI'ES YI'ES Y'ES N'O
A B C b E F G H
READ('88/1 90) REP;D(88/1 90) READ('88/1 90) REQD(BBM 90) WR'IT(87/191)WR'IT(87/191) WRI;I'(87/191)WF'{IT(87/191)
X X . . X X \ éommon Memor
pC EQ=1 EQ=0 EQ=1 EQ=1 EQ=1 EQ=1 EQ=1 istull ’
No data in .’ y " ' hS
common memory X . ' X . X
’ . P) .W_ail s
ok K ded g7y)
UNIT 2 3 5 6 7
PC WRITE PC WRITE PC WRITE PC READ PC READ PC READ

3. Waits until data previously written to the
common memory is written to the PC.

6. Waits until the data being read is transferred to
the common memory

MOV(21/030) <«

PC GET, MOV(21/030) — PC PUT

«— 1 cycle —>€— 1 cycle

—— 1 cycle —— 1 cycle ——

(Previous Data)

UM End UM End |um End UM End

Execution | Refrest] Execution | Refrest{Execution | Refresh Execution | Refresh
K ! L M N (o]

MOV/(21/030) X MOV(21/030) Same ,Same Same

(or OUT) ' (or OUT) . 13 Data 13 Data

bit 08 0 15 : bit 08 to 15 (Previous Dat?.)

' FFr 7§ 3
ASCIl vV Vv v A
UNIT PC GET PC PC 13 PCPUT

(previous GET GET

data) K data Kdata

79

Programs in Two-word Mode Section 6-2

6-2 Programs in Two-word Mode

The following programs are executed with the ASCII Unit set in two-word mode.
For all of the following examples:

e printer is connected to port 2

e 8 bits/ no parity/ 2 stop bits

Example 1
Purpose: To write data from the PC using WRIT(87/191) and to the
ASCII Unit using the PC READ statement.
PC Program ASCII Unit Program
Execution condition '
| | WRIT(87/191) !
#0005 .
DMO000 ;
Equals Flag 00 . |

—| |— To next process

PC READ “514” ;A, B, C, D, E

#0005: Number of words to be transferred
DMO000: First word to transfer (DM 000)
00: Destination word address

Remarks:

When the execution condition goes ON, WRIT(87/191) is executed. The ASCII
Unit reads five words of data starting at DM 000, converts them into BCD, and
assigns them to the variables A through E. When execution of WRIT(87/191) is
completed, the Equals Flag is turned ON.

Example 2
Purpose: To write data from the ASCII Unit using the PC WRITE
statement to the PC using the READ(88/190) instruction.
PC Program ASCII Unit Program

|| READ(88/190) ;

#0003 !

01 X

Equals Flag DMO10 I |

—| |— To next process
PC WRITE “314”;P,Q,R

#0003: Number of words to be transferred

01: Destination word address

DMO010: First word to transfer

Remarks:

When the ASCII Unit executes the PC WRITE statement, the variables P, Q, and
R are converted into BCD and stored in DM 010, 011, and 012.

80

Programs in Two-word Mode

Section 6-2

Example 3

Example 4

Example 5

Purpose: To enter characters from the keyboard and write them to
the PC wusing the PC WRITE statement and
READ(88/190).
PC Program ASCII Unit Program
|| READ(88/190) !
#0002 .
01 '
e OPEN #2, “KYBD:”
Equals Flag DM020
INPUT #2, A$
—| |— To next process
PC WRITE “2A2”; A$
#0002: Number of words to be transferred ,
01: Destination word address .
DMO020: First word to transfer '
Remarks:
When the PC WRITE statement is executed, the first four characters of charac-
ter string A$ are converted into ASCII code and stored in DM 0020 and 0021.
Purpose: The PC uses interrupt number 3 to direct the ASCII Unit to
read five words of data from the specified DM addresses.
PC Program ASCI| Unit Program
|| MOV/(21/030) !
#0003 I
DMooo| —® 50 ONPC3GOSUB 200
60 PC3ON
WRIT(87/191) ;
#0005/ —® 200 PCREAD“SH4”;A,B,C,D, E
DMO000
00
Equals Flag
—| I— To next process
#0005: Number of words to be transferred
DMOO00: First word to transfer (DM 000)
00: Destination word address
Remarks:
When the Interrupt Input goes ON, the PC writes the interrupt number to DM 000
with the MOV(21/030) instruction and the ASCII Unit branches to the interrupt
service routine at line 200. WRIT(87/191) then writes 5 words of data to the
ASCII Unit which stores them in variables “A” through “E”.

To read and print PC data at specific times using the ASCII
Unit PC READ statement and WRIT(87/191)

Purpose:

81

Programs in Two-word Mode Section 6-2

PC Program ASCII Unit Program
0108 10 OPEN #2,“LPRT:(47)"

||
] I DIFU 3200 I 20 A$ = “00:00”

30 B$ = MID$ (TIMES, 4, 5)

8200 —— 40 IF B$ <:> A$ GOTO 30
1 () —® 50 PCPUT1
#0001 60 PC READ, 4" ; X
DMOGO 70 PCPUTO
Equals Flag 00 80 PRINT #2, “DM="; X
—| |— To next process 90 GOTO 30
#0001: Number of words to be transferred .
DMO0O0O0: First word to transfer (DM 000) '
00: Destination word address .
Example 6
Purpose: To accept input from the keyboard and write it to the PC us-
ing the PC WRITE statement and READ(88/190)
PC Program ASCII Unit Program
|| READ(88/190) :
#0001 .
01 '
10 INPUTI
DM 000 —
Equals Flag 20 PC WRITE “I4”; |
—| |— To next process
30 GOTO 10
#0001: Number of words to be transferred X
01: Destination word address E
DMO000: First word to transfer .
Example 7
Purpose: To display the state of PC bit 1000 on a display device con-
nected to port 2
PC Program ASCII Unit Program
' WRIT(87/191) :
. #0001 .
DMO00 10 OPEN #2, “SCRN:(40)”
00 ' 20 PC READ “B0”; R
Equals Flag

—| |— To next process 30 RS$="ON

40 IFR=0THEN RS$ = “OFF”
50 PRINT #2, “RELAY ="; RS$
60 GOTO 20

#0001: Number of words to be transferred
DMO0O00: First word to transfer (DM 000)
00: Destination word address

82

Programs in Two-word Mode

Section 6-2

Example 8

Purpose: To retrieve and print several types of data from the PC us-
ing the PC GET statement and WRIT(87/191)

PC Program
SWH1
| | MOV/(21/030)
#0100
00
SW1
1F MOV(21/030)
#0200
00
Start 3200
| | £ WRIT
{ | +1 (87/191)
#0002
DMO000
00
Equals Flag Start
— | || 3200
3200
Remarks:

10
20
30
40
50
60

100

200

ASCII Unit Program

OPEN #2, “LPRT : (47)"
PC READ “214”; X, Y

PC GET I, J
IFJ=1THEN GOTO 100
IF J=2THEN GOTO 200
GOTO 30

PRINT #2, “DATA1 =" ;X

PRINT #2, “DATA2 =" ;Y

The two MOV(21/030) instructions place the data in the memory locations that
will be read by the PC READ statement. After the MOV(21/030) instructions are
executed, the Start flag is turned ON and WRIT(87/191) is executed.

Two lot size areas, stored in PC DM 000 and 001, are retrieved and printed.

83

Programs in Two-word Mode Section 6-2

Example 9
Purpose: To use PC interrupts to direct execution of the ASCII Unit
PC Program ASCII Unit Program
Start 1 Start 2 Start 3 10 OPEN #2, “LPRT: (47)"

— —H—f——— wRiT@g7/191) 20 ON PC 1 GOSUB 100

30 ON PC 2 GOSUB 200

#0002 40 ON PC 3 GOSUB 300
DMO000 50 PC ON
00 60 GOTO 60

Start 2 Start 1 Start 3

100 PC READ “214” ; X1, X2

— A WRIT(87/191) 110 PRINT #2, “DM1 = ”; X2
#0003 120 RETURN

DM010

200 PC READ “314”; X1, X2, X3
00 210 PRINT #2, “DM11 =" ; X2
220 PRINT #2, “DM12 =" ; X3

Start 3 Start 1 Start 2

—| |—Jr{ ,'r{ WRIT(87/191) 230 RETURN
#0004
300 PC READ “414” : X1, X2, X3, X4
DM100 310 PRINT #2, “DM101 =" ; X2
00 320 PRINT #2, “DM102 =" ; X3
Always ON 330 PRINT #2, “DM103 =" ; X4
— | MOV(21/030) 340 RETURN
#0001
DM 000
MOV(21/030)
#0002
DM 010
MOV/(21/030)
#0003
DM 100

Remarks:

Three ON PC GOSUB statements are used to direct program execution to three
different interrupt service routines. After the branch destinations are defined by
the ON PC GOSUB statements, the ON PC statement is executed enabling the
interrupts. The statement “GOTO 60” at line 60 causes the program to “sit and
wait” for a PC interrupt to initiate further action.

If PC interrupt 1 interrupts the ASCII Unit, the contents of DM 000 will be printed.
If PC interrupt 2 interrupts the ASCII Unit, the contents of DM 010 and 011 will be
printed. If PC interrupt 3 interrupts the ASCII Unit, the contents of DM 100, 101,
and 102 will be printed.

Connect the printer to port 2 and set the baud rate to 4,800 bps.

The lot sizes are stored in DM words as follows:

84

Programs in Two-word Mode Section 6-2

1 2 2
DMO0000 Lot size DMO0010 Lot size DMO0100 Lot size
DMO0011 Lot size DMO0101 Lot size
DMO0102 Lot size
Example 10
Purpose: To print PC data and the time of data transfer
PC Program ASCII Unit Program

Start condition

Example 11

Destination word address

WRIT(87/191) 10 OPEN #2, “LPRT: (47)"
20 CREAD ‘214 ;D1, D2
#0002 30 PRINT #2, “DATA1 =" ; D1,
DM100 “DATA2 =" ; D2, “TIME =" ; TIME$
quals Fiag 00 40 GOTO 20

—| |— To next process

#0002: Number of words to be transferred
DM100: First word to transfer (DM 000)
00:

DM100| Data
DM101| Data 2

Remarks:

When the start condition is activated, PC data and the time of transfer are output
to a printer connected to port 2 of the ASCII Unit. The PC read statement and
WRIT(87/191) are used to obtain the data from the PC.

Output:

TIME = 13:45:03

TIME = 14:02:51

Purpose: To input data from a bar code reader using the PC WRITE
statement
Remarks: Connect the bar code reader to port 2.

The following figure defines the output format of the bar code reader.

STX

Data 1

Data 2| Data 3| Data 4| Data 5| Data 6 | Data 7| Data 8 | Data 9| Data 10 ETX

85

Programs in Two-word Mode

Section 6-2

PC Program ASCII Unit Program
|| READ(88/190) Z
#0005, '
01 10 OPEN #2, “COMU:(22)”
V000 — 20 A$=INPUTS$ (1, #2)
Equals Flag 30 IF A$ = CHR$(2) GOTO 50
—| |— To next process 40 GOTO 20
50 B$ = INPUT$(11, #2)
#0005: Number of words to be transferred 60 IF CHR$(3) = RIGHTS$ (B$, 1)
01: Destination word address THEN B$ = MID$(B$, 1, 10)
DMO0O00: First word to transfer ELSE GOTO 20
70 PC WRITE “5A3" ; B$
80 GOTO 20
DMO000 | Data 1 Data 2 '
DM001 | Data3 | Data4 !
DMO002 | Data 5 Data 6
DMO003 | Data7 Data 8
DMO004 | Data 9 Data 10
Example 12
Purpose: To transfer data from the PC to the ASCII Unit with the
ASCII Unit maintaining control
PC Program ASCII Unit Program
0108
: i DIFU(13/013) 3200 I 100 PC PUT 1
110 PC READ “514” ; A1, A2, A3, A4, A5
3200 3202 120 PCPUTO
: by @ 130 PRINT A1, A2, A3, A4, A5
3201
3201
| WRIT(87/191)
#0005
DM100
00
Equals Flag
|| 320
Execution Sequence:
1. ASCII: The PC PUT 1 statement turns ON bit 0108
2. PC: The self-holding bit (3201) is set on the positive edge tran-
sition of bit 0108.
3. PC: WRIT(87/191) is executed.

86

Programs in Two-word Mode

Section 6-2

4. PC: When execution of WRIT(87/191) is complete, the Equals
Flag is turned ON and the self-holding bit is turned OFF.
5. ASCIL: The data is read from the PC using PC READ
6. ASCII: Turns OFF bit 0108 using the PC PUT 0 statement
7. ASCILI: Displays the data which is read in step 5.
Example 13
Purpose: To transfer data from the ASCII Unit to the PC with the
ASCII Unit maintaining control
PC Program ASCII Unit Program
01|09
I i DIFU(13/013) 3400 I 100 PC PUT 2
110 PC WRITE “514” ; A1, A2, A3, A4, A5
3400 3402 120 FORJ=1TO 100 : NEXT J
} W O 130 PCPUTO
3401
3401
| READ(88/190)
#0005
01
DM300
Equals Flag
1
1
Execution Sequence:
1. ASCII: Turns ON bit 0109 with the PC PUT 2 statement and ex-
ecutes the PC WRITE statement.
2. PC: The self-holding bit (3401) is set on the positive edge tran-
sition of bit 0109.
3. PC: Executes READ(88/190) when the self-holding bit (3401)
is turned ON.
4. PC: Turns ON the Equals Flag after execution of
READ(88/190) is completed and then turns OFF the
self-holding bit (3401).
5. ASCILI: Waits at line 120 until bit 0109 is turned ON by the PC. The
wait time should be adjusted to the cycle time of the PC.
6. ASCII: Turns OFF bit 0109 with the PC PUT 0 statement.
Remarks:

If the time required to transfer data from the ASCII Unit to the PC is shorter than
one PC scan cycle, the PC cannot execute READ(88/190). In the above exam-
ple, the ASCII Unit waits for the PC signal to be received at line 120.

87

Programs in Two-word Mode

Section 6-2

Example 14
Purpose:
PC Program
Start Input
—| l i DIFU(13/013) 3300 I
33|00 3?}92
I Al 3301
3301
3301
| WRIT(87/191
#0005
DM200
00
Equals Flag
|| 3302
Execution Sequence:
1. PC:
2. PC:
3. PC:
4. ASCII:
5. ASCII:

88

To transfer data from the PC to the ASCII Unit with the PC
maintaining control.

ASCII Unit Program

10 ONPC 1 GOSUB 100
20 PC10ON

90 GOTO 20
100 PC READ SUBROUTINE
110 PC READ “514” ; A1, A2, A3, A4, A5
120 PRINT A1, A2, A3, A4, A5
130 RETURN

The self-holding bit (3301) is set on the leading edge of the
start statement signal.

WRIT(87/191) is executed.
When execution of WRIT(87/191) is complete, the Equals
Flag is turned ON and the self-holding bit is turned OFF.

When the PC interrupts the ASCII Unit, execution
branches to line 100 of the BASIC program and the data is
read by the PC READ statement.

Displays the data and processing returns to line 20 to await
the next interrupt.

Programs in Two-word Mode Section 6-2

Example 15
Purpose: To transfer data from the ASCII Unit to the PC with the PC
maintaining control.
PC Program ASCII Unit Program
Start Input :
—| I i DIFU(13/013) 3500 I :
3500 3502 X
| I 3501
35'01 A1 100 PC GET1, J
|_ 110 K=JAND2
| TIM00O 120 IF K <> 2 THEN GOTO 100
3501 Ly 130 PC WRITE “514” ; A1, A2, A3, A4,
, vd TIM 000 A5 '
00|(£ #0005 :
=
3501
| READ(88/190
#0005
01
DM100
Equals Flag
Execution Sequence:
1. PC: The self-holding bit (3501) is set on the leading edge of the
Start Input signal.
2. PC: Turns ON bit 0009 for 0.5 seconds with the TIM command
after the self-holding bit has been turned ON.
3. PC: Executes READ(88/190)
4. PC: Turns ON the Equals Flag after READ(88/190) has been
executed and then turns OFF the self-holding bit (3501).
5. ASCII: Monitors the setting of bit 0009 at lines 100 to 120.
6. ASCII: Executes the PC WRITE statement.
Example 16
Purpose: To process data with the ASCII Unit

Remarks:

This program transfers 10 words of data from the PC to the ASCII Unit (starting
from PC DM 100) each time bit 1000 is turned ON. The ASCII Unit performs
some calculations with the data and the results are sent back to the PC and
stored in DM 200 to 214.

89

Programs in Two-word Mode

Section 6-2

PC Program
Start Input
—|= i DIFU(13/013) 3200|
32C|)O ?}08
0008
3200 35{02
I vd 3201
320|1_
3201
| WRIT(87/191)
#0010
DM100
6306 00
Equals
3201 Flag 3203
3202
3202
| READ(88/190)
#0015
01
DM200
6306
Equals Flag
Execution Sequence:
1. PC:
2. PC:
3. PC:
4. ASCII:
5. ASCII:
6. ASCII:
7. ASCII:
8. ASCII:
9. ASCII:
10.ASCII:
11.ASCII:
12.PC:

90

ASCII Unit Program

100 PC GET J,K
110 L=KAND 1
120 IF L=1 THEN GOSUB 1000

(other processing)
990 GOTO 100
1000 SUBROUTINE
1010 PC PUT 1
1020 PC READ “10H4” ; A1, A2,, A10
1030 (computation processing: assigns the
values to B1 through B10)
1090
1100
1110
1120
1130
1140
1150
1160

PC WRITE “15H4” ; B1,B2, ..., B15
PC GET J, K

L=KAND 1

IFL=0THEN GOTO 1150

GOTO 1110

PCPUT O

RETURN

Detects the positive edge transition of Start Input and turns
ON bit 0008.

Executes WRIT(87/191) when bit 3201 is turned ON.

Turns ON the Equals Flag after the execution of
WRIT(87/191) is completed.

Reads the status of bit 0008 with the PC GET statement.
If bit 0008 has been turned ON, execution branches to the
subroutine beginning at line 1000.

Turns ON bit 0108 with the PC PUT 1 statement at line
1010 and the self-holding bit (0008) is turned OFF.
Executes the PC READ statement at line 1020 which as-
signs the PC data to variables A1 through A10.

Performs computations on variables A1 through A10 and
assigns the results to B1 through B15.

Writes B1 through B15 to the PC at line 1100.

Waits for bit 0008 to be cleared at lines 1110 through 1140.
Turns OFF bit 0108 with the PC PUT 0 statement at line
1150.

Transfers data written from the ASCII Unit to DM 200
through 214 using the READ(88/190).

Programs in Two-word Mode

Section 6-2

Example 17

Execution Sequence:

13.PC: Turns ON the Equals Flag after execution of
READ(88/190) has been completed and then turns OFF
the self-holding bit.

Purpose: To transfer data input through the ASCII Unit keyboard to
the PC and then back to the ASCII Unit after computations
have been performed by the PC.

PC Program ASCII Unit Program
Start Input
— | i DIFU(13/013) 3200 I 100 INPUT A1, A2, A3
110 PC PUT 1
120 PC WRITE “314” ; A1, A2, A3
32|(|)0 3|2,92 130 PC READ “414” ; B1, B2, B3, B4
' A 0008 140 PCPUTO
3201 150 PRINT B1, B2, B3, B4
_| 160 GOTO 100
3201 Z
I READ(88/190) :
#0003 '
01 !
6306 DM100
Equals
3201 Flag 3203
()
3202
3202
I I Processing I
3202
| WRIT(87/191)
#0004
DM200
00
6306
Equals Flag

1. ASCII: Excepts input from the keyboard at line 100.

2. ASCII: Turns ON bit 0108 with the PC PUT 1 statement and then
writes the entered data to the PC at line 120.

3. PC: Detects the positive-edge transition of bit 0108 and then
turns ON the self-holding bit (3201).

4. PC: Executes READ(88/190) after bit 3201 is turned ON and
reads data written from the ASCII Unit. The data is then
transferred to DM 100 through 102.

5. PC: Turns ON the Equals Flag after execution of
READ(88/190) has been completed. The self-holding bit
(3201) is turned ON and the self-holding bit (3202) is turned
OFF.

6. PC: Executes WRIT(87/191) after data processing has been

completed and bit 3202 is turned ON. The data is then
transferred to the ASCII Unit.

91

Programs in Two-word Mode

Section 6-2

7.

PC:

8. ASCII:

Example 18

Purpose:

PC Program

St.’ilrlt Input

Turns ON the Equals Flag when execution of
WRIT(87/191) has been completed and then turns OFF the
self-holding bit (3202).

Data is read at line 130 and the results are assigned to the
variables B1 through B4 and then displayed.

To initiate data transfer with the START switch using the
WAIT statement

ASCII Unit Program

Equals Flag

—| |— Next Process

WRIT(87/191)

100 PRINT “START”

#0005

110 WAIT “10:00.0”, 1000

DM100

120 PCREAD“4”;A,B,C,D, E

00

130 PRINTA,B,C,D,E

Remarks:

Pressing the PC START switch will cause specified PC data to be transferred to
the ASCII Unit and displayed on the monitor. When the program is executed the
message “Ready” will be displayed on the screen. If the START switch is not
pressed within ten minutes, an error message will be displayed.

Example 19

Purpose:

PC Program

Stalrt Input

0102
|

WRIT(87/191)

#0002

DMO000,

00

92

READ(88/190)

#0011

01

DM100

140
1000
1010

END

PRINT “ERROR READY? Y/N”
F$ = INKEY$

1020 IF F$ =“Y” THEN 100

1030 IF F$=“N"THEN END

ELSE 1010

To direct processing using different interrupts

ASCII Unit Program

10 OPEN #1, “TERM:(42)”
20 OPEN #2, “COMU:(42)"
30 ON KEY 1 GOTO 100
40 ON KEY 2 GOTO 200
50 ON PC GOSUB 300
60 ON COM2 GOSUB 400
70 KEY ON: COM2 STOP
80 GOTO 80
100 ’KEY 1 PROCESSING
110 COM2 ON: PC ON
120 GOTO 120
200 ’ KEY 2 PROCESSING
210 COM2 ON
220 IFA = 1 THEN GOSUB 300
230 GOTO 220
300 ’PC INTERRUPT PROCESSING
310 PC READ “214”; P, Q
320 LENG = LEN(A$)
330 PCWRITE “i4, 10A3” ; LENG, A$
340 A=0
350 RETURN
400 'COM INTERRUPT PROCESSING
410 IF EOF(2) THEN RETURN
420 A$ = INPUTS$ (LOC(2), #2)
430 A =1
440 RETURN

Programs in Four-word Mode Section 6-3

Remarks:

In this example, a terminal is connected to port 1 and an RS-232C communica-
tion device is connected to port 2. Initially, all the interrupts are disabled. The pro-
gram will wait for one of two inputs from the keyboard — KEY 1 or KEY 2, each of
which will direct the program to process subsequent interrupts in a unique way.

1. If key 1 is pressed, the COM2 and PC interrupts will be enabled. When
COMz2 interrupts the ASCII Unit, a character is read from the communication
device and assigned to the variable A$. When the PC subsequently inter-
rupts the ASCII Unit, the character will be written to the PC.

2. If key 2 is pressed, only the COM 2 interrupt is enabled. When COM 2 inter-
rupts the ASCII Unit, the data is read and written directly to the PC.

6-3 Programs in Four-word Mode

Example 1

Example 2

This section presents example programs with the ASCII Unit set in four-word
mode. There are also several ASCII programs that do not require a PC program
in order to run.

For all of the following examples:
e printer is connected to port 2

e 8 bits/ no parity/ 2 stop bits

Purpose: To print data at fixed time intervals using the LPRINT state-
ment

This example does not require a PC data transfer routine.

ASCII Unit Program:
100 TH$ = MID$(TIMES$,1,2)

110 IF TH$ = THO$ GOTO 200
120 THO$ = TH$
130 LPRINT TIMES$,A

Remarks:

This program example prints a value (A) and the present time (TIME$), on a
printer, every hour, on the hour. The PRINT statement is executed when the
“hours” change on the internal clock (for example, when the time changes from
9:59 to 10:00). The clock (24-hour) must be set prior to program execution.

Purpose: To direct execution of the ASCII Unit from the PC using the
PC GET statement

Another way to externally control program execution is through poling. Poling is
the process of continuously checking the value of a specified bit or word. If the
value of the bit or word matches a condition set in the program, a corresponding
branch instruction is executed.

In the following program, the ASCII Unit PC GET statement is used to pole a spe-
cific word of the PC.

93

Programs in Four-word Mode Section 6-3

Example 3

94

PC Program

Condition 1

ASCII Unit Program

|

Condition 3

|

Condition 2

10 PCGETI,J
0008 20 K=JAND 3
30 IF K=1GOTO 100

40 IFK=2GOTO 200
50 IF K=3 GOTO 300
60 GOTO 10

|

Condition 3

|

0009 5

Remarks:

The PC GET statement reads bits 10008 to 10015 of the PC as a word. The word
is logically ANDed with 3 (00000011) and the result of this operation is used to
branch the program. When bit 10008 is turned ON, k will be equal to 1 and the
program will branch to line 100. If bit 10009 is turned ON, k will be equal to 2 and
the program will branch to line 200.

Purpose: To control execution of the PC from the ASCII Unit using the
PC PUT statement

Remarks:

Using the PC PUT statement, the ASCII Unit can write data to bits 08 to 15 of
word n+3 of the PC. If the value of this data matches a condition set in the PC
program, a corresponding branch instruction will be executed.

PC Program ASCII Unit Program
Execution !
- 0108 !
colpflltlon |1l Processing 1 '
0109 10 OPEN #2, “KYBD:”
; 20 INPUT #2, A
Processin)
— — 92— 30 PCPUTA
0110 '
| |—— Processing 3 !
Remarks:

In the above program, the ASCII Unit accepts external input from a keyboard
using the INPUT statement and transfers that data to the PC with the PC PUT
statement.

If the number “1” is input by the device which is connected to port #2 (A=1), bit
0108 of the PC is turned ON, allowing process 1 to be executed.

If the number “2” is input by the device which is connected to port #2 (A=2), bit
0109 of the PC is turned ON, allowing process 2 to be executed.

If the number “3” is input by the device which is connected to port #2 (A=3), bit
0110 of the PC is turned ON, allowing process 3 to be executed.

Programs in Four-word Mode

Section 6-3

To print out production data every hour from DMOOQO.

ASCII Unit Program

’ DM PRINTING PROGRAM
OPEN #2, “LPRT: (47)’

A$ =00 : 00"

B$ = MID$(TIMES, 4, 5)

IF B$ <> A$ GOTO 40

PC PUT 1

PC READ “14” ; X

PRINT #2, “DM =" ; X

PC PUTO

GOTO 40

To accept input from the keyboard and write it to the PC us-

ing the PC WRITE statement

ASCII Unit Program

10 INPUT |
20 PC WRITE “14” ; |
30 GOTO 10

Product codes stored in DM memory are replaced by data input through a key-
board. The data is represented as 4-digit hexadecimal numbers.

Example 4
Purpose:
PC Program
0308 ;g
l
— | MOV/(21/030) P
DMO000 40
60
70
DIFU 3200 80
3200 190
| l DIFD 3201 | 100
3201
| (o)
Example 5
Purpose:
PC Program
0102 0302
; ; /},{ MOV/(21/030)
02
DMO000
Remarks:
Example 6

Purpose:

port

ASCII Unit Program

10
100
110
120
130
140
150

1000
1010

1020

CLEAR 1000

OPEN #1,“COMU"”
OPEN #2,“COMU"”

ON COM1 GOSUB 1000
ON COM2 GOSUB 2000
COM1 ON:COM2 ON
GOTO 150

A = LOC(1)

IF A<>0 THEN

A$ = A$+INPUTS$(A,#1)
RETURN

To read data from an input file through a communications

95

Programs in Four-word Mode Section 6-3

2000 B=LOC(2)
2010 IF B<>0 THEN

BS$ = B$+INPUT$(B,#2)
2020 RETURN

Example 7
Purpose: To transfer multi-word data from the ASCII Unit to the PC in
four-word mode by using the PC WRITE statement contin-
uously.

1,2, 3... 1. Data transfer from the ASCII Unit starts when bit 15 of the Wd (n+3) is turned
ON with PC PUT.

2. The length of the first parameter is transferred to the PC.

3. The given ASCII data of the parameter is transferred to the PC in groups of
two characters.

4. If the number of data items is an odd number, * is added to the end of the data
before transfer.

5. Data transfer from the ASCII Unit is complete when bit 15 of the Wd (n+3) is
turned OFF with PC PUT.

ASCII Unit Program

100 ***** Writes word-by-word to the PC when four-word mode is set on the ASCII Unit. *****

110° ***** The number of characters and the character string of A$ are transferred to the *****
120’ ***** PCin groups of two characters. If the number of characters is an odd number *****
130" ***** " will be added. e
140° e A$="1234567" —> DMO0000 0007 The length of the number of characters *****
1507 e DMO0001 3132 Data 1 and 2 e
160° DMO0002 3334 Data 3 and 4 e
170° e DMO0003 3536 Data 5 and 6 e
180° DMO0004 372A Data 7. If an odd number, *(2A) added = *****

190 A$="1234567890ABCDEFGHIJK” ’Data transferred.

200 L=LEN(A$) ‘Calculation of the number of characters.

210 IFLMOD 2 =1 THEN A$=A$+"" ’'Make the number of characters to be an even number.
220 M%=L/2 ’Round M to the nearest whole number.

230 PC PUT 128 "Turn ON bit 15 of Wd(n+3) after transfer starts.

240 PC WRITE "14”;L 'PC WRITE the number of characters.

250 PC READ "H4”;X 'Confirm the completion on the PC side.

260 FOR T=1 TO M%

270 B$=MID$(AS$, T*2—1, 2) 'Take out in groups of two characters.

280 PC WRITE "A3";B$ "Write to the PC.

290 PC READ "H4”";X ’Confirm completion on the PC side.

300 NEXT T

310 PCPUTO "Turn OFF bit 15 of Wd(n+3) on transfer completion.
320 END

96

Programs in Four-word Mode Section 6-3

PC Program

(PC PUT data)
00315

: : : DIFU(13) 01000 I Transfer starts
01000
{| MOV(21) Pointer initialization
#0000
(ASCII write complete) DM0100
00315 00302
I I I I ml Detects ASCII write complete
01001
“ DIFD(14) 01002 1 cycle delay
PC READ complete
oo102 (at falling edge)
01002
: : MOV(21) Data storage
002
*DM0100
INC(38) Pointer + 1
DMO0100
00104 PC WRITE complete
(data storage completion)
(PC PUT data)
00315
{| : DIFD(14) 01003 I Transfer completion
01003
{| Processing after completion of data transfer

Remarks:

After 00315 is ON, store data from the ASCII Unit in sequence from DM 0000
onward.

On PC WRITE completion, the ASCII Unit will be informed that the data has
been stored.

Transfer completion is detected when 00315 is OFF.

97

Programs in Four-word Mode Section 6-3

1 cycle

00315 o DM 0000 1 - - - - Datalength
[—“ o -7 0001) @
N I [

(
01000 ‘ 0002 G .« L
. First cycle Second cycle - 0003 (5) : ©6) Data
; S 0004 7
00302 ‘ g 0005
k=)
3
L g
01001 I
%
£
00102
01002 —— DMO0100 Pointer
00101
01003 L
Example 8
Purpose: To transfer multi-word data from the PC to the ASCII Unit in
four-word mode by using the PC READ statement continu-
ously.

1,2, 3... 1. Data transfer from the PC starts when the PC turns ON bit 15 of Wd(n+1),
and continues until the program reaches PC GET.

2. When bit 15 of Wd(n+1) is turned ON, PC READ is executed and the charac-
ter string is continued.

3. The PC is informed of PC READ completion by PC WRITE. From word 2 on,
PC READ and PC WRITE are repeated until bit 15 of Wd(n+1) is turned
OFF.

4. Transfer is complete when bit 15 of Wd(n+1) is turned OFF.
ASCII Unit Program

8007 *ewex Rk
810’ ***** Reads word-by-word from the PC when four-word mode is set on the ke
820’ *xxxx ASCII Unit. Data read is stored in A$. kel
830’ e DMO0100 0004 The length of the number of characters ke
840° v DM0101 3132 Data 1 and 2 —> A$="1234ABCD” e
850" rwvx DMO0102 3334 Data3and 4 el
860° v DM0103 4142 Data5and 6 HRRK
870 rwmw DMO0104 4344 Data7 and 8 hx
8807 **rex -

890 AS$="" ‘Initialization of the parameters to be stored.

900 PCGETH,I "Check bit 15 of Wd(n+1).

910 IF 1 AND 128 <> 128 GOTO 900 "Transfer start?

920 PC READ "A3”; B$ ’One word read.

930 PC WRITE "A3”; B$ ‘Inform the PC of the completion of READ.

940 A$=A%$+BS$ 'Edit read data.

98

Programs in Four-word Mode

Section 6-3

PC GETH, |
IF 1 AND 128 = 128 GOTO 920
END

"Check bit 15 of Wd(n+1).

‘Completion of transfer?

PC Program
Start Input
01015
T DIFU(13) 01004
01004
i} MOV/(21)
#0100
DM0200
MOV(21)
DM1010
DM0201
01004 01008
1L (P4
{| v 4i 00115

00115
11
L]

00302 (ASCII write complete)
11

01005

: DIFU(13) 01005 I

@

01004

DIFU(14) 01006

L

01006
L]

MOV(21)
*DM0200

000

INC(38)

DM0200

: DIFD(14) 01007 I

25506(=)
L

DEC(38)

DM0201

01007

: DIFU(13) 01008 I

Remarks:

00101

Pointer initialization

Counter preset

Transfer flag (Bit 7 of PC GET)

ASCI!I side data storage

completion

PC READ complete

1 cycle delay

Data transfer

Pointer + 1

1 cycle delay

Counter -1

Transfer completion

PC WRITE complete

After Start Input is ON, the PC transfers the data from DM 0101 onward based on
the contents of DM 0100 as the data length. From word 2 on, the data is trans-
ferred whenever the ASCII write complete instruction is ON.

When data transfer starts, 00115 is turned ON and when data transfer is com-
pleted, 00115 is turned OFF to inform the ASCII Unit of data transfer and

completion.

99

Assembly Language Examples Section 6-4

1 cycle
e e e AS$ =" (1)(2)(3)(4)(B)(6)(7)
‘ : 0100 00 : 04 -~ -~ ~ Data length
01015 w ‘
| 7 0101)
01004 | 0102 (3) | (4)
| 0103 (5) ‘ (6) - Data
00115 ! 0104 (7) | (8)
. First cycle‘ Second cycle :

Data transfer

Pointer + 1 ‘ — [
Counter — 1 % PC.write complete Data length = 0
01007 i ;

ASCII write complete

L DMO0200 Pointer
00302 : DM0201 Counter

01005

01006 d

Indirect designation

6-4 Assembly Language Examples

Example 1: Classification of Characters
This program divides characters that are input from the keyboard into numeric
and character strings and then recombines them.

BASIC Program
100 DEF USR0=&H2000

110 INPUT A$
120 A$=USRO(A$)
130 PRINT A$
140 END

1,2,3... 1. Use MSET &H3000 to reserves an assembly language program area.

2. Key in MON to initiate assembly language monitor mode.

3. Key in CTRL+A <- Sets mini-assembler mode.

4. Key in the program sequentially from $2000.

5. Key in CTRL+B after the program has been input to return to BASIC mode.

The following memory areas are used as a program area, work area, and buffer
area:

Program Area

I $2000 to $24FF | Program area |
Work Area

$2500 to $2501 Stores buffer 1 (stores numerals) pointer
$2502 to $2503 Stores buffer 2 (stores characters) pointer
$2504 to $2505 Stores transfer source word

$2506 to $2507 Stores transfer destination word

Buffer Area

$25600 to $26FF | Numeral storage area
$2700 to $27FF | Character storage area

100

Assembly Language Examples

Section 6-4

Assembly Program

$2000

$2016

$2032

$203B

Example 2: Use of More than One Parameter

PSHA
PSHB
PSHX
LDD

STD
LDD

STD
LDAB
LDX

STX
LDX

LDAA
INX
STX
CMPA
BLT
CMPA
BHI
LDX
STAA
INX
STX
BRA
LDX
STAA
INX
STX
DECB
BNE
LDD
LDX

Assembly language program operation:

The numbers and characters are separated and stored in the number storage
buffer and the character storage buffer, respectively. Then numeric strings and
character strings are restored as the original character variables. This program
has no practical application; it's just an example.

Saves registers

#$2600 Sets first address of buffer 1 in
point 1

$2500

#$2700 Sets first address of buffer 2 in
point 2

$2502
0,X Number of characters to GET

1,XC Character variable first ad-
dress GET

$2504

$2504 DOUNTIL (number of times
equal to the number of charac-
ters)

0,X Character GET

Character variable address pointer +1
$2504

#$30 IF (minimum $30)

$2032 THEN

#$39 IF (numeral less than $39)
$2032 THEN

$2500 Stores numeral in buffer 1
0,X

$2500

$203B

$2502 ENDIF

0,X Stores character in buffer 2

$2502
Updates counter
$2016 ENDDO
$2500

#$2600 Transfer from buffer 1 to a
character variable

$2100

STX
SUBD
PULX
PSHX
PSHB
LDX
STX
JSR
LDX

STX
PULB
PULX
PSHX
LDX
ABX
STX
LDD
SUBD
JSR
PULX
PULB
PULA
RTS
LDX
LDAA
INX
STX
LDX
STAA
INX
STX
DECB
BNE
RTS

$2504
#$2600

1,X
$2506
$2100

#$2700 Transfer from buffer 2 to a
character variable

$2504

1,X

$2506
$2502
#$2700
$2100

$2504 Data transfer subroutine
0,X

$2504
$2506
0,X

$2506

$2100

This program singles out the larger of two character strings.

Three parameters are used (i.e., the two original character strings for compari-
son and the other for result storage).

BASIC Program

100’
110°
120°

Kkkkk

***** Program to single out the larger of two character

Jk ok ok ok

strings

*kkkk Assembly Ianguage
. program $2170 to
. $21AF. Work area

101

Assembly Language Examples

Section 6-4

130°
140
150
160
170
180
190
200
210
220
230
240
250
260

Kk kkk

CDX$="13426285903581693417”
CDY$="57201674337291551930”
ANS$="00000000000000000000”
DEF USR0=&H2170
CX%=VARPTR(CDY$)+1

POKE &H2000, CX% \ 256

POKE &H2001, CX% MOD 256
CY%=VARPTR(CDY$)+1

POKE &H2002, CY% / 256

POKE &H2003, CY% MOD 256
ANS$=USRO(ANS$)

PRINT ANS$

END

Operation

*kkkk

$2000 to $2005.
'Original character string for comparison CDX$.
’Original character string for comparison CDY$.
'Result storage character string ANSS$.

"Storage address definition of assembly language function.
'Calculation of the storage address of CDXS$.
‘Leftmost storage address of CDX$ --> Work area
'Rightmost storage address of CDX$ --> Work area
’Calculation of the storage address of CDY$.
‘Leftmost storage address of CDY$ --> Work area
’Rightmost storage address of CDY$ --> Work area
"Execute assembly language function.

Use VARPTR to obtain the addresses of parameters to be used in the assembly
language function program and store them in the work area in advance. In the
above example, three parameters are used in the assembly language function

program.

Note The addresses of parameters are calculated as integral parameters.

Parameters with the parameter name format “XXXX” will not be stored in the pa-
rameter area but the data in the source program will be used. Therefore, after the
execution of line 240, the value between the quotation marks in line 160 will

Assembly Program

2170
2172
2174
2177
217A
217C
217F
2182
2184
2187
218A
218C
218D
2190
2193
2195
2197
2199
219A
219D

102

change.

E8 00 LDAB $00, X
EE 01 LDX $01, X
FF 20 04 STX $2004
FF 20 00 LDX $2000
EE 00 LDX $00, X
FF 20 00 STX $2000
FE 20 02 LDX $2002
EE 00 LDX $00, X
FF 20 02 STX $2002
FE 20 00 LDX $2000
A6 00 LDAA $00, X
08 INX

FF 20 00 STX $2000
FE 20 02 LDX $2002
A1 00 CMPA $00, X
24 02 BCC $2199
A6 00 LDAA $00, X
08 INX

FF 20 02 STX $2002
FE 20 04 LDX $2004

"The length of ANS$ — B register

’ANS$ address memory.

'SDX$ address memory.

’SDY$ address memory.

'SDX$ data read.

’Comparison with the data of SDY$.
'The data of SDX$ < the data of SDY$?
’SDY$ data read.

Assembly Language Examples

Section 6-4

21A0
21A2
21A3
21A6
21A7
21A9

A7 00

08

FF 20 04
5A

26 DE
39

STAA
INX
STX
DECB
BNE
RTS

$00, X "Writes the larger character string to ANSS$.

$2004

$2187 ‘Complete?

Work Area

$2000
$2001
$2002
$2003
$2004
$2005

Example 3: FCS Calculation

100°
110°
120°
130°
140
150

160
170
180
190
200
210
220
230
240°
500’
510°
520°
530’
540
550
560
570
580
590
600

***** FCS calculation (using

Kk kkk

Storage address memory area of parameter SDX$.

Storage address memory area of parameter SDY$.

Storage address memory area of parameter ANSS.

This program calculates the FCS to be used in the host link assembly language.

Character strings to be calculated are DA$ and character strings in which cal-
culation results are stored as FCSS$.

BASIC Program (100 to 230 Lines)

assembly language function)

*kkkk

*kkkk

Assembly language program $2100 to $213F.

***** Calculate the FCS of DA$ and ***** Work area $2000 to $2001.
****% obtain the result as ANS$ el
DA%$="@10RR00310123”

FCS$="43"

DEFUSR0=&H2100
B%=VARPTR(FCS$)+1
POKE &H2000, B% \ 256

POKE &2001, B% MOD 256

DA$=USRO(DAS)
ANS$=DA$+FCS$

PRINT ANS$
END

"The DATA string to calculate the FCS.

'FCS storage character string. (The contents of “XX” will be
substituted and converted when the program runs.)

'Storage address definition of assembly language function
’Calculation of the storage address of FCS$.

‘Leftmost storage address of FCS$ --> Work area
'Rightmost storage address of FCS$ --> Work area
‘Execute assembly language function.

‘Create a character string added with the FCS.

*** ECS calculations (BASIC i
***** instructions only)
*****Calculate the FCS of DA$ and *****
****% obtain the result as ANS$ el
DA%$="@10RR00310123”

L=LEN(DAS$)
Q=0
FOR N=1TO L

*kkkk

Q=ASC(MID$(DA$, N, 1)) XOR Q

NEXT
FCS$=HEX$(Q)

103

Assembly Language Examples Section 6-4

610
620
630
640

IF LEN(FCS$)=1 THEN FCS$="0"+FCS$

ANS$=DAS+FCS$

PRINT ANS$

END
As seen above, there is a program which is calculated using BASIC instructions
in lines 500 to 640 for purposes of comparison.

The execution times required by the assembly language functions and BASIC
instructions are as follows:

Assembly language functions (lines 140 to 220): 29 ms

Assembly Program

2100
2102
2104
2105
2107
2108
2109
210B
210C
210E
2110
2112
2114
2116
2117
2118
2119
211A
211C
211E
2120
2122
2125
2127
2129

104

BASIC instructions (lines 540 to 630): 160 ms
E6 00 LDAB $00, X "The length of DA$ — B register
EE 01 LDX $01, X "The storage of DA$ — X register
4F CLRA
A8 00 EORA $00, X 'Calculate the EOR.
08 INX
5A DECB
26 FA BNE $2105 'Repeat for the number of character strings.
16 TAB
C4 OF ANDB #$0F ’ASCII conversion of the FCS value.
C1 OA CMPB #$0A
25 02 BCS $2114 'If the rightmost digit of the FCS = 10
CB 09 ADDB #$07 "THEN convertto Ato F.
CB 30 ADDB #$30
44 LSRA
44 LSRA
44 LSRA
44 LSRA
81 O0A CMPA #$0A
25 02 BCS $2120 ’If the leftmost digit of the FCS = 10
8B 09 ADDA #$07 "THEN convertto Ato F.
8B 30 ADDA #$30
FE 20 00 LDX $2000
EE 00 LDX $00, X
ED 00 STD $00, X 'Store the data in the FCS$ area.
39 RTS
Work Area
2388? Storage address memory area of parameter FCS$.

Note The address of parameter FCS$ is stored in $2000 and $2001 before retrieving
the assembly program.

Appendix A
Standard Models

Item Description Model No.
ASCII Unit EEPROM C500-ASC04
Battery Set Backup battery for C500 only C500-BAT08

105

Appendix B

Specifications
Item Specifications
Communication mode Half duplex
Synchronization Start-stop
Baud rate Port 1: 300/600/1,200/2,400/4,800/9,600 bps
Port 2: 300/600/1,200/2,400/4,800/9,600/19,200 bps (switch selectable)
Transmission mode Point-to-point
Transmission distance 15 m max.
Interface Conforms to RS-232C. Two ports (D-sub 25P connectors)
Memory capacity BASIC program area and BASIC data area: 24K bytes (RAM) (memory is protected by

built-in battery backup)
BASIC program storage area: 24K bytes (EEPROM)
The program memory area can be segmented into 3 individual program areas.

Transfer capacity 255 words at a maximum of 20 words per cycle

Timer function Year, month, day, date, hour, minute, second (leap year can be programmed)
Accuracy: month + 30 seconds (at 25°C)

Diagnostic functions CPU watchdog timer, battery voltage drop

Battery life 5 years at 25°C. (The life of the battery is shortened if the ASCII Unit is used at higher

temperatures.)

Internal current consumption | 200 mA max. at 5 VDC

Dimensions 34.5 x 250 x 93 (HXWxD) mm
Weight 300 grams max.
EEPROM Has a lifetime of 5,000 saves

Note Abnormal data may be output on the ports when power is turned ON. Set up the device receiving the data to
ignore (e.g., clear) any abnormal data output during startup procedures.

Front Panel DIP Switch

Pin Function Description
No.
1 Start mode Sets automatic or manual mode for power-on start-up of a BASIC
program.
2 Automatic program transfer from Specifies whether the BASIC program is automatically transferred
EEPROM to RAM from the EEPROM to RAM on power application or reset
3and4 | Program No. This pin sets the program number. The program number can be
changed by the PGEN command.
5 Data Section mode selector This pin sets the Data Section to either two-word or four-word mode
6to8 | Screen size Sets the screen size of the of the input device

Back Panel DIP Switch

Pin No. Function Description
1t03 Baud rate for Port 1 Sets the baud rate for Port 1.
4106 Baud rate for Port 2 Sets the baud rate for Port 2.

7 and 8 Not used Always set these pins to OFF.

107

Specifications Appendix B

RS-232 Interface

The ASCII Unit is connected to peripheral devices through two RS-232C interfaces. To connect peripheral devices
to the ASCII Unit, use the included connectors.

The following figure shows the RS-232C connectors on the ASCII Unit. The electrical characteristics of these con-
nectors conform to the EIA-RS-232C standards. Signal directions are oriented from the point of view of the ASCII
Unit.

Em Symbol Name Direction
o.
@4
1) 14 1 FG Frame ground
PO‘RT :E 2 SD Send data Output
o 3 RD Receive data Input
13 °a 25
)
Jc 4 RTS Request to send Output
L@
5 CTS Clear to send Input
JOX
1 N
I o e 14 6 DSR Data send ready Input
P%RT o 7 SG Signal ground
2 81019 |- Not used
13 i 25
oo
e 20 DTR Data terminal ready | Output
- 211025 | - Not used

108

Specifications

Appendix B

Connections to Peripheral Devices

ASCII Unit Printer
FG 1 ﬁ L_ 1 FG
SG 7 | | 7 | SG
SD 2 I I B 3 | RXD
CTS| 5 |- I v v 20 | DTR
DSR| ¢ (Shielded cable)

ASCII Unit
FG | 1 Display Terminal
sG | 7 I’ I’ 7 | aND
SD 2 2 | TXD
RD 3 |- : 7{ : P 3 | RXD
RTS| 4 I I 4 | RTS
CTS| 5 <—I?Z(p 8 | DCD
DSR| 6 |e—— v, 20 | DTR

(Shielded cable)
ASCII Unit Personal Computer

FG 1 —1 ! FG

SG | 7 I’ ’ I’ A 7 | sG

SD 2 2 | SD

RD 3 (= : 7{ : | 3 | RD

RTS 4 4 | RTS

CTS| 5 |- : 7{ I | 5 | CTS

DSR| 6 |- p 6 | DSR

DTR| 20 I\ }4 I\ 20 | DTR

(Shielded cable)

ASCII Unit Bar-code Reader
FG | 1 |— —1 1 |FG
SG | 7 I’] I’ A 7 | sG
SD 2 2 | SD
RD 3 |- : 7{ : - 3 | RD
RTS 4 4 | RTS
CTS| 5 |- : 7{ I p| 5 | CTS
DSR| 6 |-= = 8 | CD
DTR| 20 I\ 1A I\ 20 | DTR

(Shielded cable)

109

Specifications Appendix B

Interface Signal Timing

Before using any port after the ASCII Unit is turned on or restarted, Port 1 is assigned to the peripheral device
TERM and Port 2 is assigned to LPRT. When there is an input or output at a port, the RTS, STS, DTR, and DSR
signals are treated as described below.

Transmission from the ASCII Unit to a Peripheral Device

The default setting of the DTR signal is ON at Port 1 and OFF at Port 2. When the OPEN instruction is executed, the
condition of the DTR signal varies with the peripheral device as follows:

Peripheral device TERM SCRN KEYB cOomMuU LRPT

Condition of DTR ON OFF ON ON OFF

Note ON: HIGH
OFF: LOW

The RTS signal will be OFF if the effective signal wire is X (normally OFF) when the OPEN instruction is executed.
If the effective signal wire is O (normally ON), the RTS signal will be ON from the execution of the OPEN instruction
until the execution of the CLOSE instruction.

When the PRINT instruction is executed, the RTS signal will be ON and the ASCII Unit will transmit data after
confirming that the CTS and DSR signals are both ON. If these signals are not ON, the ERROR indicator will be lit
and the ASCII Unit will wait for the CTS and DSR signals to be turned ON. If the CTS signal is OFF during data
transmission, the output operation of the ASCII Unit will be interrupted.

Note If the DSR or CTS signal is disabled, these signals will be ignored. However, if the CTS signal to Port 2
needs to be disabled, either turn it ON or connect Port 2 to the RTS signal.

If the CLOSE statement is executed, TERM is assigned to Port 1 and LPRT is assigned to Port 2.

The following timing chart applies if the peripheral devices are TERM and COMU when the OPEN instruction is
executed.

Port 1

\l/ Port 2
DTR ON 4
' \l/ \l/ Always ON
1

RTS N
output
(output) OFF

"/ Normally OFF .
]

. ON /] 1 Normally oFF

DSR (input) : '/ Check /" Check - !
OFF : ; ; :

' : ' ! /1 ! :

CTS (input) ON ! . Check /N Check - ! X

OFF - O ; —

) N ' 1

Data : X Data transmission | lData transmission . :

T . ;
! ! PRINT

OPEN PRINT starts completes CLOSE

110

Specifications Appendix B

The following timing chart applies when the peripheral devices are SCRN and LPRT when the OPEN instruction is
executed.

Port 1

Port 2

or- I
DTR (output OFF Always ON L_
. Always ON
| \

ON
RTS (output) OFF
. T Norma}lly OFF : /1l X Normally OFF

DSR (inputy ON : ' ’\ Check /N Check !] '
OFF : — . —
ON !] ! ! /1 . 1
CTS (input) - " Check /N Check ! o
: : ' [: :
) . .
Data ' X | Data transmissionl IData t"a"‘SFT"S‘»SIOV"l : :
' X PRINT | |
OPEN PRINT starts completes cLose

Transmission from a Peripheral Device to the ASCII Unit

The DTR signal is ON when the KEYB or COMU is selected as the peripheral device with the OPEN instruction.

The RTS signal will be OFF if the effective signal wire is X (normally OFF) when the OPEN instruction is executed.
If the effective signal wire is O (normally ON), the RTS signal will be ON from the execution of the OPEN instruction
until the execution of the CLOSE instruction.

When the RTS signal is always ON, reception data will be stored in the buffer regardless of whether or not the
INPUT instruction has been executed.

The INPUT, INPUT#, or INPUT$ instruction turns the RTS signal ON and data, if any, will be input. The CTS and
DSR signals will not be checked.

When the CLOSE instruction is executed, Port 1 will be assigned to TERM and Port 2 will be assigned to LPRT.

Port 1

] Port 2
ON /L \|/
OFF ! Always ON

' \l/ Always ON

RTS (output) ON L
OFF
v 1" Normally oFF " Normally
, s ' OFF
) ' ' '
Data . ' Data transmission Data transmission ' X X
0 1 Il 1 1
' ' ' '
' ' INPUT 1 '
OPEN INPUT starts complete CLOSE

Transmission from peripheral devices is possible when the RTS signal is ON.

111

Specifications Appendix B

Difference in Output According to Opened Peripheral Device

The following table shows the difference in instruction output, such as the PRINT instruction output, among the
peripheral devices designated by the OPEN instruction. After RESET, Port 1 is assigned to TERM and Port 2 is
assigned to LPRT automatically. There is no difference in output between Port 2 set to SCRN and Port 2 set to
COMU.

O Output
A Output with a code added
X Not output

Code Abbreviation TERM (s)ee note SCRN (s)ee note | LPRT (see note 3) CoMU
1 2
Hexa- | Deci- Port 1 Port 2 Port 1 Port 2 Port 1 Port 2 Port 1 Port 2
deci- mal
mal
00 0 NUL X Not X O O O O O
used
01 1 SH SOM | X X O O O O O
02 2 SX EOA | X X O O @) @) O
03 3 EX EOM X O O O O O
04 4 ET EOT X X O O O O O
05 5 EQ WRU | X X O O O @) O
06 6 AK RU X X O O O @) O
07 7 BL BEL X X O O @) @) O
08 8 BS FEO |A(see A(see |O O @) O O
note 4) note 4)
09 9 HT TAB X X O O @) @) O
0A 10 LF LF X X O O O O O
0B 11 HM VT O @) O O O O O
oC 12 CL FF O @) O O @) @) O
oD 13 CR CR A (see A(see |O O O O O
note 5) note 5)
OE 14 SO SO X X O O O O O
OF 15 SI SI X X O O O O O
10 16 DE DCO X Not X O O @) O O
used

11 17 D1 XON | X X O O O O O
12 18 D2 TAP X X O O O O O
13 19 D3 XOF X X O O O O O
14 20 D4 TAP X X O O O O O
15 21 NK ERR |X X O O O O O
16 22 SN SYN X X X O O O O
17 23 EB LEM X X X O @) O O
18 24 CN CAN X X O O O O O
19 25 EM S1 X X O O O O O
1A 26 SB EOF X X O O O O O
1B 27 EC ESC X X O O O O O
1C 28 - S4 O O O O O O O
1D 29 «— S5 O O O O O O O
1E 30 T S6 O O O O O O O
1F 31 \ S7 O O O O ©) O @)

Note 1. Only port 1 can be assigned to TERM.
2. The SCRN outputs all codes from Port 2 except &H16 (cursor ON) and &H17 (cursor OFF).

112

Specifications Appendix B

3.

If the LPRT receives the &HOA (LF), &HOB (HM), &HOC (CL), or &HOD (CR) code. &HOA (LF) will be
added to the code and output. Any other code will be stored in the buffer and when the number of charac-
ters of the stored codes reaches 80, &HOA (LD) will be added to each of the codes and output. When the
CLOSE instruction is executed, the port will close after all remaining data in the buffer is output.

A cursor shift code corresponding to the present display position is output and the cursor is shifted one
character to the left.

The ASCII Unit outputs &HOC (CR) added with &HOA (LF).

If the COMU receives codes &HO0O to &H1F, in the case of the C500-ASC01/02, the code is output
immediately. Each code from &H20 to &HFF will be stored in the buffer and when the number of charac-
ters of the stored codes reaches 256, the codes will be output. In the case of the C500-ASC03/04, each
code is output whenever the buffer receives the code.

If Port 1 is opened by a peripheral device other than TERM, be sure to execute the CLOSE instruction to
stop the program. If key-in is not accepted from the terminal after the program stops, press the CTRL + X
Keys.

113

Appendix C
PC Statements and Refresh Timing

Instructions and Refresh Timing
Data transfer between the ASCII Unit and the PC is executed during PC 1/O refresh.

I/0O Refresh 1/0 Refresh
<«—— Cycle Time
C500 CPU A Instruction Execution A Instruction Execution
Data Transfer Data Transfer
ASCII Unit Processing in BASIC program

BASIC Statements and PC Cycle Time

PC GET
The ASCII Unit takes in data obtained in the last PC I/O refresh before execution of PC GET.

I/0O Refresh I/0O Refresh
K . . Y) .
C500 CPU Instruction Execution Instruction Execution
\D‘ata from before \
ASCII Unit I\ A
IPC GET Statement IPC GET Statement

PC PUT
The ASCII Unit transfers data during the first PC 1/O refresh after execution of PC PUT.

I/0O Refresh I/0 Refresh

K
C500 CPU Instruction Execution Instruction Execution

/Data Transfer Data Transfer

A

ASCII Unit| ,
l |
PC PUT Statement PC PUT Statement

115

PC Statements and Refresh Timing

Appendix C

PC READ

In four-word mode, when the PC’s WRITE flag is set, the base address is transferred. By the next I/O refresh the

data is read.

1/0O Refresh I/0O Refre

\\

sh 1/0 Refresh I/0O Refresh

Instruction Executio

C500 CPU \ A

)

|
Instruction Execution | First Transfer Word

Transfer Words

|
Instruction Execution
READ

ASCII Unit PC READ statement

Write Flag (word n bit 01)

* ASCII Busy (word n+3 bit 00)

* When PC READ is executed in two-word mode using READ(88), n+3 becomes n+1.

PC WRITE

In four-word mode, when the PC’s READ flag is set during 1/O refresh, the PC WRITE statement obtains the base
word address and the number of words to be transferred. With the next I/0O refresh, data is transferred.

C500 CPU \

I/0O Refresh I/0O Refresh I/O Refresh 1/0 Refresh
Instruction E)secution
)} X v X)}

A

|
Instruction Execution

First Transfer Word

Transfer Words

I
Instruction Execution
WRITE

ASCII Unit PC WRITE statement

READ Flag (word n bit 02)

* ASCII Busy (word n+3 bit 00)

* When PC WRITE is executed in two-word mode using WRIT(87), n+3 becomes n+1.

116

PC Statements and Refresh Timing

Appendix C

ON PC GOSUB

After the ON PC GOSUB statement is executed, the PC’s categorized number allocation is written in. When the
Write flag is set, the GOSUB statement is executed. Only when the WRITE flag is set will the ON PC GOSUB

statement be executed.

1/0 Refresh I/0O Refresh I/0O Refresh 1/0 Refresh
h) h) h)
C500 CPU
f f 1
Instruction Execution Instruction Execution Instruction Execution
ASCII Unit A A

]
ON PC GOSUB Statement Execution

]
ON PC GOSUB Statement Execution

Categorized Number Al-
location (word n bit 04

to 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

PC ON

After the ON PC GOSUB statement is executed, the PC’s categorized number allocation is written in. When the
Write flag is set, the GOSUB statement is executed. Only when the WRITE flag is set will the ON PC GOSUB

statement be executed.

1/0O Refresh I/O Refresh I/0O Refresh I/0O Refresh
C500 CPU b
f ? ?
Instruction Execution Instruction Execution Instruction Execution
ASCII Unit A A

]
PC ON Statement Execution

]
PC ON Statement Execution

Categorized Number Al-
location (word n bit 04

to 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

117

PC Statements and Refresh T iming Appendix C

PC STOP

After the ON PC GOSUB statement is executed, the PC’s categorized number allocation is written in. When the
Write flag is set, the ASCII Unit busy flag is set for one cycle time, but the GOSUB statement is not executed. Only
after the PC ON statement is executed will the ON PC GOSUB statement be executed.

I/0O Refresh 1/0O Refresh I/0O Refresh I/0O Refresh
C500 CPU b b b b
? ? f
Instruction Execution Instruction Execution Instruction Execution
ASCII Unit ? ?
PC STOP Statement Execution PC STOP Statement Execution

Categorized Number Al-
location (word n bit 04
to 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

118

Appendix D
Formatting and Data Conversion

Format Meaning Name
min Indicates the nth byte of m decimal words | format
mHn Indicates the nth byte of m hexadecimal words H format
mOn Indicates the nth byte of m octal words O format
mBn Indicates the nth bit of of m binary words B format
mAnN Indicates the nth byte of m ASCII words A format
SmXn Indicates the nth bit/byte of m words S format

When m is omitted, the default value is one. When using the A format, one format designator corresponds to only
one variable in the variable list: e.g., the first format designator corresponds to the first variable in the list, the sec-
ond format designator corresponds to the second variable in the list, etc.

In all formats except A and S, one format designator can apply to many variables. For example:“5H2”; A, B, C, D, E.
This is the same as “1H2, 1H2, 1H2, 1H2, 1H2"; A, B, C, D, E.

All format designators must be in uppercase characters.

Under normal conditions, the maximum number of words that can be transferred at one time is 255. When using
the A or B formats, however, the maximum number of words that can be transferred is between 50 and 60.

| Format (min)

This format is used for decimal numbers (0 to 9):
m: number of words
I: decimal format designator
n: the nth digit of the word

Digit n Bit
15 14 13 12 |11 10 9 8 7 6 5 4 3 2 1 0
1 x 100
2 x 101 x 100
3 x 102 x 101 x 100
4 x 108 x 102 x 101 x 100
Example: 213 ... Indicates 2 decimal words of 3 digits each.
H Format (mHn)
This format is used for hexadecimal numbers (0 to F):
m: number of words
H: hexadecimal format designator
n: the nth digit of the word
Digit n Bit
15 14 13 12 |11 10 9 8 7 6 5 4 3 2 1 0
1 x 169
2 x 161 x 169
3 - x 162 x 161 x 160
4 x 163 x 162 x 161 x 160
Example: 3H4 ... Three hexadecimal words of 4 digits each.

O Format (mOn)

This format is used for octal numbers (0 to 7):

119

Formatting and Data Conversion Appendix D

m: number of words
O: octal format designator
n: the nth byte of the word

Digit n Bit
15 14 13 12 |11 10 9 8 7 6 5 4 3 2 1 0
1 -- - x 80
2 -- - x 81 x 80
3 - x 82 x 81 x 80
4 x 83 x 82 x 81 x 80
Example: 402 ... Indicates four octal words of two digits each

B Format (mBn)

This format is used for binary numbers (0 to 1):
m: number of words
B: binary format designator
n: the nth bit of the word

Bit

Digit n
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

10 | —| —| — | = —=Ixo| — | —| —| —| —| = = ===

"N | — | — | — | =]/ — | — | = | = | = | =] =] =] =] =] =

12 | — | — | — x| — | — | — | — | — | — | — | — | — | — | —| —

1B | — | — | — | — | — | - = = = = = = ===

14 | — x4 — | — | — | - | -] - - | —- | - | = | = | = | = =

B |(x@® — | — | — | —| — | —|—|—|—|—|—|—|—1|—1—

120

Formatting and Data Conversion Appendix D

Example: 5B14... Indicates five binary words of 14 bits each.

A Format (mAn)

This format is used for ASCII characters:
m: number of words
A: ASCII format designator
n: the nth byte of the word

Digit n Bit
15 14 13 12 11 10 9 8 7 6 5 43 2 1 0
1 ASCII code
2 ASCII code
3 ASCII code ASCII code
Example: 6A2... Indicates six ASCII words of two characters each.

A maximum of 255 words can be transferred at one time when the A format is used because many PC words can
be represented by one BASIC variable.

Example: PC READ “50A3, 100A2, 30A1, 75A3"; A$, BS, C$, D$
AS$: Fifty PC words (50 words x 2 characters = 100 characters) indicated by 50A3 are assigned to this variable.

B$: One hundred PC words (100 words x 1 character = 100 characters) indicated by 100A2 are assigned to this
variable.

C$: Thirty PC words (30 words x 1 character = 30 characters) indicated by 30A1 are assigned to this variable.

D$: Seventy-five PC words (75 words x 2 characters = 150 characters) indicated by 75A3 are assigned to this
variable.

S Format (Smin, SmHn, SmOn, SmBn)

This format is used for array variables.
S: format designator
m: number of words
n: the nth bit/byte of the word

Format Meaning
Smin Indicates an array in decimal format.
SmHn Indicates an array in hexadecimal format.
SmOn Indicates an array in octal format.

SmBn Indicates an array in binary format.

Each S Format designator corresponds to one variable from the variable list: the first designator corresponds to
the first variable in the list, etc.

The array variables must be one dimensional. Each array variable in the list must indicate (with a subscript) a
specific element within the array. The number of words to be written to or read from the array will be incremented
from the specified element. For example: if the array variable T(4) is specified in a READ statement and the corre-
sponding format is S100I14, then 100 words will be read from the array, starting at T(4) and ending at T(104).

Example: PC READ “S10014, S75H2, S8003”; A(1), B(11), C(51)

A(1) to A(100): A hundred words of 4-digit decimal data indicated by S10014 are read to these variables.

B(11) to B(85): Seventy-five words of 2-digit hexadecimal data indicated by S75H2 are read to these variables.
C(51) to C(130): Eighty words of 3-digit octal data indicated by S80083 are read to these variables.

Examples of PC READ Format Conversion

| Format

121

Contents of PC word

1!'2'3!4

H Format

Formatting and Data Conversion Appendix D
N
KPCREAD“I1”;J%J=4
. PCREAD“12";J—>J=34
Integer variable < bBCREAD“137:J >J=234
PCREAD“14”7;J—>J=1234
N
/’
PCREAD“11”; A$ > A$="4"
. PCREAD“12”;A$ > A$=“34"
Character variable < ps READ“13”:A$ —>A$=234"
PCREAD“14”;A$ >A$=“1234"
-
PCREAD“H1”;J—>J=&HB =11
. PCREAD“H2”;J—>J=&HAB =171
Integer variable PCREAD“H3”;J—>J=&HOAB =2475

Contents of PC word

g8'9'A!B

O Format

Contents of PC word

1'2!'3!4

B Format

Contents of PC word

cC,1,2,2

A Format

122

SN N N

Character variable

— N — — N —

PCREAD“H4”;J—>J=&H89AB =-30293

PCREAD“H1”;A$>A$=“B"”
PCREAD“H2";A$—>AS$="AB"”
PCREAD“H3”;A$ >A$=“9AB”
PCREAD“H4”";A$ >A$=“89AB "~

PCREAD“O17;J—>J=&4 =4
Int iabl PCREAD“0O02”7;J—>J=&34 =28
nieger vanable PCREAD“03”;J—>J=8&234 =156
PCREAD“04”;J—>J=&1234 =668
PCREAD“O1”";A$>A$=4"
) PCREAD“02";A$>A%$=“34"
Character variable PCREAD“O3”:A$>A$=“234"
PCREAD“04";A$>A$=1234"
(" PCREAD“B17;J —J=2
PCREAD“B2”7;J —J=0
Integer variable < PCREAD"BS57;J —J=32
PCREAD“B14”;J—>J=16384
PCREAD“B15”;J—»J=-32768
(" PCREAD“B1”;A$ —>A$="2"
PCREAD“B2”;A$ —A$=“0"
Character variable < PCREAD“B5”;A$§ —A§="32"
PCREAD“B14”;A$ - A$=16384"
K-PCREAD“B15”;A$ —>A$="-32768"
Note: The integer variable causes an error be-

cause it does not match the binary data for-
mat.

Formatting and Data Conversion Appendix D

Contents of PC word

5'1!'5"'2

— PCREAD“2A1";A$ >A$=“RT”
513,54 Character variable PCREAD“2A2”;A$%A§=“QS "

X X X PCREAD“2A3";A$ —>A$=“QRST”
Q:&H51
R:&H52
S:&H53
T:&H54
S Format
Contents of PC word
0,1,2,3 Integer variable ~PCREAD“S414 ";A(1) A(1)=123
' ' ' (in format 1) A(2)=4567
4,5,6,7 A(3)=8901
A(4)=2345
8 ' 9! 0! 1
2,345
Examples of PC Write Format Conversion
| Format
Contents of PC word
00! 0, 4| PCWRITE“I1";J
0 : 0 : 3 : 4 | €—— PCWRITE“I2 ”;J
» Integer variable «~J=1234

0 ; 2 ; 3 ; 4 | €&——— PCWRITE*I3 ”;J

1'2'3"' 4| «€—— PCWRITE“I4 ";J J

0 ! 0 ! 0 ! 1 | «€—— PCWRITE“I1 7;A$

0 ! 0 ; 1 ; 2 | €&—— PCWRITE“I2 ";A$

b Character variable <« A$="1234"

0'1'!'2!'!'3|<«€—— PCWRITE“I3";A$

1 ; 2 ; 3 ; 4 | €—— PCWRITE“I4 ";A$ J

123

Formatting and Data Conversion

H Format

Appendix D

Contents of PC word

0,0!0.8B
OEO'A'B
059 AlB
859 Al B
ofo 0!8
ofo 819
ofs 9 ! A
859 Al B
O Format

Contents of PC word

0'0'0' 4
0'0'3"'4
0'2'3"'4
112034
ofo 0! 1
ofo 112
0'1'2"'3
112134

124

PC WRITE “H 1

PC WRITE “H 2

PC WRITE “H 3

PCWRITE“H 4

PC WRITE “H 1

PCWRITE “H2

PC WRITE“H 3

PCWRITE“H 4

PC WRITE“O 1

PC WRITE“O 2

PCWRITE“O 3

PC WRITE “O 4

PC WRITE“O 1

PCWRITE“O 2

PCWRITE“O 3

PCWRITE“O 4

";AS

";AS

"AS

"iAS

";AS

";AS

" AS

";AS

» Integer variable

» Character variable

» Integer variable

» Character variable

«<~J=-30293=&H89AB

—A$=“89AB"”

«—J=668=&1234

«—A$=1234"

Formatting and Data Conversion

B Format

Contents of PC word

Appendix D

0,0,0, 1
0,0,0,2
0o,0,1,0
8,0,0,0
A Format

Contents of PC word

<«—— PCWRITE“BO ";J

«—— PCWRITE*B1 7;J

>

«— PCWRITE“B4 7;J

<«—— PCWRITE“B15 ";J)

Note: Integer variables in B format wi

0,051
—— « PCWRITE“2A1 ";A$ O
0,0,5,2
511,0,0
' <« PCWRITE“2A2 ";A$
5,2,0.,0
511 ,5,2
<« PCWRITE“2A3 ";A$)
513,54
S Format

Contents of PC word

g !

8

7

6

5 [}

4

3

2

PCWRITE“S 414 7;A(1)

Integer variable «—J=-32749=&H8013

Il cause an error.

> Character variable <~ A$=“QRST”

Integer variable
(in format I)

125

Formatting and Data Conversion Appendix D

Execution Times

Command Execution
Time (ms)
PC READ “147; A 44 us
PC READ “514”;A,B,C,D,E 0.2
PC READ “1014 7;A,B,C,D,E,G,H, I,J 0.4
PC READ “100A3, 100A3,55A3";A%,BS$,C$ 10.2
PC WRITE “147; A 42 us
PC WRITE “514”;A,B,C,D,E 0.2
PC WRITE “1014 ”;A,B,C,D,E,G,H, |,J 0.4
PC WRITE “100A3, 100A3, 55A3";A%,BS$,C$ 10.4

The following table lists execution times for several different data transfer configurations using WRIT(87/191) and
READ(88/190).

Instruction 1 word 5 words 10 words 100 words
WRIT(87/191), | | WRIT(87/191)| | | READ(88/190) | | READ(88/190)
#0001 #0255 #0001 #0255
00 00 DM 000 DM 000
DM 000 DM 000 01 01
C500 Executed 0.37 ms 3.64 ms 0.38 ms 3.66 ms
Not executed 22 us
C1000H | Executed 1.3 ms |6.4ms [1.3ms [7.0ms
Not executed 6 Us
C2000H | Executed 0.83 ms (421 ms [0.83ms [4.62ms
Not executed 4 us
CV500 | Executed 0.66 ms [4.91 ms |0.56 ms |4.63ms
Not executed 1.35 us
CV1000 | Executed 0.55 ms [4.09 ms [0.47 ms [3.86 ms
Not executed 1.13 us

126

Appendix E
Memory Map

This appendix provides the memory map of the ASCII Unit.

Memory Area Base Remarks
Address

I/0O area 1 &H0000 This area is for internal ports of the microprocessor 63B03.

System work area &H0020 This area is used by the system.

Assembly language program area | &H2000 Stores assembly language program. The size of this area can be
changed with MSET command.

BASIC Text area - Stores intermediate language codes of BASIC program. The size of
this area can be changed with the MSET command.

System stack area - Stack area used by the system.

Character string area - Stores character strings. The size of this area is normally 200 bytes,
but can be changed with the CLEAR command.

Common memory area or the &H8000 RAM area for interfacing between ASCII Unit and PC. When this area

Data Section is accessed, an I/O UNIT ERROR may occur. Do not access this area.

I/O area 2 &H9000 Area to which ports ACIA, PTM, and RTC are assigned.

System area &HA000 This is the ROM area.

Port Address Assignments

Address R/W Contents System
Default Value

$0010 R/W Transfer rate/mode control register $34

$0011 R/W TX/RX control status register $001
$0012 R Receive data register None
$0013 w Transmit data register None
$9400 R Status register None
$9400 w Control register $11

$9401 R Receive data register None
$9401 0 Transmit data register None

127

Memory Map

Appendix E

Communication Flags
Communication Input Flags

Address
$0015

Address

7 6 5 4 3 2 1 0
BAT

; START
CTS1 | DSR2 | DSR1 | | o\ IRQ2 | IRQ1

[sTOP

Communication Output Flags

7 6 5 4 3 2 1 0
BANK2| BANK1|WDREF| TXD1 | RXD1 | RTS1 | DTR2 | DTR1

$0003

128

)

—— Port for interrupts from ACIA and PTM

Port for interrupts from START/STOP
switch and PC

0 when START/STOP switch is ON
Normally 1

1 when battery voltage drops

Port 1 DSR signal, active low

Port 2 DSR signal, active low

Port 1 CTS signal, active low

Port 1 DTR signal, active low
Port 2 DTR signal, active low
1 RTS signal, active low

1 receive data

Port 1 transfer data
Watchdog timer refresh port

Bank ports (Do not change
these ports.)

Memory Map Appendix E
Devices
Address R/W Contents System Remarks
Default Value
$9800 R 0 None
w Control registers #1 and #3 $82 Writes to #3
$9801 R Status register None
W Control register #2 $00
$9802 R Higher byte of timer #1 counter None
w Higher byte (MSB) of buffer register None
$9803 R Lower byte (LSB) of buffer register None
w Lower byte of timer 1 latch None
$9804 R Higher byte of timer #2 counter None
w Higher byte (MSB) of buffer register None
$9805 R Lower byte (LSB) of buffer register None
w Lower byte of timer #2 latch None
$9806 R Higher byte of timer #3 counter None
w Higher byte (MSB) of buffer register None Changes depend on
transfer rate
$9807 R Lower byte (LSB) of buffer register None
W Lower byte of timer #3 latch None
Address R/W Contents System Default Value
$9000 R/W 1-second digit : 0 through 9 None
$9001 R/W 10-second digit : 0 through 5 None
$9002 R/W 1-minute digit : 0 through 9 None
$9003 R/W 10-minute digit : 0 through 5 None
$9004 R/W 1-hour digit : 0 through 9 None
$9005 R/W 10-hour digit : 0 through 2 None
$9006 R/W 1-day digit : 0 through 9 None
$9007 R/W 10-day digit : 0 through 3 None
$9008 R/W 1-month digit : 0 through 9 None
$9009 R/W 10-month digit : 0 and 1 None
$900A R/W 1-year digit : 0 through 9 None
$900B R/W 10-year digit : 0 through 9 None
$900C R/W Week digit : 0 through 6 None
$900D R/W Control register D 0 is set in DO.
$900E R/W Control register E None
$900F R/W Control register F Oissetin DO, 1, and 3.

Note A 4.9152-MHz clock is supplied to the MPU and a 1.2288-MHz clock is supplied to the ACIA and PTM.

129

Memory Map

Appendix E

130

Address Contents
$0145 Port 1 | Port storage pointer (reception)
$0146 Data extraction pointer (reception)
$0147 Data storage pointer (transfer)
$0148 Reception buffer, 256 bytes
$024B Port 2 | Data storage pointer (reception)
$024C Data extraction pointer (reception)
$024D Data storage pointer (transfer)
$024E Reception buffer, 256 bytes
$1440 Port 1 | Transfer buffer, 256 bytes
$1540 Port 2 | Transfer buffer, 256 bytes

Error Message Format

Appendix F
Troubleshooting

When an error occurs during BASIC program execution, the error messages shown in the following tables are
output to the screen of the terminal. If a device other than a terminal is connected to port 1, the program stops, and
the messages are reserved until the terminal is attached and CTRL+X is keyed in.

Example of a displayed message:
SYNTAX ERROR IN xxxx

xxxx is displayed when a command is executed with a number specified.

Error Message Error Explanation
Code

BAD DATA IN PORT ERROR 58 Format of data read from port is wrong.

BAD I/O MODE ERROR 51 Wrong port or peripheral device has been specified.

BAD PORT DESCRIPTOR ERROR 55 Descriptor is incorrect.

BAD PORT NUMBER ERROR 50 Port number is incorrect.

BAD SUBSCRIPT ERROR 9 Subscript outside predetermined range is used.

Assign subscript of maximum value with the DIM command.

CAN'T CONTINUE ERROR 17 Program execution cannot be resumed. Execute program with
RUN command.

DEVICE 1/0O ERROR 53 Error has occurred during communication with a peripheral
device.

DEVICE UNAVAILABLE ERROR 60 Wrong device name has been specified.

DIVISION BY ZERO ERROR 11 Attempt is made to divide data by 0.

DIRECT STATEMENT IN PORT ERROR 56 Unnumbered line has been read while program is being loaded.

DUPLICATE DEFINITION ERROR 10 Array, or user function, is defined in duplicate.

FORMAT ERROR 67 Incorrect format or memory area designator, number of words to
be transferred or base address has not been specified.

FOR WITHOUT NEXT ERROR 23 FOR and NEXT statements are not correctly used in pairs.

ILLEGAL DIRECT ERROR 12 Attempt is made to execute statements that cannot be executed
in direct mode. INPUT and LINE INPUT can be executed in
BASIC program only.

ILLEGAL FUNCTION CALL ERROR 5 Statement or function is called incorrectly.

INPUT PAST END ERROR 54 All data in port has been read.

MISSING OPERAND ERROR 22 Necessary parameter is missing.

NEXT WITHOUT FOR ERROR 1 NEXT and FOR statements are not used in pairs.

NO RESUME ERROR 19 RESUME statement is missing in error processing routine.

NO SUPPORT ERROR 64 That operation is not supported.

OUT OF DATA ERROR 4 No data exists to be read by READ statement. Check number of
variables in READ statements and number of constants in DATA
statements.

OUT OF MEMORY ERROR 7 Memory capacity is full. Expand BASIC program area by CLEAR
and MSET commands.

OUT OF STRING SPACE ERROR 14 Character area is insufficient. Expand area by CLEAR command.

OVERFLOW ERROR 6 Numeric value exceeds predetermined range.

PORT ALREADY OPEN ERROR 52 Port with specified number has already been opened. Attempt is
made to open port more than once with the OPEN statement.
Delete unnecessary OPEN statements.

PORT NOT OPEN ERROR 57 Unopened port or I/O device is specified. Open port with the

OPEN statement.

131

Troubleshooting Appendix F
-
Error Message Error Explanation
Code

PROM ERROR 65 EEPROM is malfunctioning, or nothing is written in the EEPROM.

PROTECTED PROGRAM ERROR 62 Program is protected. To change program, delete name with
PNAME command.

RESUME WITHOUT ERROR 20 RESUME statement is executed when no error exists.

RETURN WITHOUT GOSUB ERROR 3 RETURN statement is encountered before execution of GOSUB
statement.

STRING FORMULA TOO COMPLEX 16 Character expression is too complex.

ERROR

STRING TOO LONG ERROR 15 Character string is too long.

SYNTAX ERROR 2 Program does not conform to syntax.

TYPE MISMATCH ERROR 13 Variable types do not match.

UNDEFINED LINE NUMBER ERROR 8 Specified line number is wrong.

UNDEFINED USER FUNCTION ERROR 18 User function is not defined. Define execution start address with
the DEF USR statement.

VERIFY ERROR 66 Error occurs during EEPROM verification.

Item Cause Correction

All Indicators do not light | Power to PC is OFF.

Turn ON power to PC.

securely.

ASCII Unit is not mounted on PC Tighten mounting screws.

ERROR indicator is ON. | Power to peripheral device is OFF. | Turn ON power to device.

Cable for device is disconnected. | Correctly connect cable, and tighten screws.

exists.

Breakage in cable or faulty contact | Repair or replace cable.

Transfer rates and communication | Correct transfer rates and communication conditions.
conditions of ASCII Unit and
peripheral device do not match.

BAT ERR indicator is ON | Battery connector is disconnected. | Correctly connect battery connector.

Battery voltage has dropped. Replace battery.

<<PROGRAM MEMORY
ERROR>>, and CTRL+X

Initial screen is BASIC program is damaged. Press CTRL+l, and BASIC program will be erased. (If

program is backed up in EEPROM, program can later
be restored by LOAD command.)

is ineffective.
Cannot program correctly | Operating System is damaged Execute the following steps and then press the Reset
switch.
MSET &H2000
MON <«
13A: 0_0<€

After executing these steps, turn off pin #2 on the
front-panel DIP switch. The following message will be
displayed on the initial screen:

<PROGRAM MEMORY ERROR>

When this message is displayed enter CTRL+I

Inspection Items

The following items should be periodically inspected.

Item Particulars Criteria Remarks
Environment Is ambient temperature 0° to 55°C Thermometer
appropriate?

Is ambient humidity appropriate? 35% to 85% (without condensation) Hygrometer

Is dust built up? Must be free from dust. Visual inspection
Mounting condition | Are cable screws loose? Must not be loose. Standard screwdriver
Is cable broken? Must be mounted properly. Visual inspection

132

Troubleshootinér Appendix F

Maintenance Parts

The battery life is 5 years at 25°C. If the battery is used at higher temperatures, its life is shortened. When the
battery voltage drops, the BAT ERR LED indicator blinks, and the Battery Low Flag (bit 06 of word n+1 in 2 word
mode and n+3 in 4 word mode, where n = 100 + 10 x machine number) turns ON. Replace the battery within 1 week
after the indicator blinks.

To replace the battery, take the following steps:

1. Turn OFF the power to the ASCII Unit. If power is not supplied to the Unit, apply power to the Unit
for at least one minute and then turn it OFF.

2. Press the upper side of the battery storage cover, and slide it down to remove.
3. Disconnect the battery and connector and replace them with new ones.
4. Replace the battery storage cover.

Notes on Handling

Turning off the power to the PC before replacing the ASCII Unit.
When returning a defective unit to OMRON, inform us of the abnormal symptoms in as much detail as possible.

133

Appendix G
BASIC Commands, Statements, and

Functions

The following tables list the BASIC commands, statements, and functions alphabetically.

The characters in the Command, Statement, and, Function columns denote the following:

Gen: General statement
Dev: Device Control statement
Arith: Arithmetic Operation function

Comm: Command

Char: Character String function
Spec: Special function

Item Description Command | Statement | Function | Page

ABS Returns the absolute value of a number Arith 54

ACOS Returns the arc cosine of a number Arith 54

ASC Returns the value of the first character in a Char 56
character string.

ASIN Returns the arc sine of a number Arith 54

ATN Returns the arc tangent of a number Arith 54

AUTO Automatically generates line numbers Comm 28

CDBL Rounds off a numeric value to make an integer Arith 54

CHR$ Returns the character corresponding to the ASCII Char 56
code given by the argument

CINT Converts a numeric value into a double-precision Arith 54
real number

CLEAR Initializes numeric and character variables Gen 33

CLOSE Closes a port Dev 51

CLS Clears the screen Dev 51

COM ON/ Enables, disables, or stops an interrupt from a Gen 34

OFF/STOP communication port

CONT Resumes execution of a program that has been Comm 28
stopped

COS Returns the cosine of a number Arith 54

CSNG Converts a numeric value into a single-precision Arith 55
real number

DATA Defines numeric and character variables for Gen 34
subsequent READ statements

DATE$ Sets or assigns the date Spec 59

DAY Sets or assigns the day (in numbers) Spec 59

DEF FN Defines and names a user-generated function Gen 35

DEF Declares the variable type as integer, Gen 35

INT/SNG/DBL/ | single-precision, double-precision or string

STR

DEF USR Specifies the start address of the assembly Gen 36
language subroutine called from memory by USR

DEL Deletes a line or portion of a line in the program Comm 28

DIM Specifies the maximum values for array variables Gen 36
and assigns the area

EDIT Edits one line of the program Comm 29

END Terminates the execution of a program and closes Gen 36
all files

EOF Verifies that the port buffer of the specified port is Spec 60
empty

135

BASIC Commands, Statements, and Functions

Appendix G

ltem Description Command | Statement | Function | Page

ERL/ERR Returns the error code and the line number where Spec 60
the error has occurred

ERROR Simulates an error and allows error codes to be Gen 37
defined

FIX Returns the integer part of a number Arith 55

FOR...TO... Repeats a FOR to NEXT loop a specified number of Gen 37

STEP_NEXT times

FRE Returns the range of available memory Spec 60

GOSUB. Calls and executes the subroutine and returns to Gen 38

RETURN the original program line with a “RETURN”
statement

GOTO Branches to a specified line number Gen 38

HEX$ Returns a string representing the hexadecimal value Char 56
of the decimal argument

IF.. THEN... Selects the statement to be executed or branch Gen 38

ELSE...GOTO | destination as the result of an expression

ELSE

INKEY$ Returns a character read from the keyboard Spec 60

INPUT Reads key input and assigns it to the specified Gen 39
variable

INPUT$ Returns a character string read from the keyboard Spec 60
and assigns it to the specified variable

INSTR Searches for the first occurrence of a character Char 56
string and returns its position

INT Shortens an expression to a whole number Arith 55

KEY Controls initiation, cancellation, and halting of key Gen 39

ON/OFF/STOP | input interrupt

LEFT$ Returns a character string of the specified number Char 57
of characters, beginning at the left of the string

LEN Returns the total number of characters in a Char 57
specified character string

LET Assigns the result of the expression to the variable Gen 40

LINE INPUT Reads one line of input from the keyboard and Gen 40
assigns it to a character string variable

LIST/LLIST Displays or prints a program Comm 29

LOAD Loads the program from the EEPROM or from a Comm 29
port

LOC Returns the number of characters in the input queue Spec 61
waiting to be read

LOG Returns the natural logarithm Arith 55

MID$ Returns the specified number of characters starting Gen Char 41
from the specified character position

MON Sets the terminal to monitor mode Comm 30

MSET Sets the address boundary for an assembly Comm 30
program

NEW Clears the program and all currently defined Comm 31
variables

OCT$ Returns a string which represents the octal value of Char 57
the decimal argument

ON COM Defines the branch destination of a subroutine Gen 41

GOSuUB invoked by an interrupt from a communication port

ON ERROR Causes branching to the specified line in the event Gen 42

GOTO of an error

ON GOSUB Causes branching to the specified line when Gen 42

GOTO “expression” is “true”

136

BASIC Commands, Statements, and Functions

Appendix G

ltem Description Command | Statement | Function | Page

ON KEY GOTO | Causes branching to the specified line when the Gen 43, 43

ON KEY specified key is input

GOSuUB

ON PC GOSUB | Defines an interrupt number and its associated Gen 44
subroutine branch line number

OPEN Opens a port Dev 51

PC GET Reads data from the PC output area and assigns it Gen 45
to the specified variable

PC ON/STOP Enables or stops an interrupt invoked by the PC Gen 45

PC PUT Writes the value of a numeric expression to the PC Gen 46
input data area

PC READ Reads data from the specified PC memory area, Gen 46
converts it to the specified format, and assigns it to
the specified variables

PC WRITE Converts data to the specified format and writes it to Gen 47
the specified PC memory area

PEEK Reads the contents of a specified memory address Spec 61

PGEN Sets the program memory area to be used Comm 31

PINF Displays the program area currently being used Comm 31

PNAME Names, or deletes the name, of the program Comm 32
selected

POKE Writes data to a specified memory address Gen 47

PRINT/LPRINT | Displays or prints the value of an expression Gen 47

PRINT USING | Displays or prints a character string in the specified Gen 48

LPRINT USING | format

RANDOM Reseeds the random number generator Gen 48

READ Reads values from a data statement and assigns Gen 49
them to variables

REM Inserts a comment statement into the program Gen 49

RENUM Reassigns line numbers in the program Comm 32

RESTORE Specifies which DATA statement will be used by the Gen 49
next READ statement

RESUME Specifies the line where execution will resume after Gen 50
error processing

RIGHTS$ Returns the number of characters in a string starting Char 58
from the right

RND Returns a random number between 0 and 1 Arith 55

RUN Executes the program Comm 32

SAVE Saves the program to the EEPROM or to a device | Comm 33
connected to a communication port

SGN Returns the sign of an argument Arith 55

SIN Returns the sine of a number Arith 56

SPACE$ Returns an empty string of the specified number of Char 58
characters

STOP Stops program execution Gen 50

STR$ Converts a numeric value into a character string Char 58

STRINGS$ Returns a character string of the specified length Char 58

TAB Outputs spaces up to the specified column position Char 58

TAN Returns the tangent of a number Arith 56

TIME$ Sets or gives the time Spec 58

TRON/TROFF | Specifies or cancels a program trace Comm 33

USR Calls an assembly language function routine defined Spec 62
by a DEF USR statement

137

BASIC Commands, Statements, and Functions Appendix G

ltem Description Command | Statement | Function | Page
VAL Converts a character string into a numeric value Char 59
VERIFY Verifies the program and the EEPROM contents Comm 33
VARPTR Returns the memory address where the variable is Spec 63
stored
WAIT Sets a delay before the next command is executed Gen 50

e MID$ Function is located on page 57

List of Program Examples

Programs in Two-word Mode

Example Description Page
No.

To write data from the PC using the WRIT(87) to the ASCII Unit using the PC READ statement. 80

To write data from the ASCII Unit using the PC WRITE statement to the PC using the READ(88). 80

To enter characters from the keyboard and write them to the PC using the PC WRITE statement 81
and WRIT(87).

4 The PC uses interrupt number 3 to direct the ASCII Unit to read five words of data from the 81
specified DM addresses.

5 To read and print PC data at specific times using the ASCII Unit PC READ statement and 81
WRIT(87)

6 To accept input from the keyboard and write it to the PC using the PC WRITE statement and 82
READ(88)

7 To display the state of PC bit 1000 on a display device connected to port 2 82

8 To retrieve and print several types of data from the PC using the PC GET statement and WRIT(87) | 83

9 To use PC interrupts to direct execution of the ASCII Unit 84

10 To print PC data and the time of data transfer 85

1 To input data from a bar code reader using the PC WRITE statement 85

12 To transfer data from the PC to the ASCII Unit with the ASCII Unit maintaining control 86

13 To transfer data from the ASCII Unit to the PC with the ASCII Unit maintaining control 87

14 To transfer data from the PC to the ASCII Unit with the PC maintaining control 88

15 To transfer data from the ASCII Unit to the PC with the PC maintaining control 89

16 To process data with the ASCII Unit 89

17 To transfer data input through the ASCII Unit keyboard to the PC and then back to the ASCII Unit | 91
after computations have been performed by the PC

18 To initiate data transfer with the START switch using the WAIT statement 92

19 To direct processing using different interrupts 92

Programs in Four-word Mode

Example Description Page
No.
1 To print data at fixed time intervals using the LPRINT statement 93
2 To direct execution of the ASCII Unit from the PC using the PC GET statement 93
3 To control execution of the PC from the ASCII Unit using the PC PUT statement 94
4 To print out production data every hour from DMO00O. 95
5 To accept input from the keyboard and write it to the PC using the PC WRITE statement 95
6 To read data from an input file through a communication port 95
7 To transfer multi-word data from the ASCII Unit to the PC in four-word mode by using the PC 96
WRITE statement continuously
8 To transfer multi-word data from the PC to the ASCII Unit in four-word mode by using the PC 98

READ statement continuously

138

BASIC Commands, Statements, and Functions

Appendix G

Assembly Language Example

Example Description Page
No.
Classification of characters 100
Use of more than one parameter 101
FCS calculation 103

139

accumulator register

ASCII Unit program

Backplane

base address

baud rate

binary

bit

boot program

byte

communications port

data transfer routine

data word

device control codes

DIP switches

EPROM/EEPROM

Glossary

The arithmetic hardware register of the microprocessor.

The BASIC program that runs the ASCII Unit and communicates with the PC
program.

A rack of hardware slots sharing a common bus line to which the CPU and all of
its 1/0 Units are connected.

The first address of a block of memory or data. When a block of data is to be
transferred with one of the I/0O commands, the base address must be specified.

The speed at which data is transferred during I/O operations. The baud rate for
the two ports is set with the right-side DIP switch. The standard baud rates are
300, 1200, 2400, 4800, 9600, and 19,200.

The number system that all computers are based on. A binary digit can have only
two values, zero and one. The octal and hexadecimal number systems are
based on binary digits.

The smallest piece of information that can be represented on a computer. A bit
has the value of either zero or one. A bit is one binary digit.

The BASIC program that is automatically loaded into the ASCII Unit RAM upon
power up or reset.

A group of eight bits that is regarded as one unit.

A connector through which external peripheral devices can communicate with a
host computer or microprocessor. The ASCII Unit has two communications
ports used to connect to a personal computer, printer, or other I/O devices.

The PC requires a dedicated data transfer routine incorporated into its program
in order to communicate with the ASCII Unit. A data transfer routine is not neces-
sary when the memory area designator parameter is used with the PC READ
and PC WRITE statements.

PC data is organized into units called words. Each word contains 16 bits and has
a unigue address in the PC memory. When transferring a block of data between
the PC and the ASCII Unit, it is necessary to specify the address of the first data
word in the block as well as the number of data words to be transferred. Through-
out this manual the terms word and data word are used interchangeably.

Keyboard strokes entered with the control key depressed that send control mes-
sages to peripheral devices such as a terminal display or a printer. For example,
control codes can be used to position the cursor on a display or to cause the
printer to print a line of text as it is being typed.

There are two sets of DIP switches on the back panel of the ASCII Unit. Each DIP
switch has eight pins which can be set to either zero or one. These DIP switches
are used for setting hardware parameters such as the baud rate and the start up
mode.

Nonvolatile memory (retains data when power is disconnected) is used for per-
manent storage of up to three ASCII Unit programs. If the start mode is set to

141

Glossary

execution sequence

flag

hexadecimal

index register

interrupt number

interrupt

I1/0 device

machine no. switch

mantissa

memory area designator (@)

monitor mode

monitor mode commands

MSB/LSB

octal

parameter/argument

142

automatic, the boot program will be loaded to the RAM from the EPROM upon
power up or reset. Programs can be read from and written to the EPROM with
the LOAD and SAVE commands, respectively.

The order of operation in which the PC and ASCII Unit hardware execute their
respective programs.

A hardware flag is a bit that is set or cleared by the machine to indicate a particu-
lar state or condition of the Unit to a peripheral device or to the program. Exam-
ples of PC hardware flags are the Read and Write flags. A software flag is set or
cleared by the user to indicate to the hardware a particular choice or option. For
instance, software flags are sometimes used for setting the direction of data
transfer or the baud rate of a communication device.

Hexadecimal or hex is a numerical system based on the number 16. One hex
digit can be represented by four binary digits in the range of zero to 15. The num-
bers 10 through 15 are represented by the letters A through F, respectively.

One of the microprocessor’s hardware registers. It is used for assembly lan-
guage programming.

A code that is sent from the interrupting device to the microprocessor indicating
which device is “calling.” The interrupt number is especially important if there is
more than one peripheral device connected to a microprocessor.

A signal sent to the microprocessor from a peripheral device that causes the mi-
croprocessor to alter its normal processing routine. An interrupt says to the mi-
croprocessor, “stop what you're doing and pay attention to me !” When an inter-
rupt is acknowledged by the microprocessor, program execution will branch to
an interrupt service routine specifically written to handle the given interrupt.

I/0 stands for input/output. Some examples of 1/0O devices are printers, mo-
dems, fax machines, and display terminals.

Used to select the unit number for the allocation of PC words. The Machine No.
switch is located on the front panel of the ASCII Unit.

The part of a numerical expression to the right of the decimal point.

A parameter of the PC READ and PC WRITE statements used to access specif-
ic PC data areas. When using the memory area designator for data transfer, the
ASCII Unit does not need an accompanying PC data transfer routine.

The mode or environment where assembly language programs are written,
edited, and tested.

The commands used in monitor mode for writing, editing, and debugging an as-
sembly language program.

MSB stands for Most Signicant Byte and refers to the upper or left half of a data
word (a data word contains two bytes). The Least Significant Byte refers to the
lower or right half of a data word.

A numerical system based on the number eight. One octal digit is made up of
three binary digits in the range of zero to seven.

A parameter is a value or symbol supplied to a BASIC or assembly language
command. A parameter either directs a command to implement a particular op-

Glossary

PC program

polling

port buffer

program counter

RAM

Read Flag

reading/writing

RS-232C interface

cycle time and refreshing

stack pointer

start address

start mode

START/STOP switch

upload/download

valid signal line

tion or format, or supplies a memory address where data can be stored. Similar
to a parameter and sometimes used interchangeably is the term “argument”.
Where a parameter usually supplies some type of control information to the
function or command, an argument is usually a variable that supplies needed
data.

A program that runs the PGC; it is written in the Ladder Diagram programming lan-
guage.

A process whereby the microprocessor periodically checks the value of a speci-
fied bit or byte, and depending on that value, the microprocessor takes some
specified action.

Special memory that is used to temporarily store data that has just been re-
ceived or is about to be sent out through a communication port.

A microprocessor register that keeps track of program execution. It is used for
assembly language programming.

Stands for Random Access Memory and is used for running the ASCII Unit pro-
gram. RAM will not retain data when power is disconnected. Therefore data
should not be stored in RAM.

A PC hardware flag that indicates when data can be read from the PC. When this
flag is set, data can be accessed by a peripheral device.

When something is read, it is taken or copied from a remote location and brought
to the reference point. When something is written, it is sent from the reference
point to a remote or peripheral device.

The industry standard connector for serial communications. The ASCII Unit
communication ports use RS-232C connectors.

The PC is constantly scanning through its program, checking all of its inputs and
adjusting its outputs. The time required for the PC to run through its program one
time is called the cycle time. Each time the PC completes one cycle of its pro-
gram, it updates or refreshes its outputs. The ASCII Unit cannot read data from
the PC during data refresh.

A microprocessor index register used for assembly language programming.

The starting address of a block of data. This term is used as a parameter in many
of the assembly language monitor mode commands.

Indicates how the ASCII Unit starts up when power is first applied or the Unit is
reset. The two choices are manual mode and automatic mode. The mode can be
selected by setting pins one and two of the left-side DIP switch.

A toggle switch on the front panel of the ASCII Unit used for starting and stopping
execution of the ASCII Unit program.

Upload usually refers to the transfer of a program or information from a remote
device to a computer or other controlling device. Download usually refers to data
transfer from a computer or other controlling device to a remote device. From the
users point of view, if data is being sent to another device, it is being down-
loaded. If data is being received from another device, it is being uploaded.

A parameter of the OPEN command which specifies which communication sig-
nals (CTS, DSR, RTS) are to be used for handshaking.

143

Glossary

watchdog timer

word

Write Flag

XON/XOFF

144

A clock on the PC that measures the time it takes the PC program to complete
one cycle. If the cycle time is longer than 100 ms, a warning is issued. If the cycle
time is longer than 130 ms, the PC will suspend operation. The watchdog timer is
reset at the beginning of each cycle.

A word is made up of two bytes or 16 bits. The term “word” is used interchange-
ably with the term “data word” to indicate a single unit of data. Blocks of data are
transferred in word units. For data transfer, the address of a data block’s first
word and the number of words to be transferred must be specified.

A PC hardware flag that indicates when data can be written to the PC. When this
flag is set, data can be written to the PC.

OPEN statement parameters that control the rate at which the port buffers re-
ceive and transmit data. If the XON command is specified to be ON by the OPEN
statement, then when the port buffer becomes 3/4 full, the ASCII Unit will sus-
pend data transfer until the port buffer is less than 1/4 full. In a case where a
transmitting device is sending data at a faster baud rate than the ASCII Unit is set
for, the XON command will keep the transmitted data from being written over.

A

applications, precautions,

ASCII Unit
internal configuration,
system configuration,

Assembly language
Accumulator,
base address,
DEF USR statement,
format,
Index register,
LOAD command,
monitor commands
Compare,
Disassembler,
Dump, ,
Go,
Hexadecimal math,
Load,
Mini—-assembler,
Move,
New,
Register,
Save,
Step,
Verity,
monitor mode,
MSET command,
program counter,
RAM,
S and L commands, ,
SAVE command,
stack pointer,
start address,
terminology,
USR function,
VARPTR function,

B

back panel
diagram,
DIP switch settings,

backplane,
base address,

BASIC
arrays,
character set,
commands, ,
configuration,
constants,
data types,
expressions,

Index

format,
functions,
operator priority,
operators,
statements,
general,
type conversion,
variables,

BASIC program
execution,
storage,
transfer,

battery case,
battery life,
baud rate,

baud rate setting
Port 1,
Port 2,

C-D
communication flags,
communication mode,
communication parameters,
current rating,

data configuration,
four-word mode,
bit definitions,
program execution,
timing,
two-word mode,
bit definitions,
program execution,
timing,
data format conversion,

data formats, ,
A format,
B format,
H format,
I format,
O format,
S format,

data transfer
LOAD command,
SAVE command,

DIP switch settings

back panel,

baud rate,

boot mode,

data section mode,
front panel,

screen size,

start mode,

145

Index

DIP switches
back panel,
front panel,

F—M

front panel
contains . . .,
DIP switch diagram,
DIP switch settings,
Indicator LEDs,

Indicator LEDs,

inspection items,
installation, precautions,
interface signal timing,
interrupt, assembly program,
maintenance,

memory, capacity,

memory configuration
bits,
data allocation,
flags,
words,

operating environment, precautions,
PC cycle time,
PC program,

PC statement execution times,

146

personal computer, communication settings,

physical dimensions,
port address assignments,
ports,

precautions,
applications,
operating environment,
safety,

program transfer,

refresh timing
BASIC statements,
ON PC GOSUB statement,
PC GET statement,
PC ON statement,
PC PUT statement,
PC READ statement,
PC STOP statement,
PC WRITE statement,

RS-232C pin definitions,
safety precautions. See precautions
stack pointer,

switches
RESET,
START/STOP,

system configuration,

transfer capacity,

transmission mode,

transmission signal timing,
WRIT(87/191) and READ(88/190),
XON,

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W186-E1-4

|— Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the

previous version.

Revision code Date Revised content

1 October 1991 Original production with additions and Page 89: Addition made to fifth para-
changes to enable application with CV-se- graph in Remarks section.
ries PCs made along with the following Page 92: Page added following this
changes. page.
Z:g:d’x: Information on applicable PCs Page 129: Missing items added to table.
Page 3: Battery model number cor- Page 175: Execution times added for
rected. CV-series PCs.
Page 26: First and last paragraphs of Page 184: Last column in bottom row of
Transfer section rewritten. table corrected.

2 January 1994 Page 84: Ladder diagram corrected and line 60 of the program deleted.

Page 88: Lines 20 and 100 of the program corrected. Execution sequence 1
rewritten.

147

Revision History

Revision code Date Revised content

3 July 1996 Section of precautions added before section 1 and adjustments made to signal
words for precautions.

Scan time changed to cycle time throughout the manual.

Page 3: Extra indication for T/R added to the table. Note added.
Page 7: Reference changed.

Page 10: Sentence above Data Bit Definitions corrected.

Page 11: Descriptions of bits 03, 04, and 05 of word n+1 rewritten. Note
added.

Page 14: Descriptions of bits 03, 04, and 05 of word n+3 rewritten. Notes
added.

Page 19: Note added on PNAME.

Page 20: Information added to 3-4 Assembly Routines.

Page 22: Basic Statements and Basic Commands descriptions clarified.
Pages 23, 52, 76: Note added.

Page 30: Text added to MON Command.

Page 45: Line 40 added to program.

Page 47: Remarks for POKE Statement corrected.

Page 51: Sentence added to CLOSE Statement Remarks.

Pages 52, 53: Text at the bottom of page 52 and the top of page 53 rewritten.
Page 54: Last sentence of SCRN TERM rewritten.

Page 60: Remarks added to FRE Function.

Page 65: Integer and Character Array Type diagrams corrected. Note added.
Page 68: Text added to the top of the page.

Page 72: Text added to the data movement diagrams.

Page 82: Example 5 corrected.

Page 84: Line 60 added to program.

Pages 86, 87: Execution sequence 2 rewritten.

Page 89: Execution sequence 1 rewritten.

Pages 90, 91: Minor alterations to Examples 16 and 17.

Page 95: Example 4 corrected.

Pages 96, 97: Program examples added.

Page 100: Sentence after Assembly Language Example changed. Program
area table corrected.

Pages 104, 105: Page completely rewritten and information added. Device
Control Codes section deleted.

Page 131: Note added on clocks.

4 February 2001 Pages xii to xiv: PLP information updated.

Page xiii: "Power Supply Units” added in middle of page.
Page 7: First sentence corrected.

Pages 11 and 14: Note corrected.

Page 107: Note added.

148

OomRronN

OMRON ELECTRONICS LLC

1 Commerce Drive
Schaumburg, IL 60173
847.843.7900

For US technical support or
other inquiries: 800.556.6766

MRON CANADA, INC.

885 Milner Avenue
Toronto, Ontario M1B 5V8
416.286.6465

Global - http://www.omron.com
USA - http://www.omron.com/oei
Canada - http://www.omron.ca

UNITED STATES

To locate a Regional Sales Office, local Distributor or
to obtain product information, call: 847.843.7900

CANADA REGIONAL SALES OFFICES

Ontario Toronto 416.286.6465
Kitchener 519.896.1 144
Kingston 613.376.3968

Quebec Montreal 514.636.6676

British Columbia Vancouver 604.522.8855

Alberta Edmonton 403.440.0818
Calgary 403.257.3095

Sao Paulo 55.11.5564.6488

Cono Sur 54.114.787.1129

Florida 954.227.212| Ciudad Juarez 656.623.7083

Mexico, D.F. 555.534.1195 Monterrey, N.L. 818.377.4281|

W186-E1-4 ©2006 OMRON ELECTRONICS LLC
Printed in the U.S.A.

Specifications subject to change without notice.

VLI LTINS 7 LN T NN L 1™ AL AR "ARTL TP

— FANRA IV JIAL RIZST IV N 1™ 17N

°0 1N 11 1 1A

	C500-ASC04 ASCII Unit
	Terms and Conditions of Sale
	Table of Contents
	Precautions
	Hardware
	Data Allocations
	Programming and Communications
	Basic Programming
	Assembly Programming
	Program Examples
	Appendices
	Glossary
	Index
	Contact Information

