

Improved Quad CMOS Analog Switches

DESCRIPTION

The DG201B, DG202B analog switches are highly improved versions of the industry-standard DG201A, DG202. These devices are fabricated in Vishay Siliconix' proprietary silicon gate CMOS process, resulting in lower on-resistance, lower leakage, higher speed, and lower power consumption.

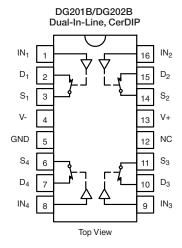
These quad single-pole single-throw switches are designed for a wide variety of applications in telecommunications, instrumentation, process control, computer peripherals, etc. An improved charge injection compensation design minimizes switching transients. The DG201B and DG202B can handle up to \pm 22 V input signals, and have an improved continuous current rating of 30 mA. An epitaxial layer prevents latchup.

All devices feature true bi-directional performance in the on condition, and will block signals to the supply voltages in the off condition.

The DG201B is a normally closed switch and the DG202B is a normally open switch. (see Truth Table.)

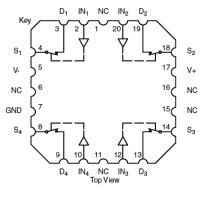
FEATURES

- ± 22 V supply voltage rating
- TTL and CMOS compatible logic
- Low on-resistance $R_{DS(on)}$: 45 Ω
- Low leakage I_{D(on)}: 20 pA
- Single supply operation possible
- Extended temperature range
- Fast switching t_{ON}: 120 ns
- Low glitching Q: 1 pC


BENEFITS

- Wide analog signal range
- Simple logic interface
- Higher accuracy
- Minimum transients
- Reduced power consumption
- Superior to DG201A, DG202

APPLICATIONS


- Industrial instrumentation
- Test equipment
- Communications systems
- Disk drives
- · Computer peripherals
- Portable instruments
- Sample-and-hold circuits
- Hi-Rel systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
DG201B	DG202B					
On	Off					
Off	On					
	DG201B On					

DG201B/DG202B LCC

Notes

- Logic "0" ≤ 0.8 V
- Logic "1" ≥ 2.4 V

Vishay Siliconix

ORDERING INFORMATION (Hi-Rel)								
PART	CONFIGURATION	TEMP. RANGE	PACKAGE	ORDERING PART	GENERIC	DSCC NUMBER		
			16-pin CerDIP	DG201BAK	DG201BAK	-		
				DG201BAK-E3	DG201BAK-E3	-		
DG201B	DG201B SPST x 4, NC	- 55 °C to 125 °C	·	DG201BAK/883 DG201BAK/883 (Vishay qualified approval in pro				
			LCC-20	DG201BAZ/883	DG201BAZ/883	5962-8671604M2A (Vishay qualified, DSCC approval in progress)		
		SPST x 4, NO - 55 °C to 125 °C	16-pin CerDIP	DG202BAK	DG202BAK	-		
				16-pin CerDIP	16-pin CerDIP	DG202BAK-E3	DG202BAK-E3	-
DG202B SPST x 4, N	SPST x 4, NO			DG202BAK/883	DG202BAK/883	5962-8671605MEA (Vishay qualified, DSCC approval in progress)		
			LCC-20	DG202BAZ/883	DG202BAZ/883	5962-8671605M2A (Vishay qualified, DSCC approval in progress)		

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Voltages Referenced to V-		44				
GND		25				
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first				
Current (any terminal)		30	A			
Peak Current, S or D (pulsed at 1 ms	, 10 % duty cycle max.)	100	mA			
Storage Temperature (A suffix)		- 65 to 150	°C			
Power Dissipation (Package)	16-pin CerDIP ^c	900	\^/			
Power Dissipation (Package) ^b	LCC-20 ^d	750	mW			

Notes

- $a. \quad Signals \ on \ S_X, \ D_X \ or \ IN_X \ exceeding \ V+ \ or \ V- \ will \ be \ clamped \ by \ internal \ diodes. \ Limit \ forward \ diode \ current \ to \ maximum \ current \ ratings.$
- b. All leads soldered or welded to PC board.
- c. Derate 12 mW/°C above 75 °C.
- d. Derate 10 mW/°C above 75 °C.

SCHEMATIC DIAGRAM (typical channel)

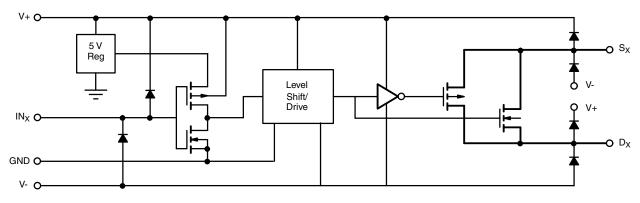


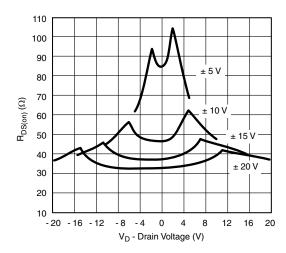
Fig. 1

Vishay Siliconix

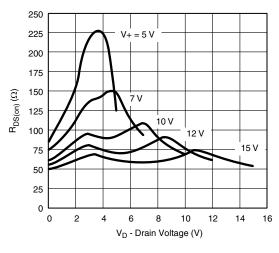
PARAMETER		TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP.b	TYP.¢	A SUFFIX - 55 °C to 125 °C		
	SYMBOL	V+ = 15 V, V- = - 15 V			MIN.d	MAX.d	UNIT
		V _{IN} = 2.4 V, 0.8 V ^f					
Analog Switch							
Analog Signal Range ^e	V _{ANALOG}		Full	-	- 15	15	V
Drain-Source On-Resistance	R _{DS(on)}	V _D = ± 10 V, I _S = 1 mA	Room Full	45 -	-	85 100	Ω
R _{DS(on)} Match	$\Delta R_{DS(on)}$		Room	2	-	-	
()		., .,,,,	Room	± 0.01	- 0.5	0.5	
Source Off Leakage Current	I _{S(off)}	$V_S = \pm 14 \text{ V}, V_D = \pm 14 \text{ V}$	Full		20	1	
Dunin Off Landson Comment		V . 143V.V . 143V	Room	± 0.01	- 0.5	0.5	A
Drain Off Leakage Current	I _{D(off)}	$V_S = \pm 14 \text{ V}, V_D = \pm 14 \text{ V}$	Full	-	- 20	20	nA
Drain On Lookaga Current		V = + 14 V V = + 14 V	Room	± 0.02	- 0.5	0.5	
Drain On Leakage Current	I _{D(on)}	$V_S = \pm 14 \text{ V}, V_D = \pm 14 \text{ V}$	Full	=	- 40	40	
Digital Control							
High Input Voltage	V _{INH}		Full	-	2.4	-	V
Low Input Voltage	V _{INL}		Full	-	-	0.8	
Input Current	I _{INH} or I _{INL}	V _{INH} or V _{INL}	Full	-	- 1	1	μΑ
Input Capacitance	C _{in}		Room	5	-	-	pF
Dynamic Characteristics							
Turn-On Time	+		Room	120	-	300	ns
Turn-On Time	t _{ON}	V _S = 2 V	Full	-	-	-	
Turn-Off Time		see switching time test circuit	Room	65	-	200	
Turri-On Time	t _{Off}		Full	-	-	-	
Charge Injection	Q	$C_L = 1000 \text{ pF}, V_g = 0 \text{ V}, R_g = 0 \Omega$	Room	1	-	-	рС
Source Off Capacitance	C _{S(off)}	V 0V f 1MI-	Room	5	-	-	pF
Drain Off Capacitance	C _{D(off)}	$V_S = 0 V, f = 1 MHz$	Room	5	-	-	
Channel On Capacitance	C _{D(on)}	$V_D = V_S = 0 \text{ V, f} = 1 \text{ MHz}$	Room	16	-	-	
Off Isolation	OIRR	$C_L = 15 \text{ pF}, R_L = 50 \Omega,$	Room	90	-	-	40
Channel-to-Channel Crosstalk	X _{TALK}	$V_S = 1 V_{RMS}, f = 100 \text{ kHz}$	Room	95	-	-	dB
Power Supply							
Daniting Committee Comment	I+		Room	-	-	50	μA
Positive Supply Current		0.4.5.4	Full	-	-	100	
Never land and the second	1 .	$V_{IN} = 0 \text{ V or } 5 \text{ V}$	Room	-	- 1	-	
Negative Supply Current	l-		Full	-	- 5	-	
Power Supply Range for Continuous Operation	V _{OP}		Full	-	± 4.5	± 22	V

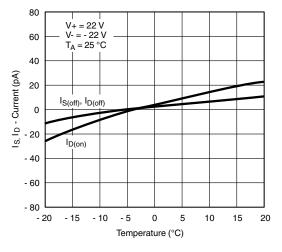
Vishay Siliconix

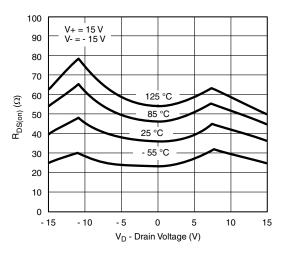
SPECIFICATIONS ^a (Single Supply)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP.b	TYP.º	A SUFFIX - 55 °C to 125 °C		
		V+ = 12 V, V- = 0 V			MIN.d	MAX.d	UNIT
		$V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^{f}$				100 001	
Analog Switch							
Analog Signal Rangee	V _{ANALOG}		Full	-	0	12	V
Drain-Source	В	$V_D = 3 \text{ V}, 8 \text{ V}, I_S = 1 \text{ mA}$	Room	90	-	160	Ω
On-Resistance	R _{DS(on)}	$V_D = 3 V, 6 V, I_S = 1 IIIA$	D = 3 V, 8 V, I _S = 1 MA	-	-	200	
Dynamic Characteristics							
Turn-On Time	t _{ON}	V _S = 8 V	Room	120	-	300	- ns
Turn-Off Time	t _{OFF}	see switching time test circuit	Room	60	-	200	
Charge Injection	Q	$C_L = 1 \text{ nF}, V_{gen} = 6 \text{ V}, R_{gen} = 0 \Omega$	Room	4	-	-	рC
Power Supply							
Docitivo Supply Current	l+		Room	-	-	50	
Positive Supply Current	1+	V = 0 V or 5 V	Full 10	100] [
Negative Cumply Cument	I-	$V_{IN} = 0 \text{ V or 5 V}$	Room 1	-	μA		
Negative Supply Current			Full	-	- 5	-	
Power Supply Range for Continuous Operation	V _{OP}		Full	-	4.5	25	V

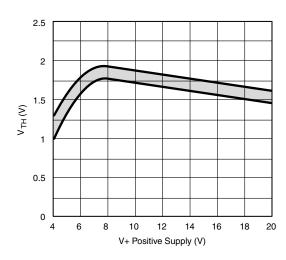

Notes

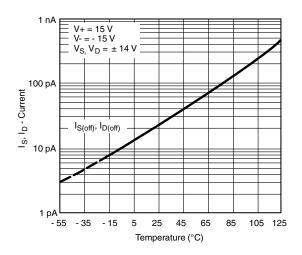
- a. Refer to PROCESS OPTION FLOWCHART.
- b. Room = 25 °C, full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

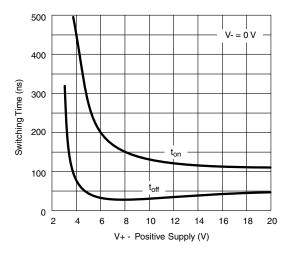

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

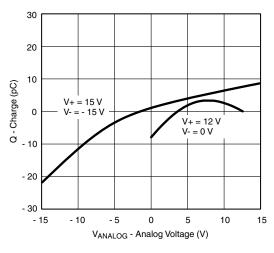

R_{DS(on)} vs. V_D and Power Supply Voltages

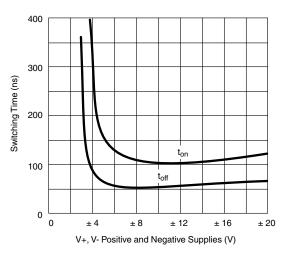

R_{DS(on)} vs. V_D and Single Power Supply Voltages

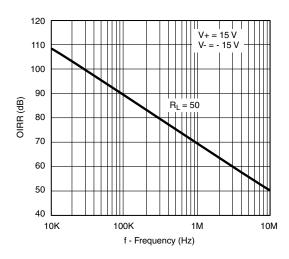

Leakage Currents vs. Analog Voltage

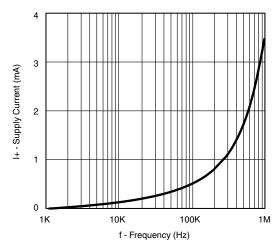
R_{DS(on)} vs. V_D and Temperature


Input Switching Threshold vs. Supply Voltage

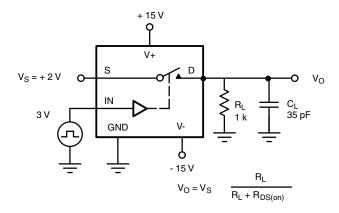

Leakage Currents vs. Temperature


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Switching Time vs. Single Supply Voltage


 $\mathbf{Q}_{S},\,\mathbf{Q}_{D}$ - Charge Injection vs. Analog Voltage

Switching Time vs. Power Supply Voltage


Off Isolation vs. Frequency

Supply Current vs. Switching Frequency

TEST CIRCUITS

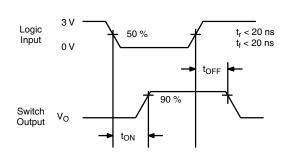


Fig. 2 - Switching Time

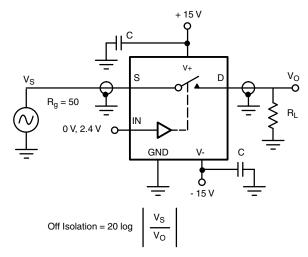


Fig. 3 - Off Isolation

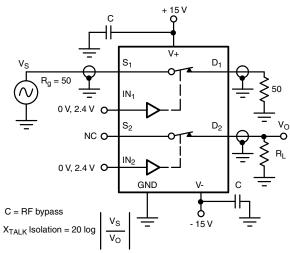
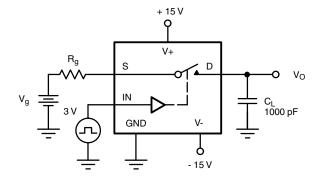
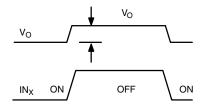




Fig. 4 - Channel-to-Channel Crosstalk

 V_O = measured voltage error due to charge injection The charge injection in coulombs is Q = $C_L \, x \, V_O$

Fig. 5 - Charge Injection

APPLICATIONS

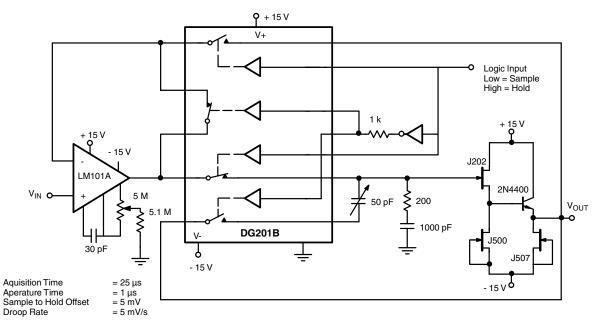
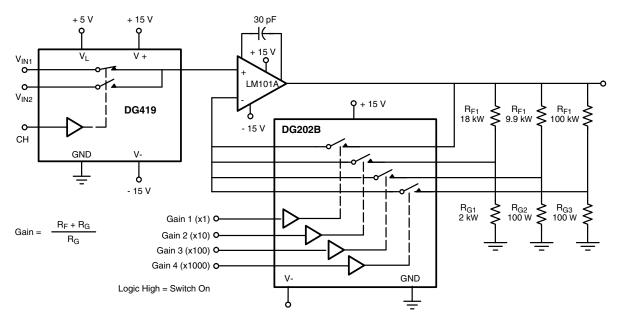
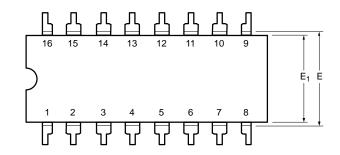
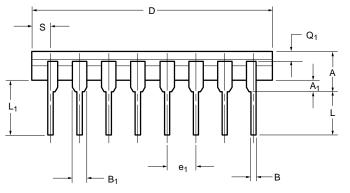
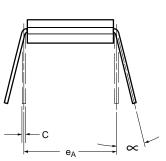


Fig. 6 - Sample-and-Hold

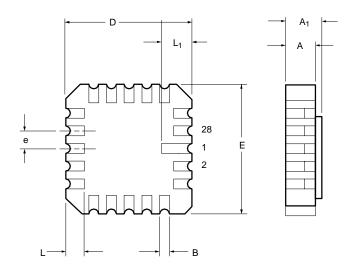
Fig. 7 - Active Low Pass Filter with Digitally Selected Break Frequency


Fig. 8 -A Precision Amplifier with Digitally Programable Input and Gains


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63374.

CERDIP: 16-LEAD



	MILLIMETERS		INCHES		
Dim	Min	Max	Min	Max	
Α	4.06	5.08	0.160	0.200	
A ₁	0.51	1.14	0.020	0.045	
В	0.38	0.51	0.015	0.020	
B ₁	1.14	1.65	0.045	0.065	
С	0.20	0.30	0.008	0.012	
D	19.05	19.56	0.750	0.770	
Е	7.62	8.26	0.300	0.325	
E ₁	6.60	7.62	0.260	0.300	
e ₁	2.54	BSC	0.100	BSC	
e _A	7.62	BSC	0.300 BSC		
┙	3.18	3.81	0.125	0.150	
L_1	3.81	5.08	0.150	0.200	
Q_1	1.27	2.16	0.050	0.085	
S	0.38	1.14	0.015	0.045	
∞	0°	15°	0°	15°	
ECN: S-03946—Rev. G, 09-Jul-01 DWG: 5403					

Document Number: 71282 www.vishay.com 03-Jul-01 www.vishay.com

20-LEAD LCC

	MILLIM	IETERS	INC	HES		
Dim	Min	Max	Min	Max		
Α	1.37	2.24	0.054	0.088		
A ₁	1.63	2.54	0.064	0.100		
В	0.56	0.71	0.022	0.028		
D	8.69	9.09	0.342	0.358		
E	8.69	9.09	0.442	0.358		
е	1.27 BSC 0.050 BSC			BSC		
L	1.14	1.40	0.045	0.055		
L ₁	1.96	2.36	0.077	0.093		
ECN: S-03946—Rev. B, 09-Jul-01						

DWG: 5321

Document Number: 71290 www.vishay.com 02-Jul-01

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000