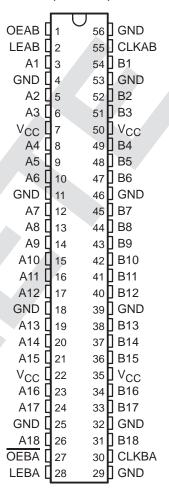
SCAS261A - JANUARY 1993 - REVISED JULY 1995


- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- Member of the Texas Instruments Widebus™ Family
- UBT[™] (Universal Bus Transceiver)
 Combines D-Type Latches and D-Type
 Flip-Flops for Operation in Transparent,
 Latched, or Clocked Mode
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

The SN74ALVC16501 18-bit universal bus transceiver is designed for low-voltage (3.3-V) V_{CC} operation; it is tested at 2.5-V, 2.7-V, and 3.3-V V_{CC} .

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. When OEAB is high, the outputs are active. When OEAB is low, the outputs are in the high-impedance state.

DGG OR DL PACKAGE (TOP VIEW)

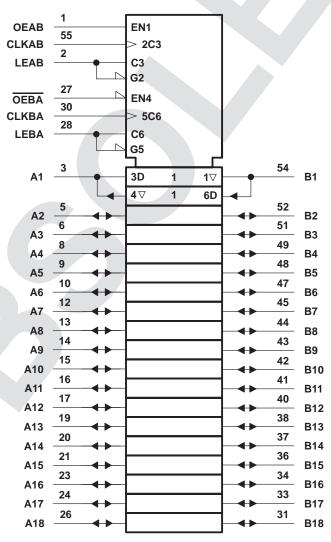
Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, and CLKBA. The output enables are complementary (OEAB is active high and OEBA is active low).

The SN74ALVC16501 is available in Tl's shrink small-outline (DL) and thin shrink small-outline (DGG) packages, which provide twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The SN74ALVC16501 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC, UBT, and Widebus are trademarks of Texas Instruments Incorporated.

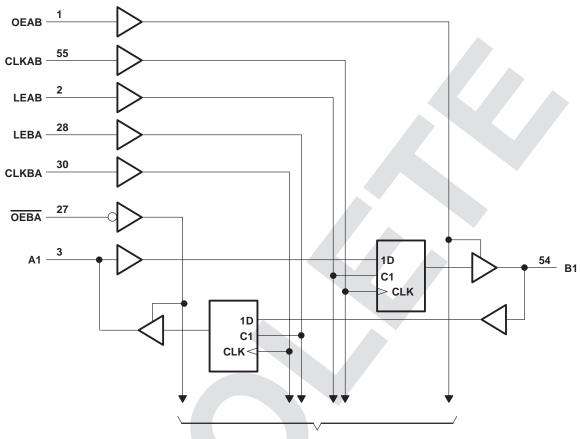


FUNCTION TABLE†

	INPUTS					
OEAB	LEAB	CLKAB	Α	В		
L	Χ	Χ	Χ	Z		
Н	Н	Χ	L	L		
Н	Н	Χ	Н	Н		
Н	L	\uparrow	L	L		
Н	L	\uparrow	Н	Н		
Н	L	Н	Χ	в ₀ ‡ в ₀ §		
Н	L	L	Χ	В ₀ §		

[†] A-to-B data flow is shown: B-to-A flow is similar but uses OEBA, LEBA, and CLKBA.

logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[‡] Output level before the indicated steady-state input conditions were established, provided that CLKAB is high before LEAB goes low

[§] Output level before the indicated steady-state input conditions were established

logic diagram (positive logic)

To 17 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	
Input voltage range, V _I (except I/O ports) (see Note 1) .	0.5 V to 4.6 V
Input voltage range, V _I (I/O ports) (see Notes 1 and 2) .	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, VO (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Maximum power dissipation at $T_A = 55^{\circ}C$ (in still air) (see	e Note 3): DGG package 1 W
	DL package 1.4 W
Storage temperature range, T _{stg}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This value is limited to 4.6 V maximum.
 - 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, refer to the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002B.

SN74ALVC16501 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCAS261A – JANUARY 1993 – REVISED JULY 1995

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
Vcc	Supply voltage		2.3	3.6	V
V	V _{CC} = 2.3 V to 2.7 V		1.7		V
VIH	High-level input voltage	V _{CC} = 2.7 V to 3.6 V	2		V
V	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	v
٧ _I	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
		V _{CC} = 2.3 V		-12	
IOH	High-level output current	$V_{CC} = 2.7 \text{ V}$		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 2.3 V		12	
lOL	Low-level output current $V_{CC} = 2.7 \text{ V}$			12	mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate		0	10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

SCAS261A - JANUARY 1993 - REVISED JULY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	ADAMETED	TEST CONDITIONS		+	T _A = -	-40°C to	85°C	UNIT	
1	ARAMETER	IEST CON	IDITIONS	v _{cc} †	MIN	TYP [‡]	MAX	UNII	
		I _{OH} = -100 μA		MIN to MAX	V _{CC} -C).2			
		I _{OH} = -6 mA	V _{IH} = 1.7 V	2.3 V	2				
,			V _{IH} = 1.7 V	2.3 V	1.7			v	
VOH		I _{OH} = -12 mA	V _{IH} = 2 V	2.7 V	2.2			V	
		V _{IH} = 2 V	3 V	2.4					
		I _{OH} = -24 mA	V _{IH} = 2 V	3 V	2				
		I _{OL} = 100 μA		MIN to MAX			0.2		
		I _{OL} = 6 mA	V _{IL} = 0.7 V	2.3 V			0.4		
VOL	I.a. 40 mA	V _{IL} = 0.7 V	2.3 V			0.7	V		
		IOC = 15 MA	V _{IL} = 0.8 V	2.7 V			0.4		
		I _{OL} = 24 mA	V _{IL} = 0.8 V	3 V			0.55		
Ιį		V _I = V _{CC} or GND		3.6 V				μΑ	
		V _I = 0.7 V		2.3 V	45				
		V _I = 1.7 V		2.3 V	-45				
$V_{OH} \begin{tabular}{ll} $I_{OH} = -6 \text{ mA}$ & $V_{IH} = 1.7 \text{ V}$ \\ $I_{OH} = -12 \text{ mA}$ & $V_{IH} = 2 \text{ V}$ \\ $V_{IH} = 2 \text{ V}$ \\ $V_{IH} = 2 \text{ V}$ \\ \hline $I_{OH} = -24 \text{ mA}$ & $V_{IH} = 2 \text{ V}$ \\ \hline $I_{OL} = 100 \mu\text{A}$ & $V_{IL} = 0.7 \text{ V}$ \\ \hline $I_{OL} = 6 \text{ mA}$ & $V_{IL} = 0.7 \text{ V}$ \\ \hline $I_{OL} = 12 \text{ mA}$ & $V_{IL} = 0.7 \text{ V}$ \\ \hline $I_{OL} = 12 \text{ mA}$ & $V_{IL} = 0.8 \text{ V}$ \\ \hline $I_{OL} = 24 \text{ mA}$ & $V_{IL} = 0.8 \text{ V}$ \\ \hline I_{II} & $V_{I} = V_{CC} \text{ or GND}$ \\ \hline $V_{I} = 0.7 \text{ V}$ & $V_{IL} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.7 \text{ V}$ & $V_{IL} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = 0.8 \text{ V}$ & $V_{I} = 0.8 \text{ V}$ \\ \hline $V_{I} = $		21/	75			μΑ			
		V _I = 2 V		3 V	-75				
		V _I = 0 to 3.6 V		3.6 V			±500		
loz§		V _O = V _{CC} or GND		3.6 V			±10	μΑ	
		$V_I = V_{CC}$ or GND,	IO = 0	3.6 V			40	μΑ	
ΔICC			One input at V _{CC} – 0.6 V,				750	μΑ	
Ci	Control inputs	$V_I = V_{CC}$ or GND		3.3 V		4		pF	
Cio	A or B ports	$V_O = V_{CC}$ or GND		3.3 V		8		pF	

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

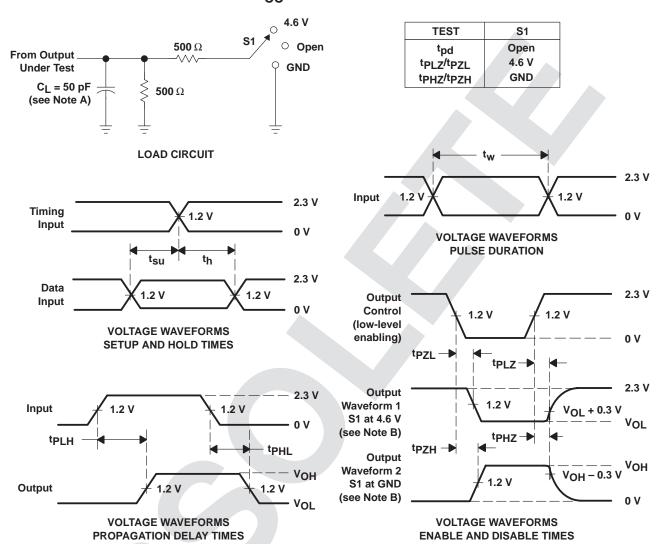
timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			V _{CC} =		VCC =	2.7 V	V _{CC} =		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
f _{clock}	Clock frequency		0	150	0	150	0	150	MHz	
	Pulse duration	LE high	3.3		3.3		3.3		no	
t _W		CLK high or low	3.3		3.3		3.3		ns	
	Setup time	Data before CLK↑	2.2		2.1		1.7			
t _{su}		Data before LE↓, CLK high	1.9		1.6		1.5		ns	
		Data before LE↓, CLK low	1.3		1.1		1			
	Hold time	Data after CLK↑	0.6		0.6		0.7		no	
^t h	Tiolu time	Data after LE↓, CLK high or low	1.4		1.7		1.4		ns	

[‡] All typical values are at V_{CC} = 3.3 V. § For I/O ports, the parameter I_{OZ} includes the input leakage current.

SN74ALVC16501 **18-BIT UNIVERSAL BUS TRANSCEIVER** WITH 3-STATE OUTPUTS SCAS261A – JANUARY 1993 – REVISED JULY 1995

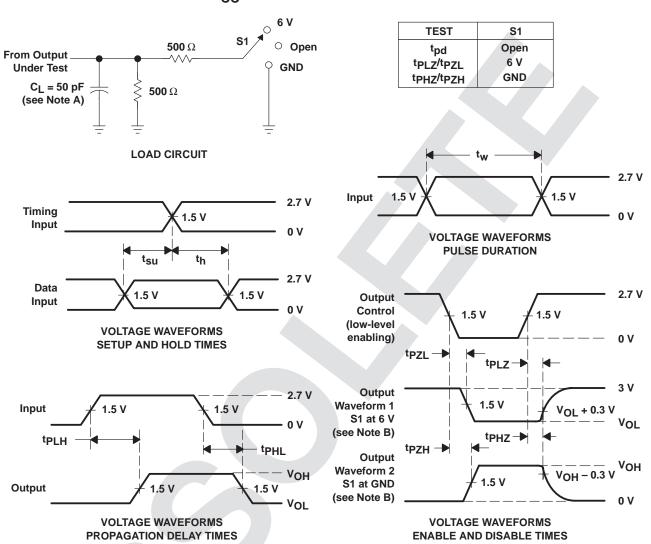
switching characteristics over recommended operating free-air temperature range, (unless otherwise noted) (see Figures 1 and 2) $\,$


PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 2.7 V	V _{CC} = 3.3 V ± 0.3 V	UNIT
	(INFOT)		MIN MAX	MIN MAX	MIN MAX	
f _{max}			150	150	150	ns
	A or B	B or A	1.2 5.4	4.5	1 3.9	
t _{pd}	LE	A or B	1.6 6.3	5.3	1.3 4.6	ns
	CLK	A or B	1.7 6.7	5.6	1.4 4.9	
t _{en}	OEAB	В	1.1 6.3	5.3	1 4.6	ns
t _{dis}	OEAB	В	2.2 6.4	5.7	1.4 5	ns
t _{en}	OEBA	А	1.4 6.8	6	1.1 5	ns
t _{dis}	OEBA	А	2 5.5	4.6	1.3 4.2	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CON	DITIONS	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V	UNIT	
					TYP	TYP		
C . Bower dissination conscitance		Outputs enabled	$C_1 = 50 pF$	f = 10 MHz	44	54	pF	
Cpd	C _{pd} Power dissipation capacitance	Outputs disabled	C _L = 50 pF,	I = IU WINZ	6	6	pr	

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.5 V \pm 0.2 V



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5$ ns, $t_f \leq 2.5$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpz and tpzH are the same as ten.
- G. tplH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2.5 \text{ ns}$, $t_f \leq 2.5 \text{ ns}$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tp71 and tp7H are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated