

January 2002 Revised March 2005

FSAL200

Wide Bandwidth Quad 2:1 Analog Multiplexer/Demultiplexer Switch

General Description

The Fairchild Switch FSAL200 is a rail-to-rail quad 2:1 high-speed CMOS TTL-compatible analog multiplexer/demultiplexer switch. The low On Resistance of the switch allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise

When \overline{OE} is LOW, the select pin connects the A Port to the selected B Port output. When \overline{OE} is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Features

- Typical 6Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level
- Rail-to-rail signal handling
- Low insertion loss
- Route communications signals including:

10/100 Ethernet

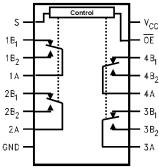
USB1.1

100VG-AnyLAN

Token Ring 4/16 Mbps

ATM25

SONET OCI 51.8 Mbps

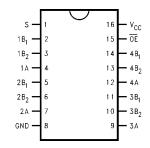

T1/E1

Ordering Code:

Order Number	Package Number	Package Description
FSAL200QSC	MQA16	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
FSAL200MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Analog Symbol



Truth Table

S	OE	Function
Х	Н	Disconnect
L	L	$A = B_1$
Н	L	$A = B_2$

Connection Diagram

Pin Assignments for TSSOP and QSOP

Pin Descriptions

Pin Name	Description				
ŌĒ	Switch Enable				
S	Select Input				
A, B ₁ , B ₂	Data Port				

Absolute Maximum Ratings(Note 1)

DC Input Diode Current (I_{IK})

Power Dissipation (P_D) @ +85°C

Ambient Temperature with

Power Applied $-40^{\circ}\text{C to } +85^{\circ}\text{C}$

Recommended Operating Conditions (Note 3)

Input Rise and Fall Time (t_r, t_f)

Thermal Resistance (θ_{JA}) 350°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Control input must be held HIGH or LOW, it must not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A	= -40°C to +8	5°C	Units	Conditions	
Syllibol		(V)	Min	Тур	Max		Conditions	
V _{IH}	HIGH Level Input Voltage	4.5 - 5.5	2.0			V		
		3.0 - 3.6	2.0			v		
V _{IL}	LOW Level Input Voltage	4.5 - 5.5	-0.5		0.8	V		
		3.0 - 3.6	-0.5		8.0	v		
loz	OFF State Leakage Current	0 - 5.5			100	nA	$0 \leq V_{IN} \leq 5.5V$	
R _{ON}	Switch On Resistance	4.5 - 5.5		6	12	Ω	I _{ON} = 10 - 30 mA	
	(Note 4)	3.0 - 3.6		15	22	52	I _{ON} = 10 - 30 mA	
I _{IN}	Control Input Leakage Current	5.5			±1	μΑ	V _{IN} = V _{CC} or GND	
		3.6			±1		V _{IN} = V _{CC} or GND	
Icc	Quiescent Supply Current	5.5			1	μА	V _{IN} = V _{CC} or GND	
	All Channels ON or OFF	5.5			'		I _{OUT} = 0	
	Analog Signal Range	V _{CC}	0		V _{CC}	V		
ΔR_{ON}	On Resistance Match Between	4.5 - 5.5		0.4	2	Ω	$I_A = -30 \text{ mA}, V_{Bn} = 3.15$	
	Channels (Note 4)(Note 5)	3.0 - 3.6		1	3	52	$I_A = -10 \text{ mA}, V_{Bn} 2.1$	
lo	Output Current	4.5 - 5.5	100			mA	B _n , B _n , S = 0V to 5V	
		3.0 - 3.6	80			IIIA	D _n , D _n , O = 0 v to 3 v	
R _{flat}	On Resistance Flatness	4.5 - 5.5		3		Ω	A, B ₁ , B ₂ = 0V to 5V	
	(Note 4)(Note 6)	3.0 - 3.6		7		22	A, B_1 , $B_2 = 0V$ to $5V$	

0.5 W

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).

Note 5: $\Delta R_{ON} = R_{ON}$ max – R_{ON} min measured at identical V_{CC} , temperature and voltage levels.

Note 6: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	V _{CC} T _A = -40°C to +85°C			Units	Conditions	Figure
		(V)	Min Typ Max	Oillis	Number			
t _{ON}	Turn On Time	4.5 – 5.5		10	20	ns	$VB_n = 3V$	Figures
	S to Output	3.0 - 3.6		28	40	ns	VB _n = 1.5V	1, 2
t _{OFF}	Turn Off Time	4.5 - 5.5		5	10	ns	$VB_n = 3V$	Figures
	S to Output	3.0 - 3.6		4	20	ns	VB _n = 1.5V	1, 2
Q	Charge Injection	5.0		7		рС	C _L = 0.1 nF, V _{GEN} = 0V	Figure 3
	(Note 7)	3.3		3		рС	$R_{GEN} = 0 \Omega$	
OIRR	Off Isolation	4.5 - 5.5	-5	FF		dB	R _L = 100 Ω	Figure 4
	(Note 8)	4.5 - 5.5		-55			f = 30 MHz	
		3.0 - 3.6		-75		dB	$R_L = 50 \Omega$	Figure 4
		3.0 - 3.6		-/5		uв	f = 1 MHz	Figure 4
Xtalk	Crosstalk	4.5 - 5.5		-70		dB	R _L = 100 Ω	Figure 5
		4.5 - 5.5		-70		uБ	f = 30 MHz	rigule 5
		3.0 - 3.6		75		dB	$R_L = 50 \Omega$	Figure F
		3.0 - 3.6		-75		uв	f = 1 MHz	Figure 5
BW	-3dB Bandwidth	4.5 - 5.5		137		MHz	$R_L = 100 \Omega$	Figure 8
		3.0 - 3.6		110		MHz	$R_L = 50 \Omega$	Figure 8
D	ΔR _{ON/RL} Distortion	4.5 - 5.5		2		%	y B 400.0	
	(Note 7)	3.0 - 3.6		3		70	$R_L = 100 \Omega$	

Note 7: Guaranteed by Design.

Note 8: Off Isolation = 20 log_{10} [V_A / V_{Bn}]

Capacitance (Note 9)

Symbol	Parameter	Тур	Max	Units	Conditions	Figure Number
C _{IN}	Control Pin Input Capacitance	2.3		pF	V _{CC} = 0V	
C _{IO-B}	B Port Off Capacitance	12		pF	V _{CC} = 5.0V and 3.0V	Figure 6
	A Port Off Capacitance	20		pF	V _{CC} = 5.0V and 3.0V	Figure 7
C _{ON}	Channel On Capacitance	15		pF	V _{CC} = 5.0V and 3.0V	Figure 7

Note 9: T_A = +25°C, f = 1 MHz, Capacitance is characterized but not tested in production.

AC Loading and Waveforms

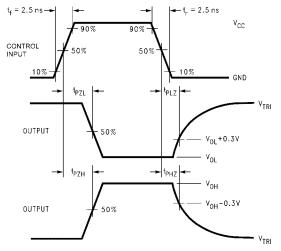


FIGURE 1. AC Waveforms

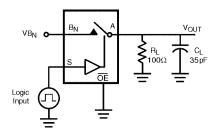
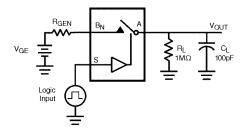



FIGURE 2. t_{ON} , t_{OFF} Loading

AC Loading and Waveforms (Continued)

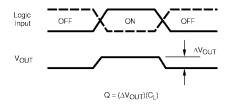


FIGURE 3. Charge Injection Test

Note: R_L = 50 Ω when V_{CC} = 3.3 \pm 10% for the Off Isolation, Crosstalk and Bandwidth test.

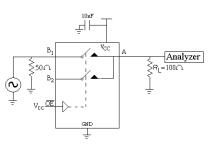


FIGURE 4. Off Isolation

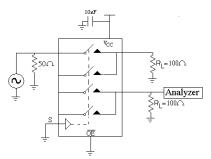


FIGURE 5. Crosstalk

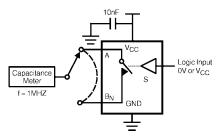


FIGURE 6. Channel Off Capacitance

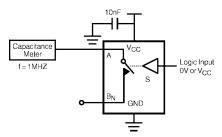


FIGURE 7. Channel On Capacitance

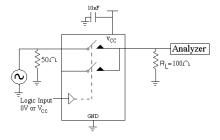
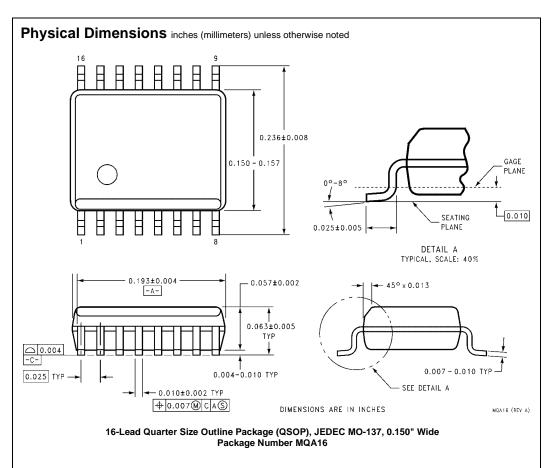
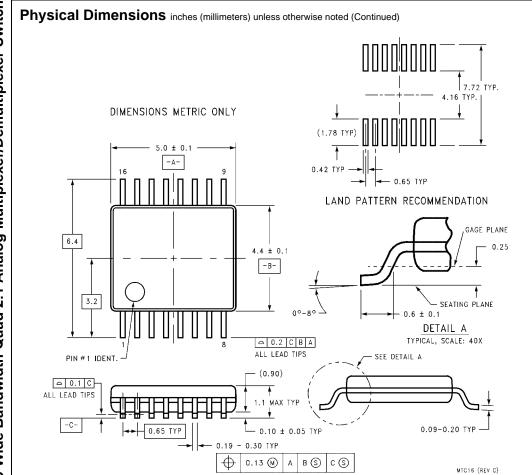




FIGURE 8. Bandwidth

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com