

NUP4104X6

4-Line Transient Voltage Suppressor Array

This 4-line voltage transient suppressor array is designed for application requiring transient voltage protection capability. It is intended for use in over-transient voltage and ESD sensitive equipment such as wireless phones, printers, automotive electronics, networking communication and other applications. This device features a monolithic common anode design which protects five independent lines in a single SOT-563 package.

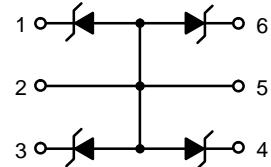
Features

- Protects Up to 4-Line in a Single SOT-563 Package
- Peak Power Dissipation – 150 Watts (8x20 μ sec Waveform)
- ESD Rating of Class 3B (Exceeding 8.0 KV) per Human Body Model and Class C (Exceeding 400 V) per Machine Model
- Compliance with IEC 61000-4-2 (ESD) 15 KV (Air), 8.0 KV (Contact)
- UL Flammability Rating of 94 V-0
- 100% Lead-Free, MSL1 @ 260°C Reflow Temperature

Applications

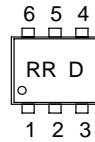
- Hand-Held Portable Applications
- Networking and Telecom
- Automotive Electronics
- Serial and Parallel Ports
- Notebooks, Desktops, Servers

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$, unless otherwise noted)


Rating	Symbol	Value	Unit
Peak Power Dissipation 8x20 μ s Double Exponential Waveform, (Note 1)	P_{PK}	150	W
Operating Temperature Range	T_J	-40 to 125	$^\circ\text{C}$
Storage Temperature Range	T_{STG}	-55 to 150	$^\circ\text{C}$
Lead Solder Temperature (10 s)	T_L	260	$^\circ\text{C}$
Electro-Static Discharge Human Body Model (HBM) Machine Model (MM) IEC 61000-4-2 (Air) IEC 61000-4-2 (Contact)	ESD	8000 400 30000 15000	V

1. Non-repetitive current pulse per Figure 1.

ON Semiconductor®


<http://onsemi.com>

MARKING DIAGRAM

SOT-563
CASE 463A
PLASTIC

RR = Specific Device Code
D = Date Code

ORDERING INFORMATION

Device	Package	Shipping†
NUP4104X6T1	SOT-563	4000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$, unless otherwise noted)

Characteristic	Test Condition	Symbol	Min	Typ	Max	Unit
Reverse Working Voltage	(Note 2)	V_{RWM}	—	—	3.0	V
Breakdown Voltage	$I_R = 1.0 \text{ mA}$	V_{BR}	6.1	—	7.2	V
Reverse Leakage Current	$V_{RWM} = 3.0 \text{ V}$	I_R	—	—	0.5	μA
Clamping Voltage	$I_{PP} = 1.0 \text{ A}$ (8x20 μs Waveform)	V_C	—	—	8.0	V
	$I_{PP} = 12 \text{ A}$ (8x20 μs Waveform)		—	—	13	
Peak Pulse Current	8x20 μs Waveform	I_{PP}	—	—	13	A
Capacitance	$V_R = 0 \text{ V}$, $f = 1.0 \text{ MHz}$ (Line to GND)	C_J	—	70	—	pF

2. TVS devices are normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal or greater than the DC or continuous peak operating voltage.

3. V_{BR} is measured at pulse test current I_T .

TYPICAL PERFORMANCE CURVES

($T_A = 25^\circ\text{C}$ unless otherwise noted)

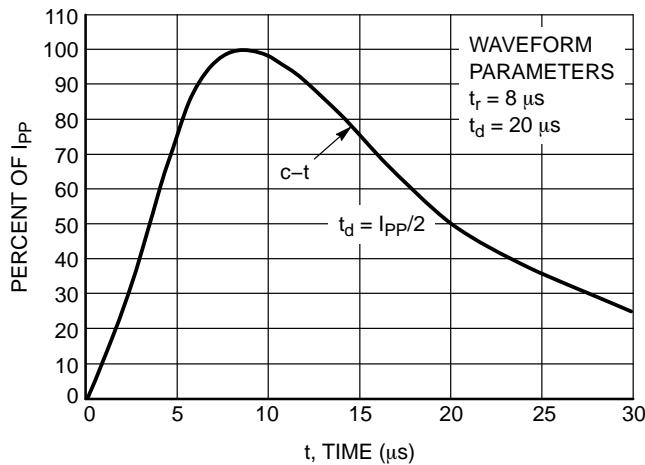


Figure 1. Pulse Waveform

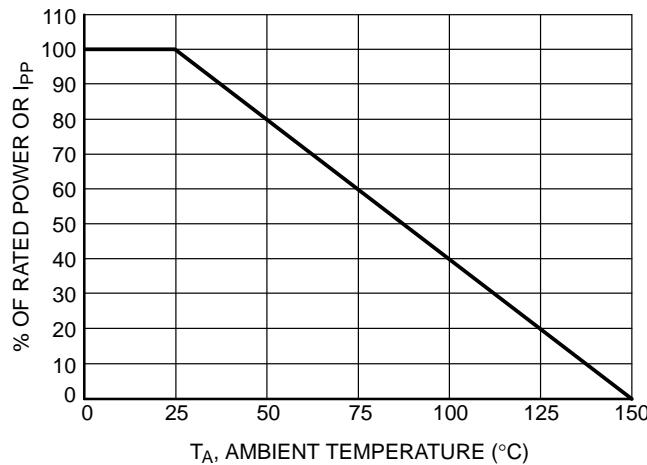


Figure 2. Power Derating Curve

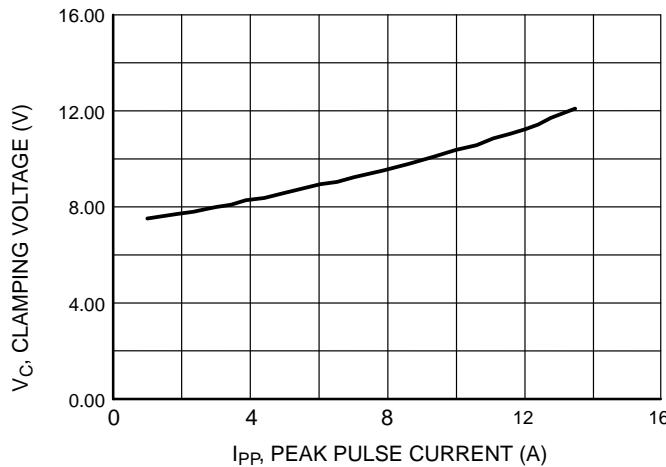
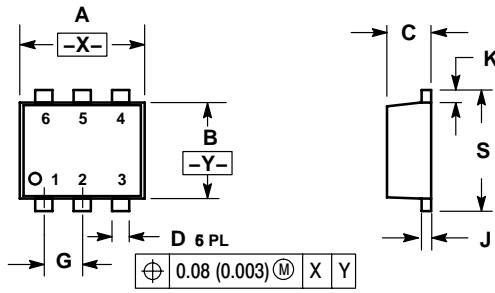
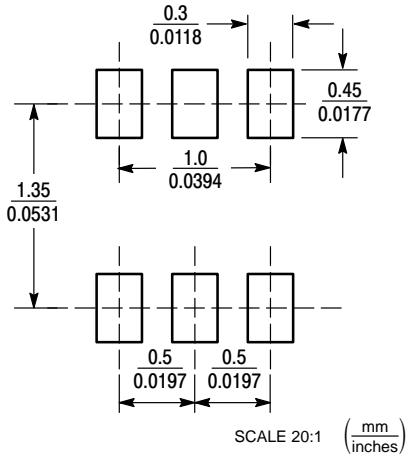



Figure 3. Clamping Voltage versus Peak Pulse Current

NUP4104X6

PACKAGE DIMENSIONS


SOT-563, 6-LEAD CASE 463A-01 ISSUE O

NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	1.50	1.70	0.059	0.067
B	1.10	1.30	0.043	0.051
C	0.50	0.60	0.020	0.024
D	0.17	0.27	0.007	0.011
G	0.50 BSC		0.020 BSC	
J	0.08	0.18	0.003	0.007
K	0.10	0.30	0.004	0.012
S	1.50	1.70	0.059	0.067

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support:

800-282-9855 Toll Free
USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center

2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website:

<http://onsemi.com>

Order Literature:

<http://www.onsemi.com/litorder>

For additional information, please contact your local Sales Representative.