

MICROCHIP

Lighting Communications Development Platform Product Highlights & Demonstrations

www.microchip.com/lighting

www.microchip.com/lightingcomms

Universal Lighting Protocol Development

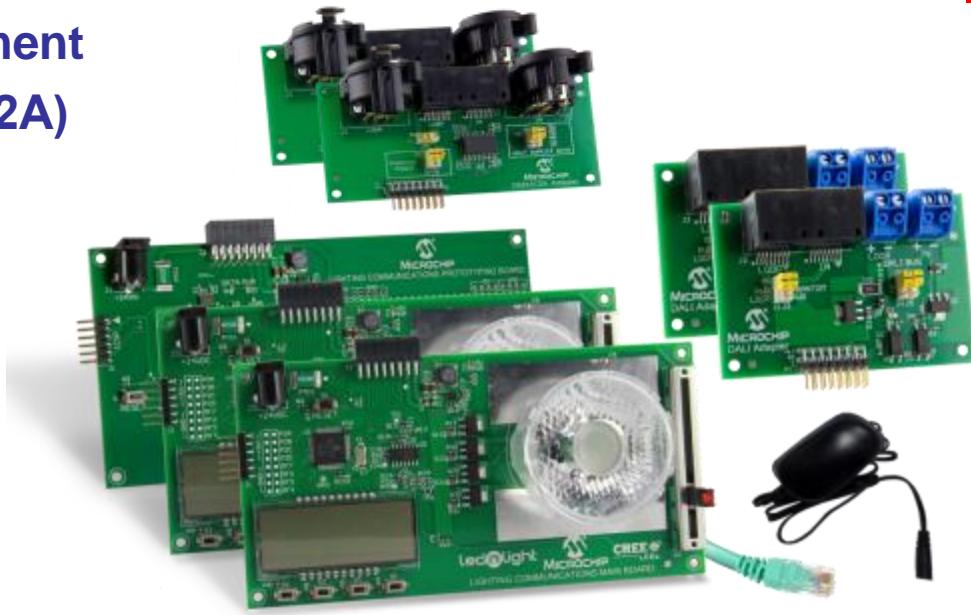
FREE 'C' Library Stack (DALI, DMX512A)

Dimming & Color Mixing Control

Customizable Capabilities

Platform Features

Main Communication Board Highlights (DM160214)


- Populated with PIC16F1947 controlling:
 - Communications
 - User Interface: LCD, buttons, slider
 - LED constant current drive
- Populated with Cree XLamp MC-E Color LED
- Populated with the LEDnLIGHT optic and holder

Prototyping Communication Board Highlights (AC160214)

- Populated with PIC16F1947 for user interface and communications
- Bread boarding space for customized lighting development

Universal Communications Adapter Interface

- DALI Adapter (DM160214-1)
- DMX512A Adapter (DM160214-2)
- Support for future protocol adapters (eg. RF)

Available for purchase separately or as a kit...

DALI Starter Kit (DV160214-1)

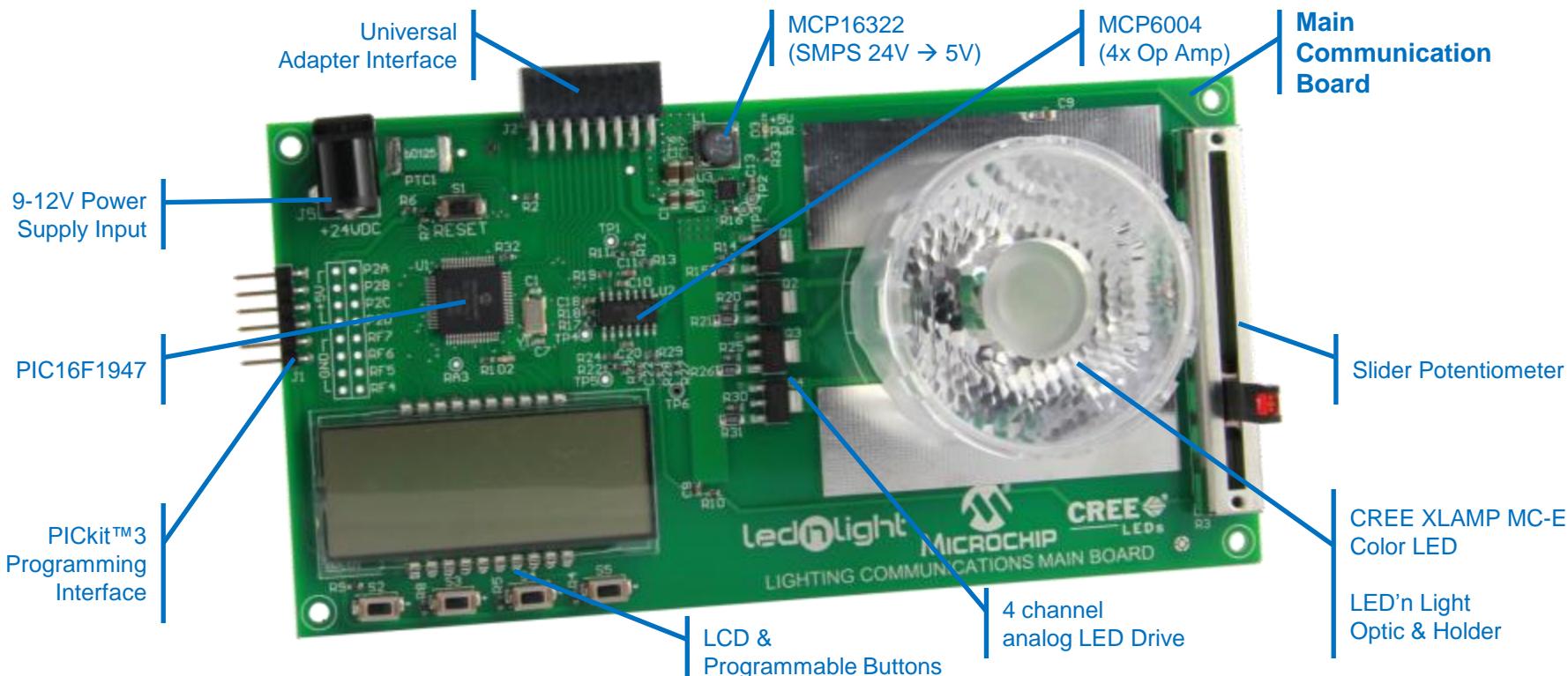
DMX512A Starter Kit (DV160214-2)

- (2) DALI or (2) DMX512A Adapters
- (2) Main Communication Boards
- (1) Prototyping Communication Board
- 9V International power supply
- RJ45 Patch cable

Go to www.microchip.com/lightingcomms

Lighting Communications Development Platform

Main Communication Board & Adapters

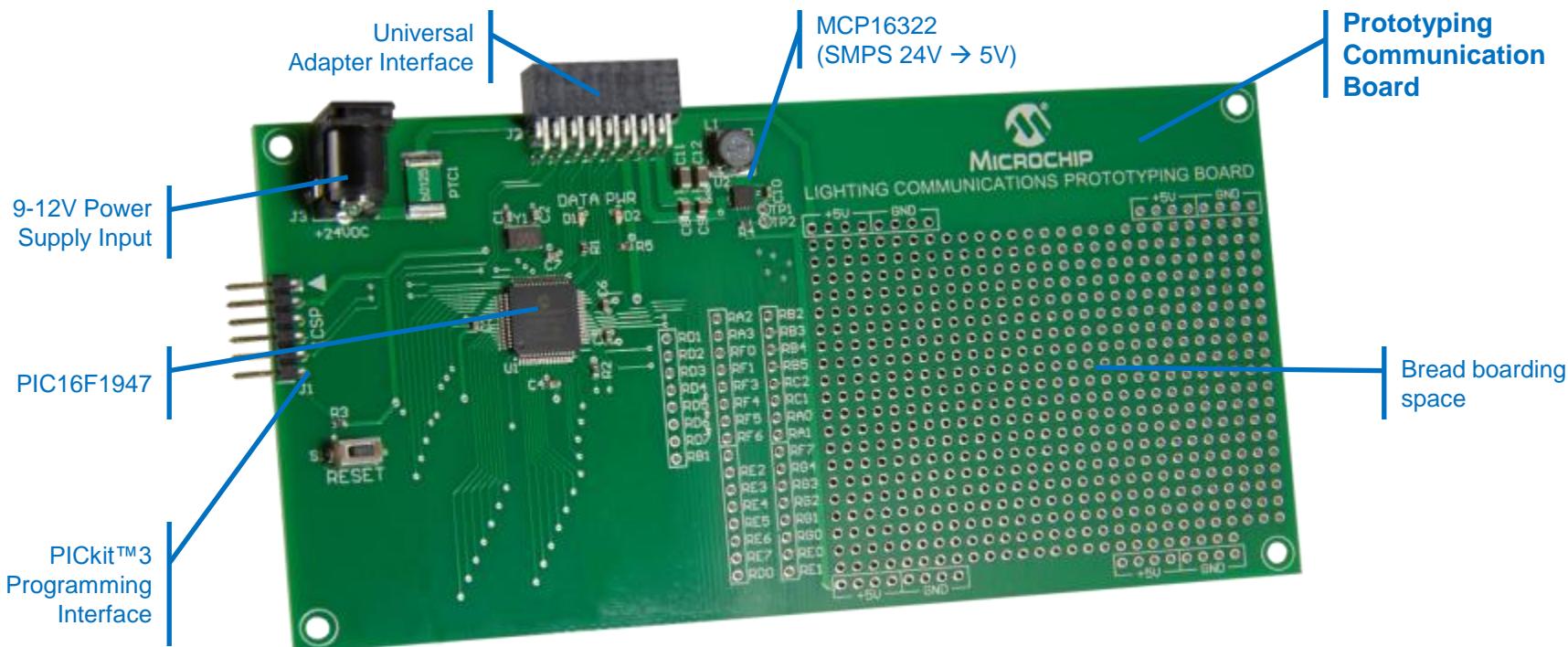

DALI Adapter
with 2-wire &
RJ45 connections

DMX512A Adapter
with 5-pin barrel &
RJ45 connections

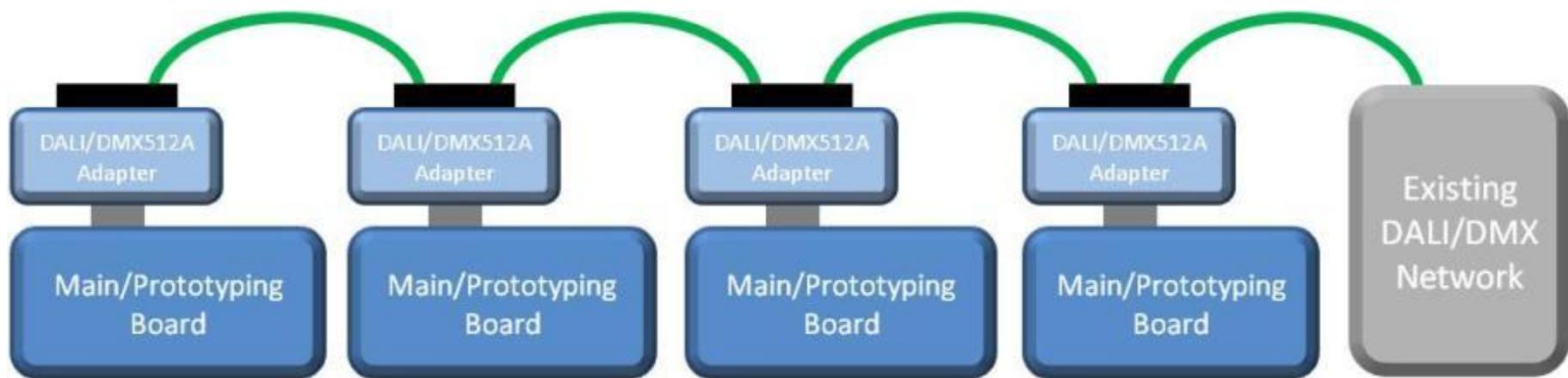
Support for future
adapters
(eg. Wireless)

Lighting Communications Development Platform

Prototyping Communication Board & Adapters


DALI Adapter
with 2-wire &
RJ45 connections

DMX512A Adapter
with 5-pin barrel &
RJ45 connections



Support for future
adapters
(eg. Wireless)

Configuration

- Minimum of (2) main or (2) prototyping boards
- Minimum of (2) adapters
 - connected via appropriate cabling
 - RJ45 patch cable
 - DMX512A 5-pin barrel cable
 - DALI 2-wire

DALI – “Digital Addressable Lighting Interface”

- Designed primarily for Commercial & Industrial lighting
- 2-wire connection and offers individual lamp or group addressability in a bus configuration

FREE DALI Firmware Library

- ‘C’ based firmware library
- Control Device (master) & Control Gear (slave) libraries
- Automated Commissioning
- Simple API for ease of use
- Firmware implementation on any 8-bit PIC Microcontroller
 - PIC Microcontroller Requirements
 - (1) 8-bit timer / (1) 16-bit timer
 - EEPROM or Emulated EEPROM (self-write Flash)
 - ~4KW Flash Program memory footprint (final code size TBD)
 - Compliance
 - IEC 62386-101 (DALI general system requirements)
 - IEC 62386-102 (DALI general system requirements – control gear)
 - Future support for IEC 62386-2xx implementation (particular requirements for control gear; eg. LED, Fluorescent, etc.)

Downloadable at www.microchip.com/lightingcomms

DMX512A

DMX512 – “Digital Multiplex with 512 pieces of information”

- Designed primarily for Theatrical & Architectural lighting
- Increased reliability over that of 0-10V

FREE DMX512A Firmware Library

- ‘C’ based firmware library
- Controller (master) & Receiver (slave) in a single library
- Simple API for ease of use
- Firmware implementation on any PIC Microcontroller
 - PIC Microcontroller Requirements
 - (1) EUSART
 - (1) 16-bit timer
 - ~1W Flash Program memory footprint
- Compliance
 - ANSI E1.11-2008 (USITT DMX512-A, Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting Equipment and Accessories)

Downloadable at www.microchip.com/lightingcomms

Partner Overview

Cree®, Inc. leads the industry through performance and application optimized lighting-class LEDs that simplify design and lower system costs to obsolete energy-wasting traditional lighting. Cree's relentless innovation drives the LED lighting revolution with products designed to accelerate LED adoption and push the boundaries of what's possible with LED lighting. Cree's LED product families include Cree® XLamp® and High Brightness LEDs.

LEDnLIGHT optics are made by Gaggione SAS the LaCluse, France plastic optics manufacturer, who produces the very narrow beam collimator providing excellent color mixing properties to address stage lighting, entertainment lighting and architectural lighting applications to name a few.

Intelligent Lighting & Control

Enabling Innovation in Lighting...

Visit us on the web at:

www.microchip.com/lighting

or email us at:

lighting@microchip.com

Intelligent Control

Communication & Networking
Lumen & Color Control
Environmental Sensing
Thermal Management
Predictive Failure & Maintenance
Day Light Harvesting & Dimming
User Interface & Control

Flexible Power

Flexible Topology Support
High Efficiency Power Conversion
Fail Safe Monitoring
Energy Monitoring & Control
Energy Harvesting (solar, etc.)
Battery Management & Charging

Scalable Design

Scalable Performance

- Analog, 8-, 16-, 32-bit PIC Microcontrollers
- Simplified System Modifications
- Ease of Use
- Reference Designs & Collateral
- Lighting Design Partner Specialists
- Customizable Solutions

Learn more...

Visit us on the web: www.microchip.com/lighting

- Lighting Development Platforms
- Lighting Reference Designs
- Lighting Application Notes
- Lighting Products & Peripherals

Email us at: lighting@microchip.com

MICROCHIP

Demonstrations

**Stand-Alone RGBW
DMX512A Controller & Receiver
DALI Control Device & Control Gear**

Stand-Alone RGBW Demonstration Overview

Demonstration Overview

- Self contained demonstration WITHOUT communications control
- Main Communication Board performing RGBW (RED, GREEN, BLUE, WHITE) color mix
- PIC16F1947 Controlled Features
 - RGBW LED color mixing via constant current control
 - Slider & button interface
 - LCD drive & control

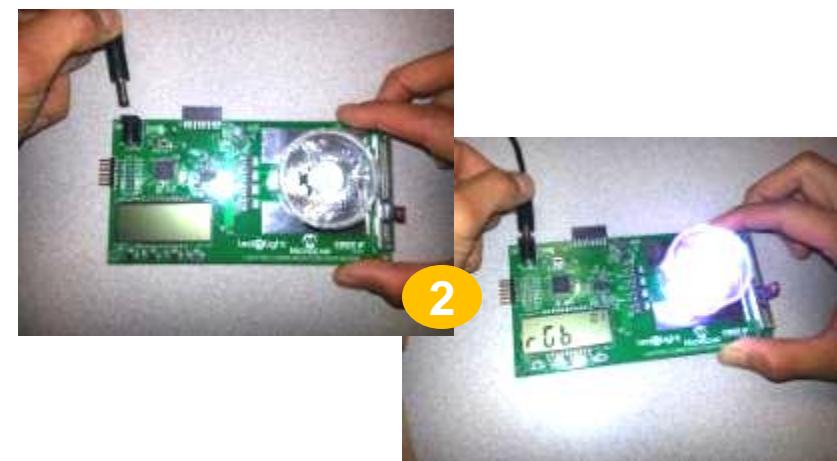
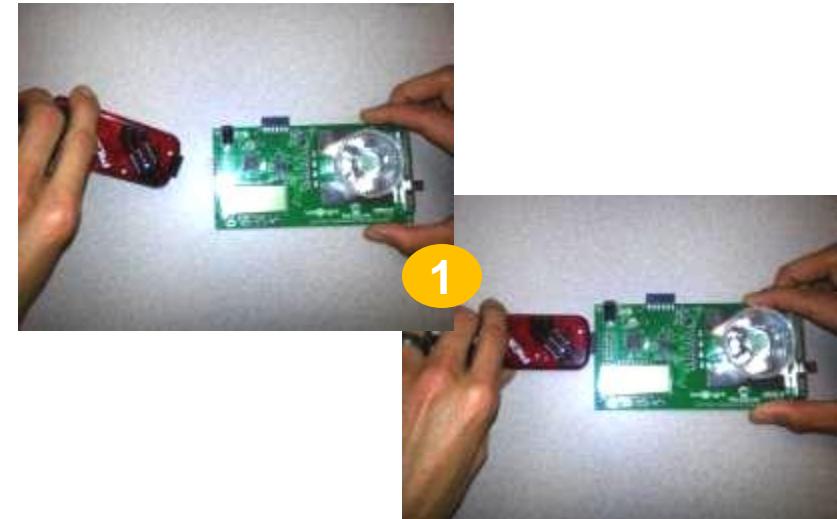
Hardware Requirements

- (1) Main Communication Board
- 9-12V Power Supply

Firmware Requirements

- Demonstration code
 - StandAloneDemo.X.production.hex

Downloadable at www.microchip.com/lightingcomms



Stand-Alone RGBW Demonstration Setup

1 Program Main Board

- Utilize PICkit3 to program Main Communication Board with StandAloneDemo.X.production.hex

2 Provide Power

- Insert 9-12V DC power cord

Stand-Alone RGBW Demonstration Operation

Button 1 (S2) – ‘rGb’ LCD Display (power-up mode)

- Auto rotates through RED, GREEN, BLUE, WHITE and custom color mix
- Slider not used

Button 2 (S3) – ‘FAdE’ LCD Display

- Auto rotates through RED, GREEN, BLUE, WHITE and custom color mix with transition fade
- Slider not used

Button 3 (S4) – ‘SLId’ LCD Display

- Slider controlled rotation through RED, GREEN, BLUE, WHITE and custom color mix

Button 4 (S5) – ‘LItE’ LCD Display

- RED, GREEN, BLUE, WHITE simultaneously ‘ON’
- Slider controlled simultaneous dimming of RED, GREEN, BLUE, WHITE

DMX512A Controller & Receiver Demonstration Overview

Demonstration Overview

- DMX512A uni-directional communications control
- Single Controller sending commands to multiple Receivers
- Receivers performing RGBW (RED, GREEN, BLUE, WHITE) color mix based on Controller commands
- PIC16F1947 Controlled Features
 - RGBW LED color mixing via constant current control
 - Slider & button interface
 - LCD drive & control
 - DMX512A command & control

Hardware Requirements

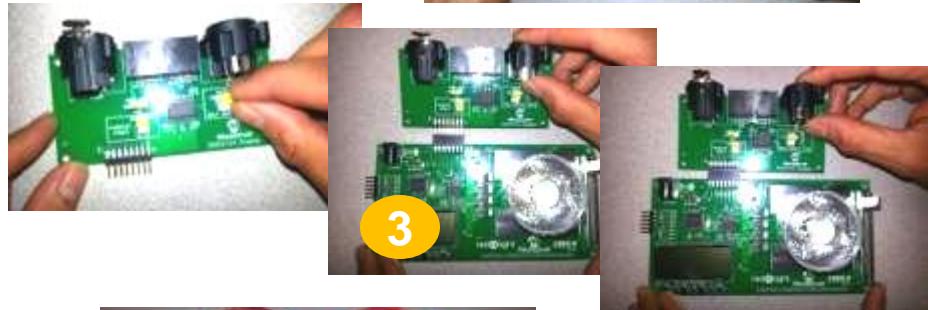
- (3) Main Communication Board
- (3) DMX512A Adapters
- (2) RJ45 Patch Cables
 - Optional: (2) XLR5 Barrel Cables
- 9-12V Power Supply

Firmware Requirements

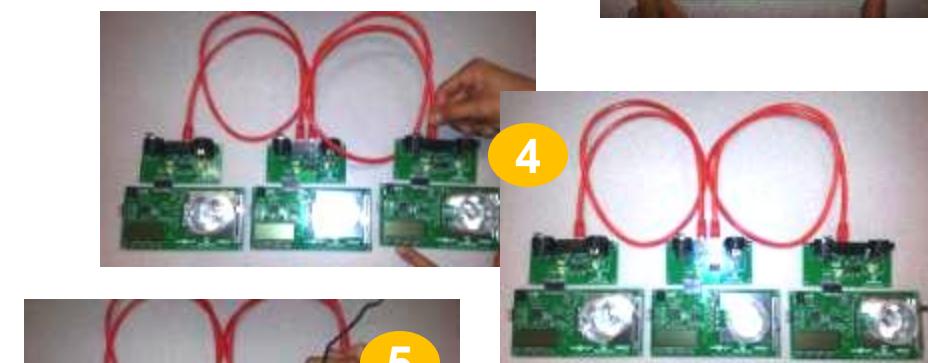
- Controller Demonstration code: DMX512A_ControllerDemo.hex
- Receiver Demonstration code: DMX512A_ReceiverDemo.hex

Downloadable at www.microchip.com/lightingcomms

DMX512A Controller & Receiver Demonstration Setup


1 Program Controller

- Utilize PICkit3 to program Main Communication Board with DMX512A_ControllerDemo.hex to create Controller


2 Program Receivers

- Utilize PICkit3 to program (2 or more) Main Communication Boards with DMX512A_ReceiverDemo.hex to create Receiver

3 Setup & Attach Adapters

- Set DMX512A Adapter Jumper Settings
 - J4 – ON
 - J5 – ON
 - J6 – ON
 - J7 – ON
 - J8 – ON
- Insert DMX512A adapters to all Main Communication Boards

4 Connect Controller to Receivers

- Connect Main Communication Boards with DMX512A adapters in a “Daisy Chain” configuration with either RJ45 patch cable or XLR5 barrel cables
 - Note whether the board is Controller or Receiver

Receiver Receiver Controller

DMX512A Controller & Receiver Demonstration Operation

Receiver

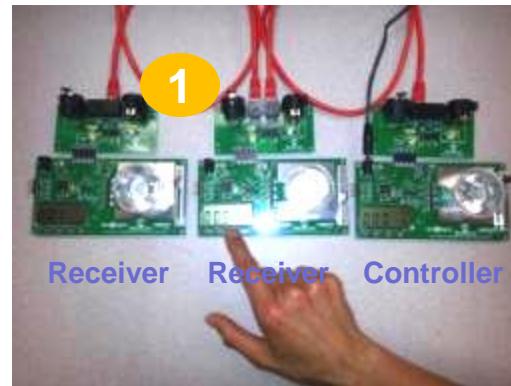
LCD Displays

- 'r' for Receiver
- 3 Digit Base Address of Receiver: '000'

Button 1-3 (S2-S4)

- Sets Base Address of Receiver

Button 4 (S5)


- Not used

Slider

- Not used

1 Set base address of each Receiver to a unique or common address. Address 000 Not Used.

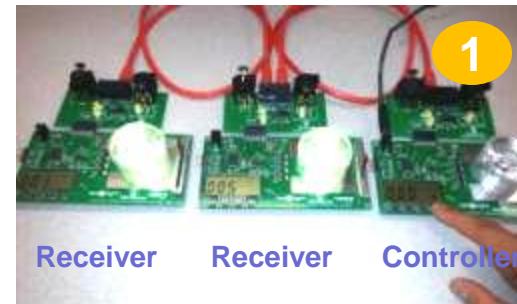
- Note that the base address of the Receiver sets the address of each individual color of the RGBW LED. The base address is assigned to RED with GREEN, BLUE and WHITE assigned incremental addresses.
- Example: Receiver base address set to 001 assigns address 001 to RED, 002 to BLUE, 003 to GREEN, 004 to WHITE of Receiver RGBW LED.
- Example: Receiver base address set to 005 assigns address 005 to RED, 006 to BLUE, 007 to GREEN, 008 to WHITE of Receiver RGBW LED.

DMX512A Controller & Receiver Demonstration Operation

Controller

RGBW LED Not Used

LCD Displays


- 3 Digit Address of Specific Receiver LED: '000'
- Toggle Modes: 'C0', 'C1', 'C2'

Button 1-3 (S2-S4)

- Sets Address of Specific Receiver LED
 - Only used while in C2 mode

Button 4 (S5) – Rotates through modes

- C0 – 'OFF'
- 1 C1 – Sends commands to all Receivers to Auto rotate through RED, GREEN, BLUE, WHITE, and custom color mix (slider not used)
- 2 C2 – Controls specific Receiver LED colors based on Receiver address. Slider controlled dimming of individual RED, GREEN, BLUE, WHITE LEDs of the Receiver.
 - Example: Set Controller address display to '001'. Slider controls the RED LED of Receiver '001'
 - Example: Set Controller address display to '002'. Slider controls the GREEN LED of Receiver '001'
 - Example: Set Controller address display to '008'. Slider controls the WHITE LED of Receiver '005'

DALI Control Device & Control Gear Demonstration Overview

Demonstration Overview

- DALI bi-directional communications control
- Single Control Device sending commands to multiple Control Gear
- Control Gear performing WHITE dimming based on Control Device commands
- PIC16F1947 Controlled Features
 - WHITE LED dimming via constant current control
 - Slider & button interface
 - LCD drive & control
 - DALI command & control

Hardware Requirements

- (3) Main Communication Board
- (3) DALI Adapters
- (2) RJ45 Patch Cables
 - Optional: (2) 2-wire cable
- 9-12V Power Supply

Firmware Requirements

- Control Device Demonstration code: DALI_ControlDeviceDemo.hex
- Control Gear Demonstration code: DALI_ControlGearDemo.hex

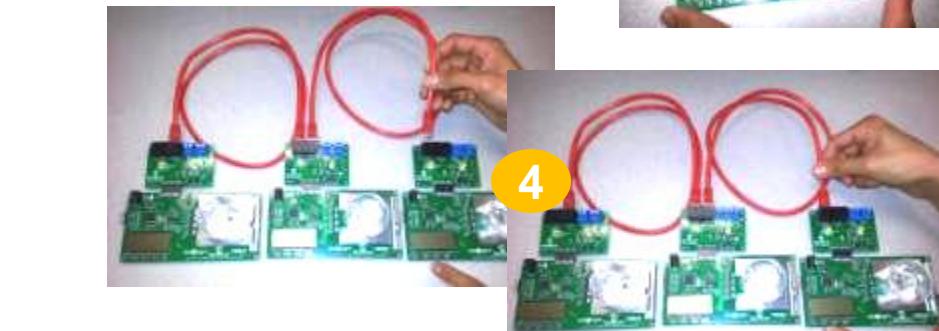
Downloadable at www.microchip.com/lightingcomms

DALI Control Device & Control Gear Demonstration Setup

1 Program Control Device

- Utilize PICkit3 to program Main Communication Board with DALI_ControlDeviceDemo.hex to create Controller

2 Program Control Gear


- Utilize PICkit3 to program (2 or more) Main Communication Boards with DALI_ControlGearDemo.hex to create Receiver

3 Setup & Attach Adapters

Set DALI Adapter Jumper Settings

- J1 – ON
- J3 – ON
- J4 – ON
- J5 – ON
- Insert DALI adapters to all Main Communication Boards

4 Connect Control Device to Control Gear

Connect Main Communication Boards with DALI adapters in a “Daisy Chain” configuration with either RJ45 patch cable or 2-wire cables

- Note whether the board is Control Device or Control Gear

5 Provide Power

Insert 9-12V DC power cord to Control Device

- Note that power to Control Gear is provided via cabling “Phantom Power”

Control Gear Control Gear Control Device

DALI Control Device & Control Gear Demonstration Operation

Control Gear

Only WHITE LED Used

LCD Displays

- 'CG' for Control Gear
- When Non-Commissioned (address not assigned)
 - 'dALI'
- When Commissioned
 - 6 digit address of Control Gear: '0000⁰⁰'

Button 1-4 (S2-S5)

- Not used

Slider

- Not used

Address of each Control Gear is set during the automated commissioning process initiated by the Control Device

DALI Control Device & Control Gear Demonstration Operation

Control Device

RGBW LED Not Used

LCD Displays

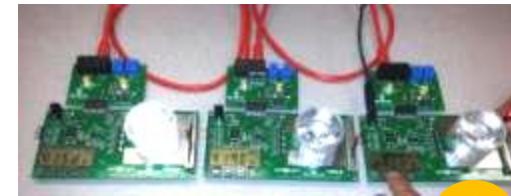
- 'Cd' for Control Device
- Before/After Commissioning (addresses not assigned)
 - 'dALI'
- During Commissioning
 - 6 digit address of Control Gear: '0000⁰⁰'
- Status bar full: ➤➤➤➤➤➤➤➤➤➤

Button 1 (S2)

- Initiates automated commissioning

Button 2-4 (S3-S5)

- Assigned to specific Control Gear


Slider

- Dimming control of Control Gear

1 Initiate automated commissioning process by pressing Button 1 of Control Device

- As the Control Device detects each Control Gear, the Control Gear WHITE LED will illuminate.
- Assign Control Gear to Button 2, 3, or 4 of Control Device – commissioning will continue. Repeat until all Control Gear are assigned to unique button.

2 When commissioning is complete, Buttons 2-4 of Control Device will toggle "ON"/"OFF" specific Control Gear WHITE LED and enable slider controlled dimming

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[Microchip](#):

[DV160214-1](#) [DV160214-2](#)