

- Negative output from positive input
- Wide Input Range
- Self-Contained Inductor
- Short Circuit Protection
- Over-Temperature Protection
- Fast Transient Response

The PT78NR100 Series creates a negative output voltage from a positive input voltage greater than 7V. These easy-to-use, 3-terminal, Integrated Switching Regulators (ISRs) have maximum output power of 5 watts and a negative output voltage that is laser trimmed. They also have excellent line and load regulation.

Standard Application

Pin-Out Information

Pin	Function
1	+V _{in}
2	-V _{out}
3	GND

HORIZONTAL MOUNT, SURFACE MOUNT

VERTICAL MOUNT

SUGGESTED BOARD LAYOUT
COMPONENT SIDE VIEW

Pkg Style 500

Ordering Information

PT78NR1_{XX}Y

Output Voltage

03 = -3.0 Volts

05 = -5.0 Volts

52 = -5.2 Volts

06 = -6.0 Volts

07 = -7.0 Volts

08 = -8.0 Volts

09 = -9.0 Volts

10 = -10.0 Volts

12 = -12.0 Volts

14 = -13.9 Volts

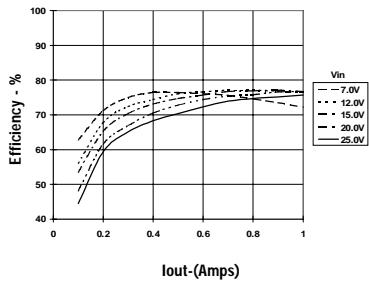
15 = -15.0 Volts

Package Suffix

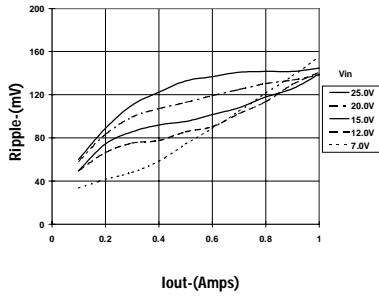
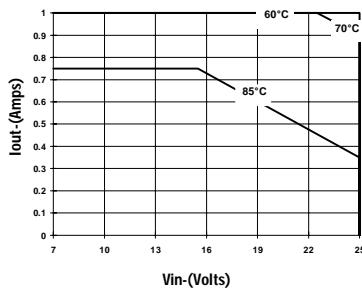
V = Vertical Mount

S = Surface Mount

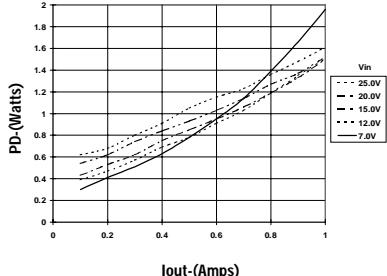
H = Horizontal Mount


Specifications

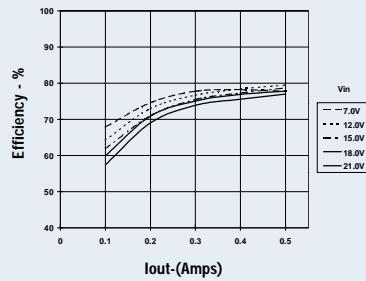
Characteristics (T _a = 25°C unless noted)	Symbols	Conditions	PT78NR100 SERIES				
			Min	Typ	Max	Units	
Output Current	I _o	Over V _{in} range	0.05 (2)	—	1.00	A	
		V _o =-5V	0.05 (2)	—	0.8		
		V _o =-6V	0.05 (2)	—	0.55		
		V _o =-7, -8, -9V	0.05 (2)	—	0.5		
		V _o =-10V	0.05 (2)	—	0.40		
		V _o =-12V	0.05 (2)	—	0.30		
		V _o =-13.9, -15V	0.05 (2)	—	—		
Short Circuit Current	I _{sc}	V _{in} =10V	—	4×I _{max}	—	Apk	
Inrush Current	I _{ir} t _{ir}	V _{in} =10V On start-up	—	4	—	A	
			—	0.5	—	mSec	
Input Voltage Range	V _{in}	0.1 ≤ I _o ≤ I _{max}	V _o =-5V V _o =-6, -7, -8, -9V V _o =-10, -12V V _o =-13.9, -15V	7 7 7 7	— — — —	25 21 18 15	V
Output Voltage Tolerance	ΔV _o	Over V _{in} range T _a =-20°C to +70°C	—	±1.0	±3.0	%V _o	
Line Regulation	Reg _{line}	Over V _{in} range	—	±0.5	±1.0	%V _o	
Load Regulation	Reg _{load}	0.1 ≤ I _o ≤ I _{max}	—	±0.5	±1.0	%V _o	
V _o Ripple/Noise	V _n	V _{in} =10V, I _o =I _{max}	—	±2	—	%V _o	
Transient Response (with 100 μ F output cap)	t _{tr}	50% load change V _o over/undershoot	—	100 5.0	250	μ Sec	
Efficiency	η	V _{in} =10V, I _o =0.5×I _{max} , V _o = -5V	—	75	—	%	
Switching Frequency	f _o	Over V _{in} and I _o ranges	600	650	700	kHz	
Absolute Maximum Operating Temperaturte Range	T _a	Free Air Convection, (40-60LFM) Over V _{in} Range	-40	—	+85 (3)	°C	
Thermal Resistance	θ _{ja}	Free Air Convection, (40-60LFM)	—	45	—	°C/W	
Storage Temperature	T _s	—	-40	—	+125	°C	
Mechanical Shock	—	Per Mil-STD-883D, Method 2002.3	—	500	—	G's	
Mechanical Vibration	—	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	—	5	—	G's	
Weight	—	—	—	6.5	—	Grams	



- Notes:**
- (1) The PT78NR100 Series requires a 100 μ F electrolytic or tantalum capacitor at both the input and output for proper operation in all applications. The input capacitor, C₁ must have a ripple current rating ≥600 mA rms, and an ESR ≤0.2Ω.
 - (2) The ISR will operate down to no load with reduced specifications.
 - (3) See Thermal Derating chart.

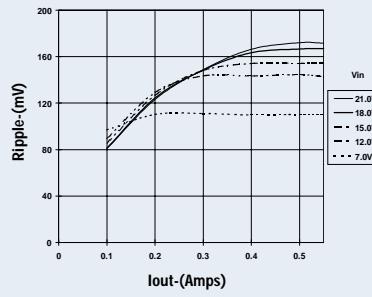
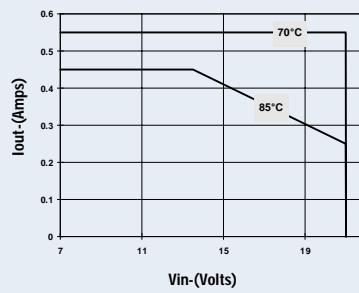
PT78NR105 -5.0 VDC (See Note A)


Efficiency vs Output Current

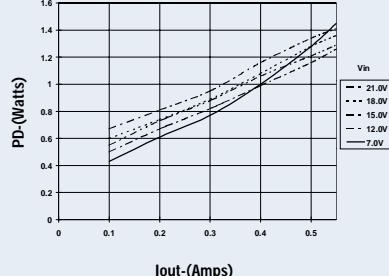
Ripple vs Output Current


Thermal Derating (T_a) (See Note B)

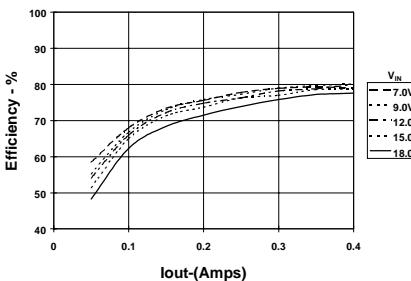
Power Dissipation vs Output Current

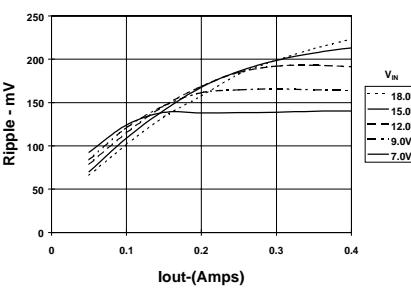
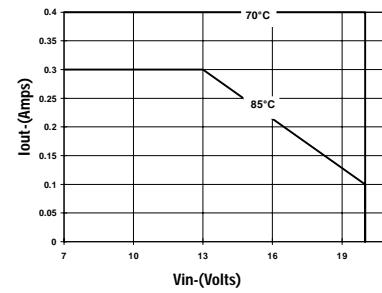
PT78NR109 -9.0 VDC (See Note A)


Efficiency vs Output Current

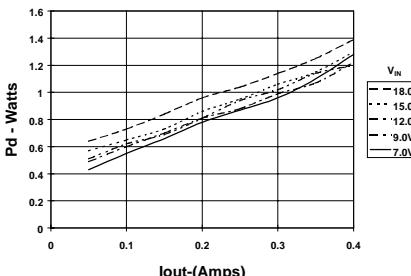
Ripple vs Output Current


Thermal Derating (T_a) (See Note B)

Power Dissipation vs Output Current

PT78NR112 -12.0 VDC (See Note A)


Efficiency vs Output Current

Ripple vs Output Current

Thermal Derating (T_a) (See Note B)

Power Dissipation vs Output Current

Note A: All data listed in the above graphs, except for derating data, has been developed from actual products tested at 25°C. This data is considered typical data for the ISR.

Note B: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM. (See Thermal Application Notes.)

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated