

Dual Retriggerable Monostable Multivibrator

74VHC123A

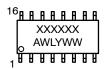
General Description

The VHC123A is an advanced high speed CMOS Monostable Multivibrator fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. Each multi-vibrator features both a negative, A, and a positive, B, transition triggered input, either of which can be used as an inhibit input. Also included is a clear input that when taken low resets the one-shot. The VHC123A can be triggered on the positive transition of the clear while A is held low and B is held high. The output pulse width is determined by the equation: $PW = (R_x)(C_x)$; where PW is in seconds, R is in ohms, and C is in farads.

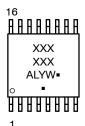
Limits for R_x and C_x are:

- External capacitor, C_x:
 - No limit
- External resistors, Rx:
 - $V_{CC} = 2.0 \text{ V}, 5 \text{ k}\Omega \text{ min}$
 - $V_{CC} > 3.0 \text{ V}$, 1 k Ω min

An input protection circuit ensures that 0 V to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.


Features

- High Speed: $t_{PD} = 8.1 \text{ ns (Typ.)}$ at $T_A = 25 \,^{\circ}\text{C}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max.) at $T_A = 25 \,^{\circ}C$
- Active State: $I_{CC} = 600 \mu A$ (Max.) at $T_A = 25 \,^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power down protection is provided on all inputs
- Pin and function compatible with 74HC123A
- These Devices are Pb-Free and are RoHS Compliant


MARKING DIAGRAMS

SOIC-16, 150 mils CASE 751BG

XXXXX = Specific Device Code A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

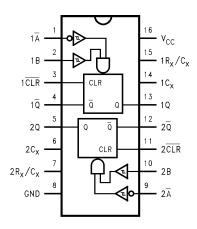


Figure 1. Connection Diagram

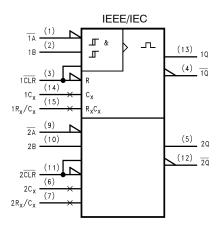
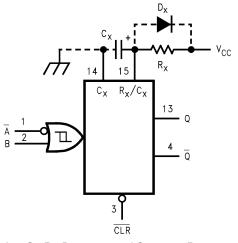


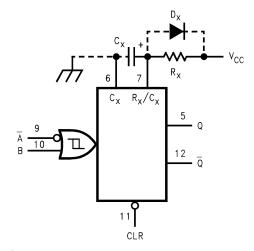
Figure 2. Logic Symbol

PIN DESRIPTION

Pin Names	Description
Α	Trigger Inputs (Negative Edge)
В	Trigger Inputs (Positive Edge)
CLR	Reset Inputs
Cx	External Capacitor
Rx	External Resistor
Q Q	Outputs

TRUTH TABLE


Inputs			Out	puts	
A	В	CLR	Q	Q	Function
$\overline{}$	Н	Н	几	Ъ	Output Enable
Х	L	Н	L	Н	Inhibit
Н	Х	Н	L	Н	Inhibit
L		Н	Л	5	Output Enable
L	Н		几	Ъ	Output Enable
x	x	L		н	Reset


H = HIGH Voltage Level

L = LOW Voltage Level

= HIGH-to-LOW Transition
= HIGH-to-HIGH Transition

∠ = חומח-וט-חו X = Don't Care

Note A: C_X , R_X , D_X are external Capacitor, Resistor, and Diode, respectively.

Note B: External clamping diode, D_x;

External capacitor is charged to V_{CC} level in the wait state, i.e. when no trigger is applied.

If the supply voltage is turned off, C_x discharges mainly through the internal (parasitic) diode. If C_x is sufficiently large and V_{CC} drops rapidly, there will be some possibility of damaging the IC through in rush current or latch-up. If the capacitance of the supply voltage filter is large enough and V_{CC} drops slowly, the in rush current is automatically limited and damage to the IC is avoided.

The maximum value of forward current through the parasitic diode is ± 20 mA. In the case of a large C_X , the limit of fall time of the supply voltage is determined as follows:

 $t_f \ge (V_{CC} - 0.7) C_x / 20 \text{ mA}$

(tf is the time between the supply voltage turn off and the supply voltage reaching 0.4 V_{CC})

In the event a system does not satisfy the above condition, an external clamping diode (D_x) is needed to protect the IC from rush current.

Figure 3. Block Diagram

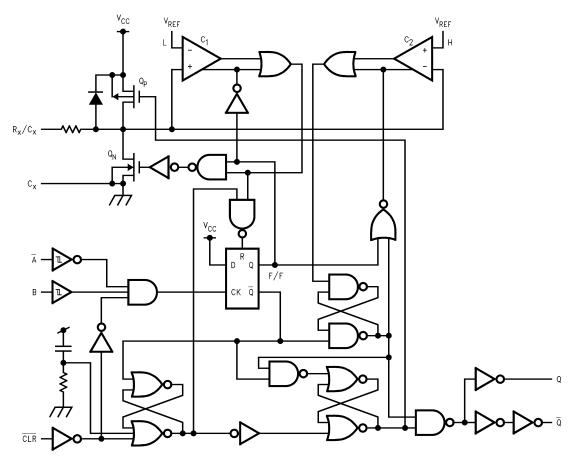


Figure 4. System Diagram

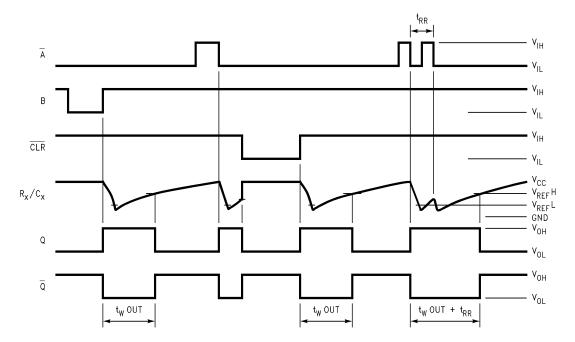


Figure 5. Timing Chart

FUNCTIONAL DESCRIPTION

Stand-by State

The external capacitor (C_x) is fully charged to V_{CC} in the Stand-by State. That means, before triggering, the Q_P and Q_N transistors which are connected to the R_x/C_x node are in the off state. Two comparators that relate to the timing of the output pulse, and two reference voltage supplies turn off. The total supply current is only leakage current.

Trigger Operation

Trigger operation is effective in any of the following three cases. First, the condition where the A input is LOW, and B input has a rising signal; second, where the B input is HIGH, and the A input has a falling signal; and third, where the \overline{A} input is LOW and the B input is HIGH, and the \overline{CLR} input has a rising signal.

After a trigger becomes effective, comparators C_1 and C_2 start operating, and Q_N is turned on. The external capacitor discharges through Q_N . The voltage level at the R_x/C_x node drops. If the R_x/C_x voltage level falls to the internal reference voltage $V_{ref}L$, the output of C_1 becomes LOW. The flip-flop is then reset and Q_N turns off. At that moment C_1 stops but C_2 continues operating.

After Q_N turns off, the voltage at the R_x/C_x node starts rising at a rate determined by the time constant of external capacitor C_x and resistor R_x .

Upon triggering, output Q becomes HIGH, following some delay time of the internal F/F and gates. It stays HIGH even if the voltage of R_x/C_x changes from falling to rising.

When R_x/C_x reaches the internal reference voltage $V_{ref}H$, the output of C_2 becomes LOW, the output Q goes LOW and C_2 stops its operation. That means, after triggering, when the voltage level of the R_x/C_x node reaches $V_{ref}H$, the IC returns to its MONOSTABLE state.

With large values of C_x and R_x , and ignoring the discharge time of the capacitor and internal delays of the IC, the width of the output pulse, t_W (OUT), is as follows: t_W (OUT) = 1.0 C_x R_x

Retrigger Operation (74VHC123A)

When a new trigger is applied to either input \overline{A} or B while in the MONOSTABLE state, it is effective only if the IC is charging C_x . The voltage level of the R_x/C_x node then falls to $V_{ref}L$ level again. Therefore the Q output stays HIGH if the next trigger comes in before the time period set by C_x and R_x .

If the new trigger is very close to a previous trigger, such as an occurrence during the discharge cycle, it will have no effect.

The minimum time for a trigger to be effective 2nd trigger, t_{RR} (Min), depends on V_{CC} and C_x .

Reset Operation

In normal operation, the \overline{CLR} input is held HIGH. If \overline{CLR} is LOW, a trigger has no affect because the Q output is held LOW and the trigger control F/F is reset. Also, Q_p turns on and C_x is charged rapidly to V_{CC} .

This means if $\overline{\text{CLR}}$ is set LOW, the IC goes into a wait state.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	DC Output Voltage		-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin		±20	mA
lout	DC Output Current, per Pin		±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±50	mA
I _{IK}	Input Clamp Current		-20	mA
lok	Output Clamp Current		±20	mA
T _{STG}	Storage Temperature Range		−65 to +150	°C
T_L	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 1)	SOIC-16 TSSOP-16	126 159	°C/W
P _D	Power Dissipation in Still Air at 25 °C	SOIC-16 TSSOP-16	995 787	mW
MSL	Moisture Sensitivity		Level 1	_
F _R	Flammability Rating O	xygen Index: 28 to 34	UL 94 V-0 @ 0.112 in	_

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Operating the device outside its recommended conditions, but still within its maximum rated limits may not cause immediate damage. However, doing so can lead to reduced performance, unpredictable behavior, and potentially shorten the device's lifespan or reliability.

1. Measured with minimum pad spacing on an FR4 board, using 76mm-by-114mm, 2-ounce copper trace no air flow per JESD51-7.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	5.5	V
V _{IN}	DC Input Voltage (Note 2)	0	5.5	V
V _{OUT}	DC Output Voltage	0	V_{CC}	V
T _A	Operating Temperature	-40	+85	°C
t _r , t _f	Input Rise or Fall Rate $ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V $	0 0	100 20	ns/V
C _X	External Capacitor (Note 3)	=	-	F
R _X	External Resistor (Note 3) $ V_{CC} = 2.0 \text{ V} $ $ V_{CC} > 3.0 \text{ V} $	5 1	- -	kΩ

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). These may not float.
 The maximum allowable values of C_x and R_x are a function of the leakage of capacitor C_x, the leakage of the device, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for R_x > 1 MΩ.

DC ELECTRICAL CHARACTERISTICS

						T _A = 25 °C	;	T _A = - to 8	40 °C 5 °C	
Symbol	Parameter	Con	ditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage			2.0 3.0–5.5	1.50 0.7x V _{CC}	1-1	1 1	1.50 0.7x V _{CC}	1-1	٧
V _{IL}	LOW Level Input Voltage			2.0 3.0–5.5	1 1	1-1	0.50 0.3x V _{CC}	1 1	0.50 0.3x V _{CC}	٧
V _{OH}	HIGH Level Output Voltage	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5	- - -	1.9 2.9 4.4		V
			$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94	- -	- -	2.48 3.80	- -	V
V _{OL}	LOW Level Output Voltage	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 50 μA	2.0 3.0 4.5	- - -	0.0 0.0 0.0	0.1 0.1 0.1	- - -	0.1 0.1 0.1	٧
			$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5	1 1	1 1	0.36 0.36	- -	0.44 0.44	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V	or GND	0-5.5	1	_	±0.1	_	±1.0	μΑ
I _{IN}	R _x / C _x Terminal Off-State Current	$V_{IN} = V_{CC}$ or	V _{IN} = V _{CC} or GND		ı	ı	±0.25	-	±2.50	μΑ
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or	GND	5.5	-	-	4.0	-	40.0	μΑ
Icc	Active-State (Note 4)	$V_{IN} = V_{CC}$ or	,	3.0	_	160	250	_	280	μΑ
	Supply Current	$R_x/C_x = 0.5$	V_{CC}	4.5	-	380	500	_	650	
				5.5	-	560	750	-	975	

4. Per circuit.

AC ELECTRICAL CHARACTERISTICS (Note 5)

					T _A = 25 °C	:	T _A = -	40 °C 5 °C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay Time	C _L = 15 pF	3.3 ±0.3	-	13.4	20.6	1.0	24.0	ns
t _{PHL}	$(A, B-Q, \overline{Q})$	C _L = 50 pF		-	15.9	24.1	1.0	27.5	
		C _L = 15 pF	5.0 ±0.5	-	8.1	12.0	1.0	14.0	ns
		C _L = 50 pF		-	9.6	14.0	1.0	16.0	
t _{PLH} ,	Propagation Delay Time	C _L = 15 pF	3.3 ±0.3	-	14.5	22.4	1.0	26.0	ns
t _{PHL}	(CLR Trigger – Q, Q)	C _L = 50 pF]	-	17.0	25.9	1.0	29.5	
		C _L = 15 pF	5.0 ±0.5	-	8.7	12.9	1.0	15.0	ns
		C _L = 50 pF]	-	10.2	14.9	1.0	17.0	
t _{PLH} ,	P <u>rop</u> agatio <u>n</u> Delay Time	C _L = 15 pF	3.3 ±0.3	-	10.3	15.8	1.0	18.5	ns
t _{PHL}	(CLR – Q, Q)	C _L = 50 pF]	-	12.8	19.3	1.0	22.0	
		C _L = 15 pF	5.0 ±0.5	-	6.3	9.4	1.0	11.0	ns
		C _L = 50 pF]	-	7.8	11.4	1.0	13.0	
t _{WOUT}	Output Pulse Width	C _L = 50 pF,	3.3 ± 0.3	-	160	240	_	300	ns
		$C_X^- = 28 \text{ pF}, R_X = 2 \text{ k}\Omega$	5.0 ± 0.5	-	133	200	-	240	
		C _L = 50 pF,	3.3 ± 0.3	90	100	110	90	110	μs
		$C_{x}^{L} = 0.01 \mu\text{F}, R_{x} = 10 \text{k}\Omega$	5.0 ± 0.5	90	100	110	90	110	
		C _L = 50 pF,	3.3 ± 0.3	0.9	1.0	1.1	0.9	1.1	ms
		$C_X = 0.1 \mu F, R_X = 1 k\Omega$	5.0 ± 0.5	0.9	1.0	1.1	0.9	1.1	
Δt _{WOUT}	Output Pulse Width Error Between Circuits (In same Package)			-	±1	-	-	-	%
C _{IN}	Input Capacitance	V _{CC} = Open		-	4	10	-	10	pF
C _{PD}	Power Dissipation Capacitance	(Note 6)		-	73	-	_	-	pF

AC OPERATING REQUIREMENTS (Note 7)

					T _A = 25 °C	;	T _{A =} -4		
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t _W (L),	Minimum Trigger Pulse Width		3.3	5.0	-	-	5.0	-	ns
t _W (H)			5.0	5.0	_	-	5.0	-]
t _W (L)	Minimum Clear Pulse Width		3.3	5.0	_	-	5.0	-	ns
			5.0	5.0	_	-	5.0	-]
t _{RR}	Minimum Retrigger Time	$R_X = 1 \text{ k}\Omega,$	3.3 ± 0.3	-	60	-	-	-	ns
		$C_{x} = 100 \text{ pF}$	5.0 ± 0.5	-	39	-	-	-]
		$R_X = 1 \text{ k}\Omega,,$ $C_X = 0.01 \mu\text{F}$	3.3	-	1.5	-	-	-	μs
		$C_{x} = 0.01 \mu F$	5.0	-	1.2	-	-	-	

^{7.} Refer to Timing Chart.

^{5.} Refer to Timing Chart.
6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} \times V_{CC} \times f_{|N} + I_{CC}^{-1} \times Duty / 100 + I_{CC} / 2$ (per Circuit) I_{CC}^{-1} : Active Supply Current Duty: %

DEVICE CHARACTERISTICS

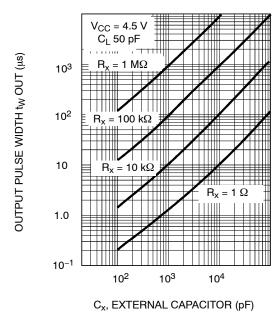


Figure 6. t_{wout} * C_x Characteristics (Typ.)

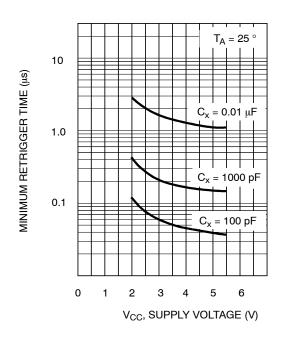


Figure 7. t_{RR} * V_{CC} Characteristics (Typ.)

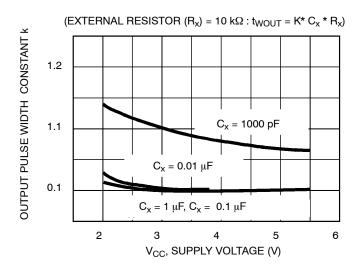


Figure 8. Output Pulse Width Constant K-Supply Voltage (Typ.)

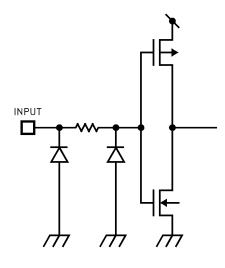


Figure 9. Input Equivalent Circuit

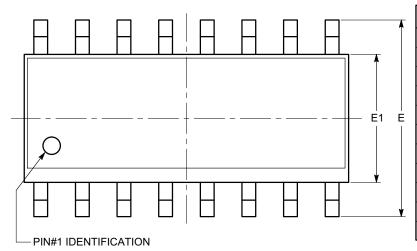
ORDERING INFORMATION

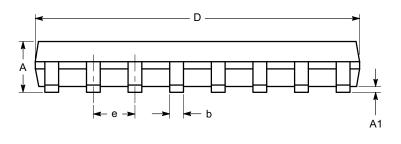
Device	Marking	Package	Shipping [†]
74VHC123AMX	74VHC123A	SOIC-16	2500 Units / Tape & Reel
74VHC123AMTCX	V123A	TSSOP-16	2500 Units / Tape & Reel

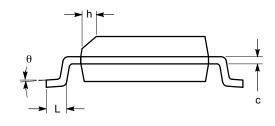
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D.</u>

REVISION HISTORY

I	Revision	Description of Changes	Date
	1	Converted the Data Sheet to onsemi format.	10/3/2025


This document has undergone updates prior to the inclusion of this revision history table. The changes tracked here only reflect updates made on the noted approval dates.

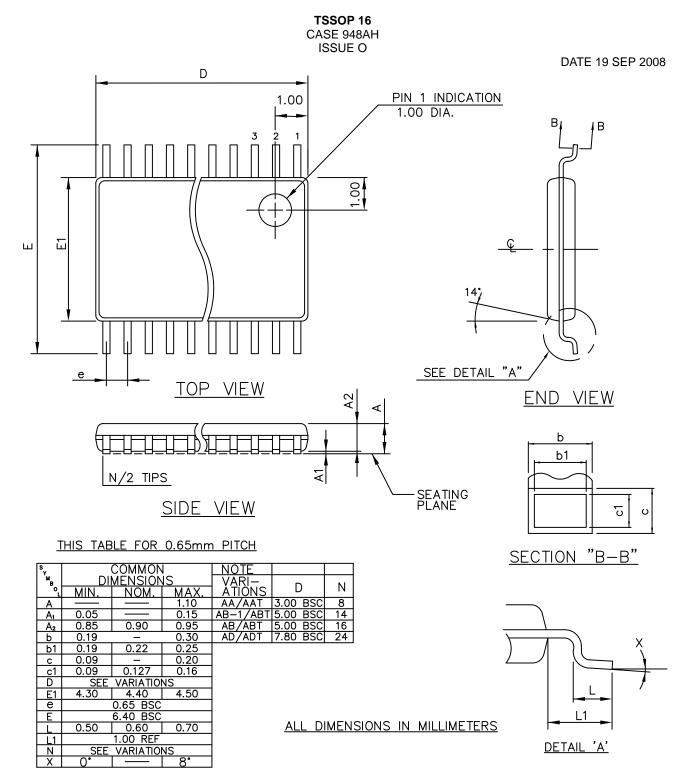

SOIC-16, 150 mils CASE 751BG ISSUE O


DATE 19 DEC 2008

SYMBOL	MIN	NOM	MAX
Α	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
С	0.19		0.25
D	9.80	9.90	10.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ	0°		8°

TOP VIEW

SIDE VIEW END VIEW


Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MS-012.

DOCUMENT NUMBER:	98AON34275E	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16, 150 mils		PAGE 1 OF 1			

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15mm ON D PER SIDE

DOCUMENT NUMBER:	98AON34923E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLET	
DESCRIPTION:	TSSOP 16		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales