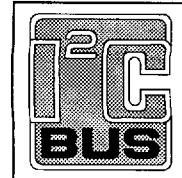


Philips Semiconductors


Objective specification

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

FEATURES

- Video amplifier with clamping circuit, white clip circuit and automatic gain control circuit which allows handling of video signals between 0.7 and 1.4 V (p-p)
- FM sound modulator
- Asymmetrical and symmetrical RF outputs
- Symmetrical RF oscillator covering more than 20 channels with only a few external components
- I²C-bus receiver for frequency setting and test-mode selection
- Phase-locked-loop frequency synthesizer
- On-chip power supply regulator.

APPLICATIONS

- Video recorders
- Video generators
- Cable converters.

GENERAL DESCRIPTION

The TDA8720 is a programmable modulator which has been designed to generate an RF TV channel from a baseband video signal and a baseband audio signal in applications of negative video and FM sound standards.

It is especially suitable for video generators, video recorders and cable converters. The picture carrier frequency is set exactly to the correct channel frequency by a PLL synthesizer which is programmed in accordance with the I²C-bus format.

QUICK REFERENCE DATA

$V_{DD} = 5$ V and $T_{amb} = 25$ °C after the IC has reached thermal equilibrium; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{DDA}, V_{DDD}	analog and digital supply voltage		4.5	5.0	5.5	V
I_{DD}	total supply current		41	51	61	mA
f_{SYN}	synthesizer frequency range		—	—	900.25	MHz
$V_{19(p-p)}$	video input voltage level (peak-to-peak value)		0.7	1.0	1.4	V
V_{RF}	RF output voltage level asymmetrical on a $75\ \Omega$ load	$f = 471.25$ MHz	75	78	82	$\text{dB}\mu\text{V}$
		$f = 663.25$ MHz	73	76	80	$\text{dB}\mu\text{V}$
m	video modulation depth	colour bars pattern	—	83	—	%
$V_{1(rms)}$	maximum audio input voltage level (RMS value)	before pre-emphasis filter	—	0.5	—	V
Δf	FM deviation in audio subcarrier	$f = 400$ Hz; $V_1 = 0.5$ V(RMS); before pre-emphasis filter	—	25	—	kHz

ORDERING INFORMATION

EXTENDED TYPE NUMBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA8720T	20	SO20L	plastic	SOT163A
TDA8720M	20	SSOP20	plastic	SOT266A

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

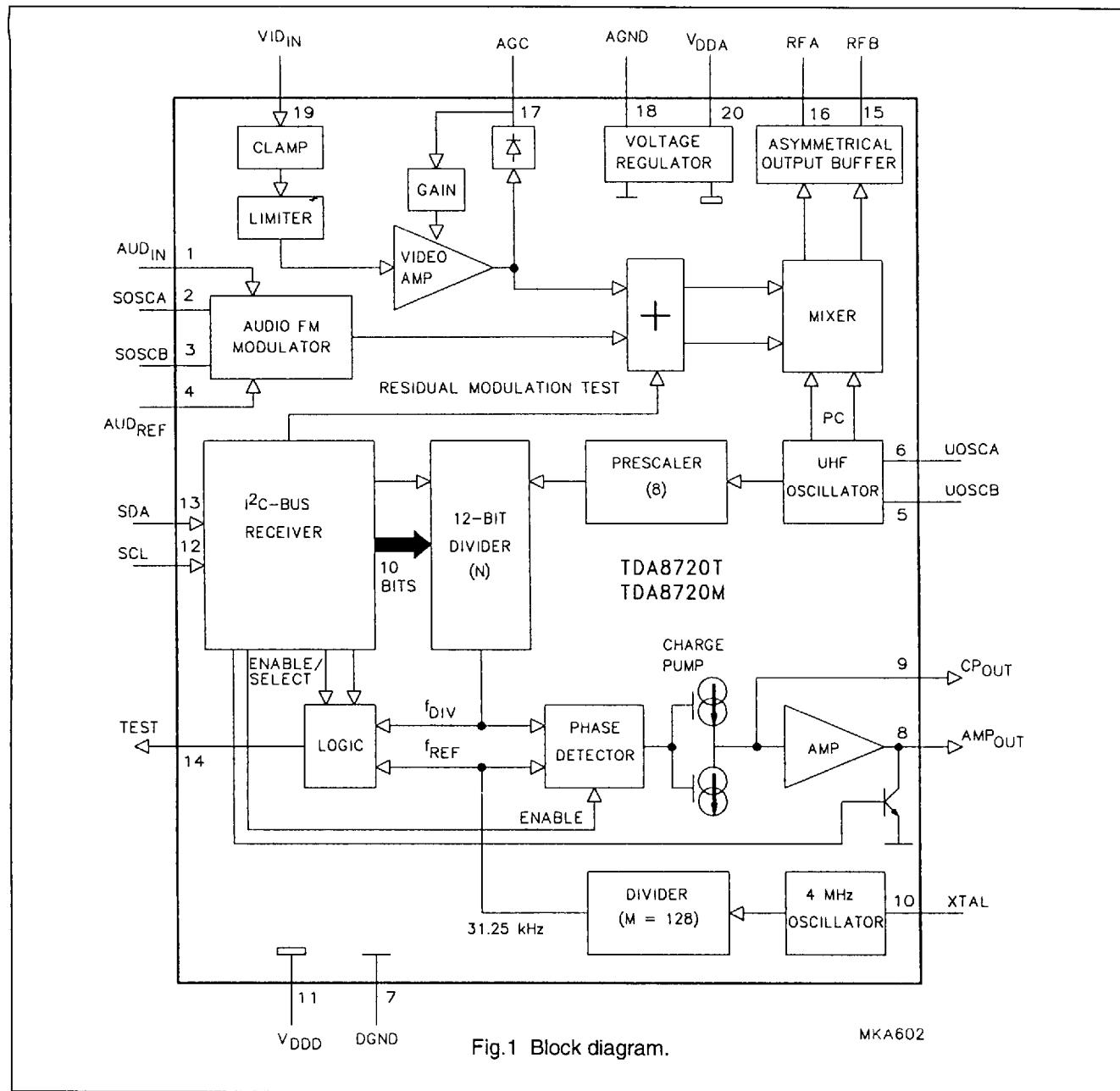


Fig. 1 Block diagram.

MKA602

**I²C-bus programmable modulator for
negative video modulation and FM sound**

TDA8720T; TDA8720M

PINNING

SYMBOL	PIN	DESCRIPTION
AUD _{IN}	1	audio input
SOSCA	2	sound oscillator A
SOSCB	3	sound oscillator B
AUD _{REF}	4	audio reference input
UOSCB	5	UHF oscillator B
UOSCA	6	UHF oscillator A
DGND	7	digital ground
AMP _{OUT}	8	tuning amplifier output
CP _{OUT}	9	charge pump output
XTAL	10	crystal oscillator
V _{DDD}	11	digital supply voltage
SCL	12	serial clock (I ² C bus)
SDA	13	serial data (I ² C bus)
TEST	14	test output
RFB	15	RF output B
RFA	16	RF output A
AGC	17	automatic gain control of video amplifier
AGND	18	analog ground
VID _{IN}	19	video input
V _{DDA}	20	analog supply voltage

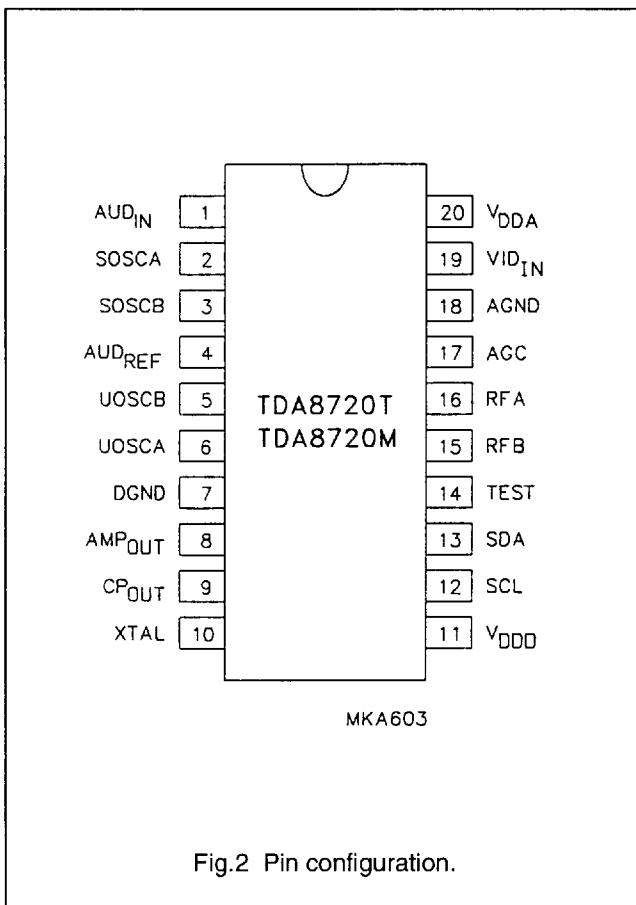


Fig.2 Pin configuration.

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

FUNCTIONAL DESCRIPTION

The TDA8720 is a programmable modulator which can be divided into two main blocks:

- a modulator for negative video modulation and FM sound TV standards
- a programmable PLL frequency synthesizer

The video part of the modulator consists of:

- a clamping circuit which sets the internal reference voltage level to the bottom of the synchronizing pulse.
- a limiter which clips strong signals higher than 1.5 V to avoid overmodulation.
- a peak white detector which measures the amplitude of the top white level and then controls the gain of the video amplifier. The capacitor for the detector, C17 (see Fig.5) is external and may therefore be adapted in the application.
- a video amplifier with variable gain which delivers a constant amplitude when the external video signal is within the range 0.7 to 1.4 V.

The audio part of the modulator consists of an FM sound modulator. The frequency of the sound subcarrier is set in the application by external components C3, L3 and R3 (see Fig.5).

The RF part of the modulator consists of:

- an oscillator which operates at the required picture carrier frequency. The range of the oscillator is determined by the application. In our reference measuring set-up, we guarantee a range of 471.25 to 663.25 MHz, (channel 21 to channel 45 of G standard) with L5, C5, C6 and D5 (see Fig.5).

- an RF mixer which combines the video signal and the sound subcarrier to build a baseband TV channel. The baseband signal is then mixed with the oscillator signal to produce the RF TV channel. The mixer has two outputs which can be used as either two independent asymmetrical outputs or as one symmetrical output.

The channel frequency is set by a programmable PLL frequency synthesizer.

The PLL frequency synthesizer controls the oscillator frequency in accordance with the following formula:

$$f_{\text{OSC}} = 8 \times N \times f_{\text{REF}}$$

Where:

- f_{OSC} is the local oscillator frequency
- N is a 12-bit dividing number (10 bits are programmable)
- f_{REF} is the crystal frequency (f_{XTAL}) divided by 128.

The circuit therefore allows a minimum step of 250 kHz internally and a software controlled step of 1 MHz because only 10 bits are programmable. When the PLL loop is locked, both inputs of the phase comparator are equal. This produces the following formula :

$$f_{\text{DIV}} = f_{\text{OSC}} / 8 / N = f_{\text{XTAL}} / 128 = f_{\text{REF}}$$

During the test mode operation, f_{DIV} and f_{REF} can be monitored on the Test output pin (pin 14).

Software information

The synthesizer is controlled via a two-wire I²C-bus receiver. For programming, the address byte (C8 in Hex format) has to be sent first. One or two data bytes are then used to set the 10 programmable bits of the dividing number N and the test bits (see Table 1).

Table 1 Data format.

BYTE	MSB								LSB	
address C8	1	1	0	0	1	0	0	0	ACK	
data byte 1	0	b11	b10	b9	b8	b7	b6	b5	ACK	
data byte 2	1	test	test1	test2	not used	b4	b3	b2	ACK	

Where: ACK is the acknowledge bit, and bits b2 to b11 are the 10 programmable bits of N. b1 = 0, b0 = 1 are set by internal hardware.

test, test1 and test2 are 3 bits used for test purpose (see Table 5).

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

The bits b2 to b11 are programmable and represent the integer part of the frequency in MHz. b1 and b0 are fixed internally to 0 and 1 respectively to obtain the added 0.25 MHz, common to most TV channels (see Table 2).

Table 2 Structure of the dividing number N.

BITS	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
frequency in MHz	512	256	128	64	32	16	8	4	2	1	0.5	0.25

Note to Table 2

Bits b1 and b0 are not programmable

$$f_{osc} = 512 \times b11 + 256 \times b10 + \dots + b2 \times 1 + 0.25 \text{ (in MHz)}$$

Table 3 Dividing number N to program channel 21 = 471.25 MHz.

BITS	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
value	0	1	1	1	0	1	0	1	1	1	0	1
frequency in MHz	0	256	128	64	0	16	0	4	2	1	0	0.25

Note to Table 3

Bits b1 and b0 and their values 0 and 1 are not programmable

Table 4 Content of the data bytes to program channel 21 = 471.25 MHz.

BYTE	MSB								LSB	
address C8	1	1	0	0	1	0	0	0	0	ACK
data byte 1	0	0	1	1	1	0	1	0	0	ACK
data byte 2	1	0	0	0	0	1	1	1	1	ACK

It is possible to change only one data byte. The circuit will recognize which one is received with the value of MSB, 0 for data byte 1 and 1 for data byte 2. It is possible to change the frequency by 1 MHz using data byte 2. It is relatively simple to increment the channel frequency when its frequency width is 8 MHz by simply incrementing data byte 1.

Table 5 Test modes.

TEST	TEST 1	TEST 2	OPERATIONAL MODE
0	0	X	normal operation
0	1	X	balance test
1	0	0	f_{REF} output
1	0	1	high impedance test
1	1	0	f_{DIV} output
1	1	1	phase detector disabled

Where X = 0 or 1

Philips Semiconductors

Objective specification

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

The high impedance mode may be used to control the RF tank circuit to test the oscillator with an external tuning voltage. In this mode, the phase detector is disabled and the external transistor of the tuning amplifier is switched OFF. The AMP output (pin 8) is LOW (<200 mV).

In the balance test mode, overmodulation is present in the RF mixer to allow the measurement of the parasitic residual modulation.

In the f_{REF} and f_{DIV} modes, the reference frequency (f_{REF}) in the phase comparator or the divided RF oscillator frequency (f_{DIV}) is available at the test pin.

In the phase detector disabled mode, it is possible to measure the leakage current at the input of the tuning amplifier (pin 9).

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DDA}, V_{DDD}	analog and digital supply voltage	-0.3	+6	V
V_{DDA}, V_{DDD}	analog and digital operating voltage	4.5	5.5	V
T_{sig}	storage temperature	-40	+125	°C
V_{max}	maximum voltage on all pins	-0.3	V_{DD}	V
T_{amb}	operating ambient temperature	-10	+80	°C

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
$R_{th j-a}$	from junction to ambient in free air SOT163A SOT266A	85 K/W 120 K/W

Philips Semiconductors

Objective specification

**I²C-bus programmable modulator for
negative video modulation and FM sound**

TDA8720T; TDA8720M

CHARACTERISTICS $V_{DDA} = V_{DDD} = 5$ V; $T_{amb} = 25$ °C; measured in circuit of Fig.5; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply						
V_{DDA}, V_{DDD}	supply voltage		4.5	5.0	5.5	V
I_{DDA}, I_{DDD}	supply current		41	51	61	mA
Video characteristics						
I_{19}	input current (AC)	$V_{19} = 2.6$ V	—	11	—	µA
$V_{19(p-p)}$	input voltage level (peak-to-peak value)		0.7	1.0	1.4	V
m	modulation depth	see Fig.3	76	83	89	%
S/N video	signal-to-noise ratio	note 1	45	48	—	dB
G_{diff}	differential gain	note 2	—	4	8	%
Φ_{diff}	differential phase	note 2	—	4	8	deg
Audio characteristics						
Z_1	input impedance		35	70	105	kΩ
$V_{1(rms)}$	maximum audio input voltage level (RMS value)	before pre-emphasis	—	0.5	—	V
Δm	modulation deviation	$f_{AUD} = 400$ Hz; $V_1 = 0.5$ V (RMS); before pre-emphasis filter	20	25	30	kHz
THD	total harmonic distortion	$\Delta f = 50$ kHz; $f_{AUD} = 6.3$ kHz	—	1.8	3.0	%
S/N audio	signal-to-noise ratio	CCIR filter 468 - 3; $f_{AUD} = 1$ kHz; $V_1 = 0.5$ V (RMS); before pre-emphasis filter	42	52	—	dB
SVR	sound carrier relative to picture carrier (sync RMS)	no audio signal; FM = 5.5 MHz; pin 19 connected to ground via 10 kΩ resistor	-18	-14	-10	dB
Channel characteristics						
f_{RF}	frequency range	related to tank circuit; see Fig.5	471.25	—	663.25	MHz
f_{step}	frequency step		—	1	—	MHz
$V_{15, 16}$	output voltage level at pins 15 and 16; pin 19 connected to ground via 10 kΩ resistor; asymmetrical output loaded with 75 Ω	$f = 471.25$ MHz	75	78	82	dBµV
		$f = 663.25$ MHz	73	76	80	dBµV
N_{SPO}	spurious noise outside channel	note 3	—	-62	—	dBc
N_{SPI}	spurious noise inside channel		—	-50	—	dBc
RF_{sh}	RF second harmonic level	asymmetrical output	—	-30	—	dBc
SC_{th}	sound carrier third harmonic level		—	-57	—	dBc
IM	chrominance beat	note 4	—	-62	-58	dBc

**I²C-bus programmable modulator for
negative video modulation and FM sound**

TDA8720T; TDA8720M

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Synthesizer characteristics						
f_{XTAL}	crystal frequency		—	4	—	MHz
f_{REF}	reference frequency		—	31.25	—	kHz
f_{SYNT}	synthesizer frequency		—	—	900.25	MHz
Charge pump output (pin 9)						
I_9	output current		—	± 100	—	μA
V_9	output voltage	in lock	1.5	—	2.5	V
I_{IL}	off-stage leakage current	$V_9 = 2$ V; test = 1; test1 = 1; test2 = 1	—	—	10	$n A$
Amplifier output (pin 8)						
G	amplifier current gain	$V_9 = 2$ V; $I_8 = 10 \mu A$	—	4000	—	
V_8	output saturation voltage	$V_9 = 0$ V; test = 1; test1 = 0; test2 = 1	—	140	200	mV
I²C-bus receiver characteristics						
V_{IH}	HIGH level Input voltage SDA and SCL		3	—	5.5	V
V_{IL}	LOW level Input voltage SDA and SCL		0	—	1.5	V
I_{IH}	HIGH level Input current SDA and SCL	$V_{IH} = 5$ V; $V_{DDA}, V_{DDD} = 0$ to 5 V	—	—	+10	μA
I_{IL}	LOW level Input current SDA and SCL	$V_{IL} = 0$ V; $V_{DDA}, V_{DDD} = 0$ to 5 V	-10	—	—	μA
V_{OL}	LOW level output voltage SDA during acknowledge pulse	$I_{IL} = 3$ mA	—	—	0.4	V

Notes

1. Signal-to-noise ratio: ratio between the CCIR 17 line bar amplitude and the RMS value of the noise on a black line (line 22 or 335). Measurement is unweighted.
2. The differential phase and gain are measured for G standard on CCIR 330 line.
3. Except for the harmonics of the RF oscillator frequency and the combinations between the RF oscillator and the sound oscillator frequency; $(f_{RF} + 2f_s, 2f_{RF} + f_s, \dots)$.
4. Chrominance beat: measured with a video signal of 1 V(p-p) with a chrominance carrier of 400 mV(p-p) filtered around 1.07 MHz with the filter illustrated in Fig.4. Following this method the chrominance beat can be seen on a spectrum analyser.

Philips Semiconductors

Objective specification

**I²C-bus programmable modulator for
negative video modulation and FM sound**

TDA8720T; TDA8720M

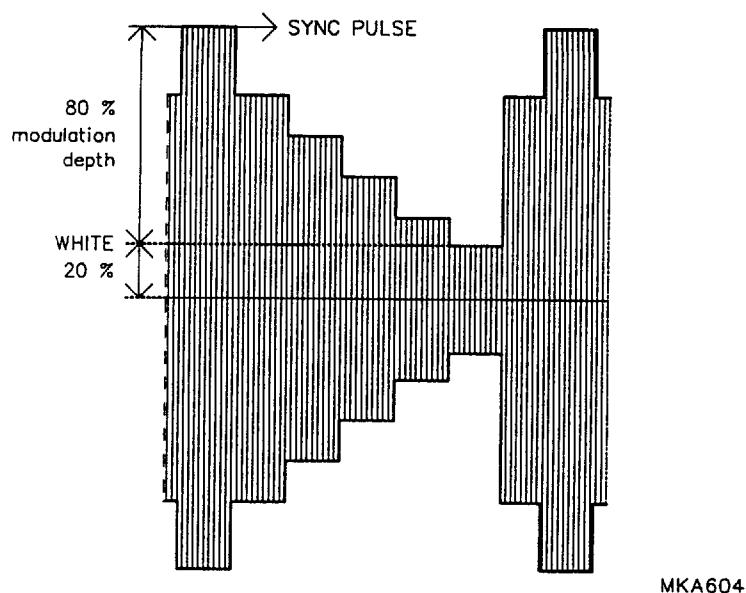


Fig.3 Modulation depth.

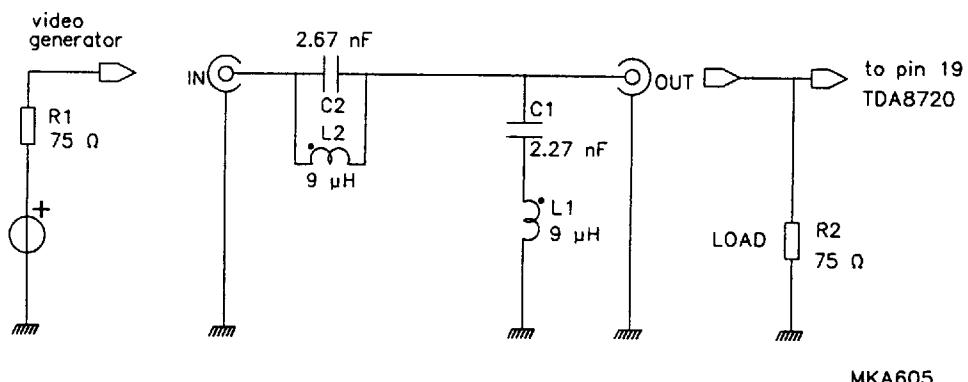
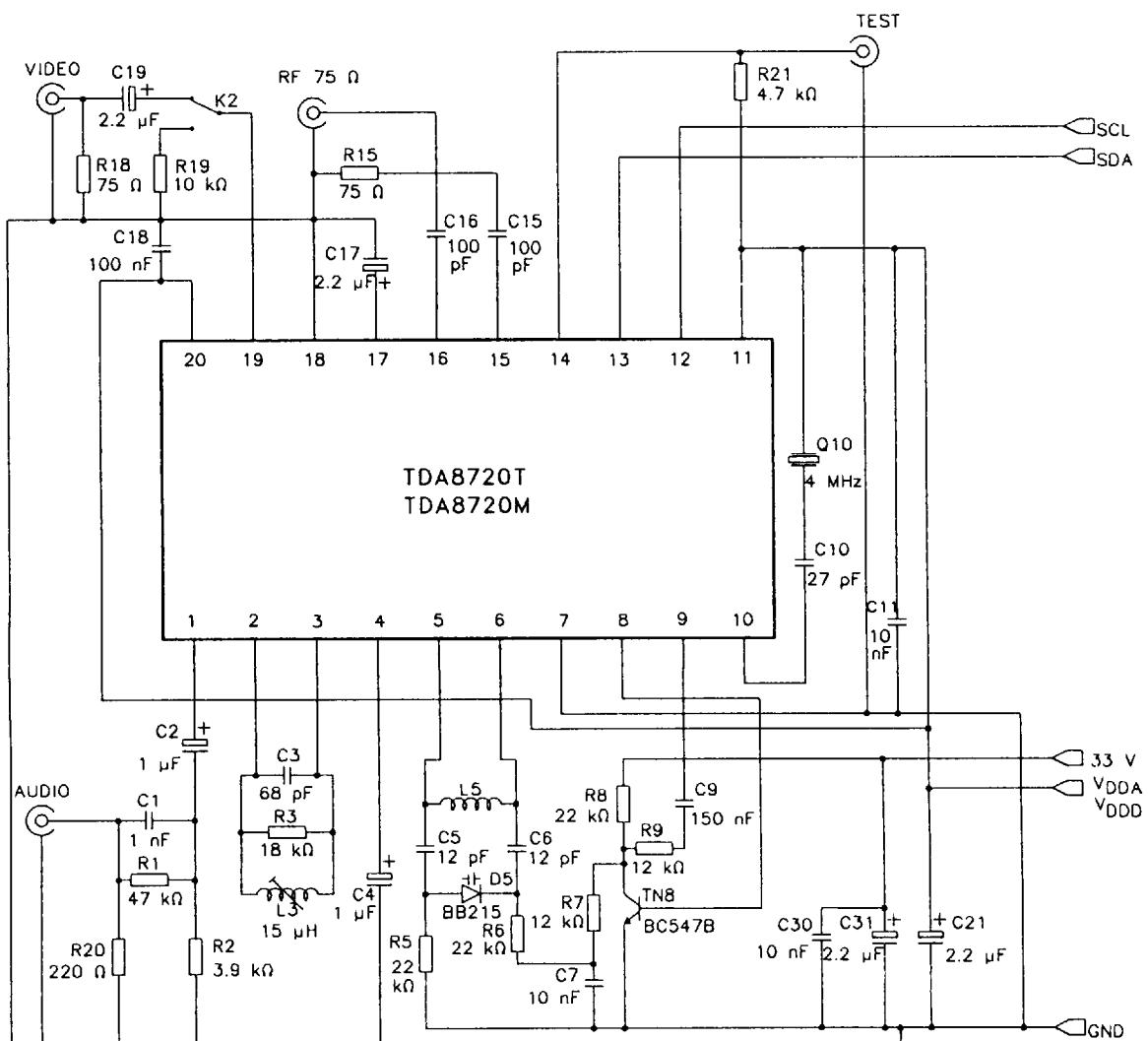


Fig.4 Schematic of video filter for chrominance-beat measurement.

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be completely safe, it is desirable to take normal precautions appropriate to handling integrated circuits.


Every pin withstands the ESD test in accordance with MIL-STD-883C category B (2000 V).

Every pin withstands the ESD test in accordance with Philips Semiconductors Machine Model 0 Ω, 200 pF (200 V).

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

APPLICATION INFORMATION

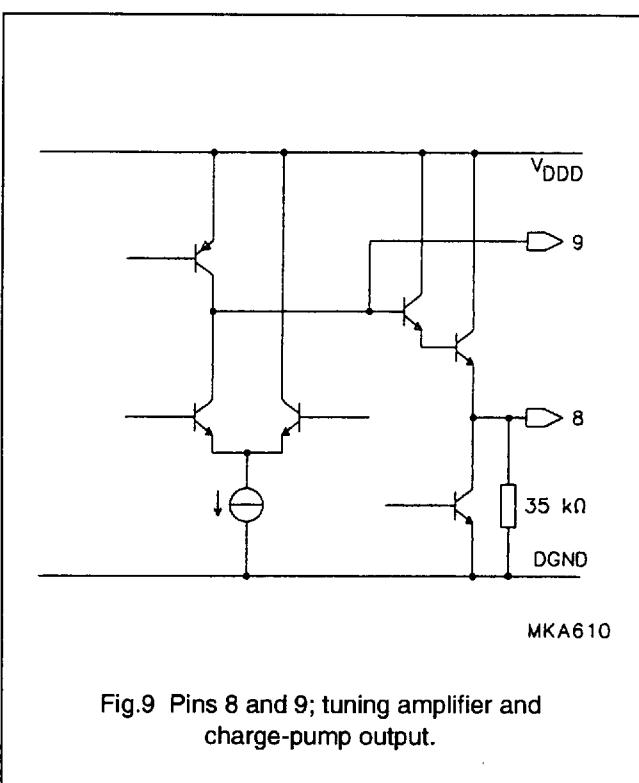
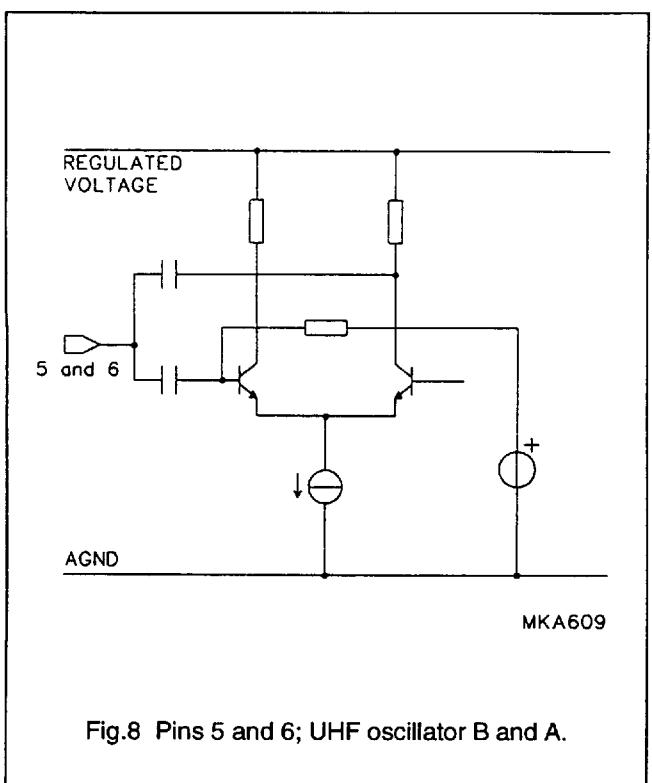
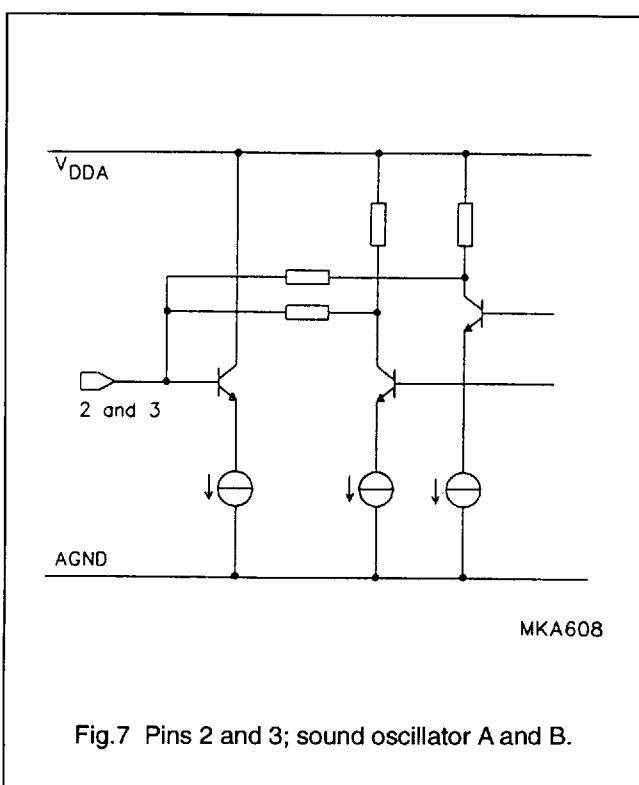
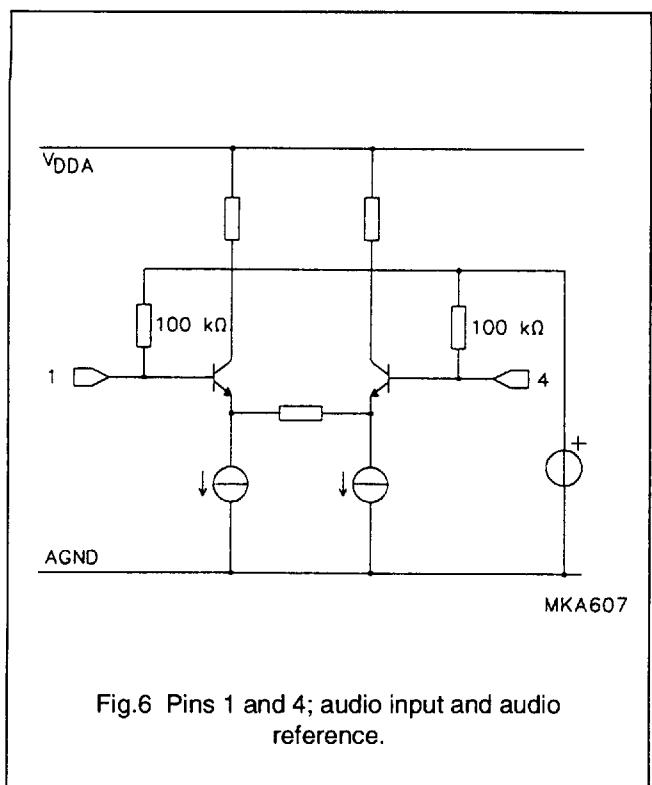
K2 : Switches the video input to input signal or to ground via a 10 kΩ resistor.

MKA606

L3 : To be adjusted for correct sound carrier (5.5 MHz for PAL G).

L5 : Air coil, 2.5 turns diameter 2 mm.

Fig.5 Reference measuring set-up for a G standard application.





Philips Semiconductors

Objective specification

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

INTERNAL PIN CONFIGURATION

Philips Semiconductors

Objective specification

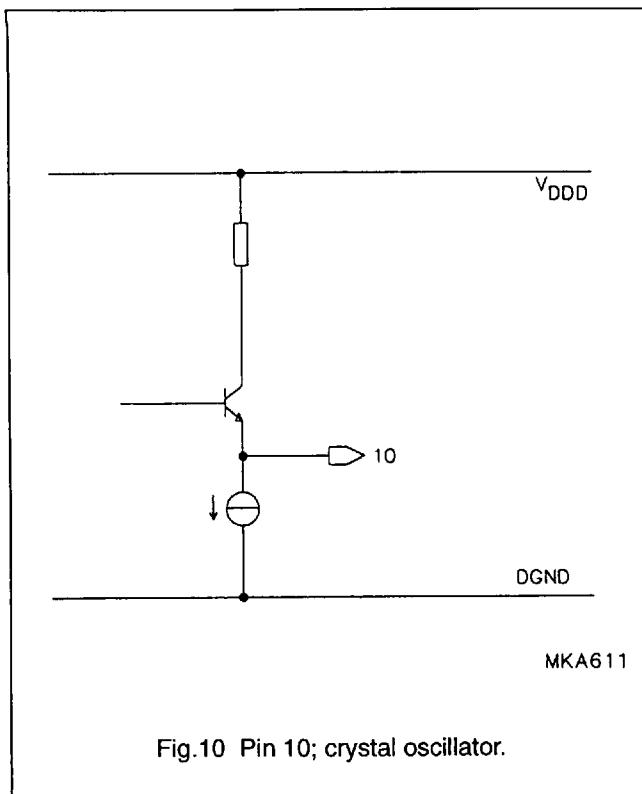

I²C-bus programmable modulator for negative video modulation and FM sound**TDA8720T; TDA8720M**

Fig.10 Pin 10; crystal oscillator.



Fig.11 Pin 12; serial clock.

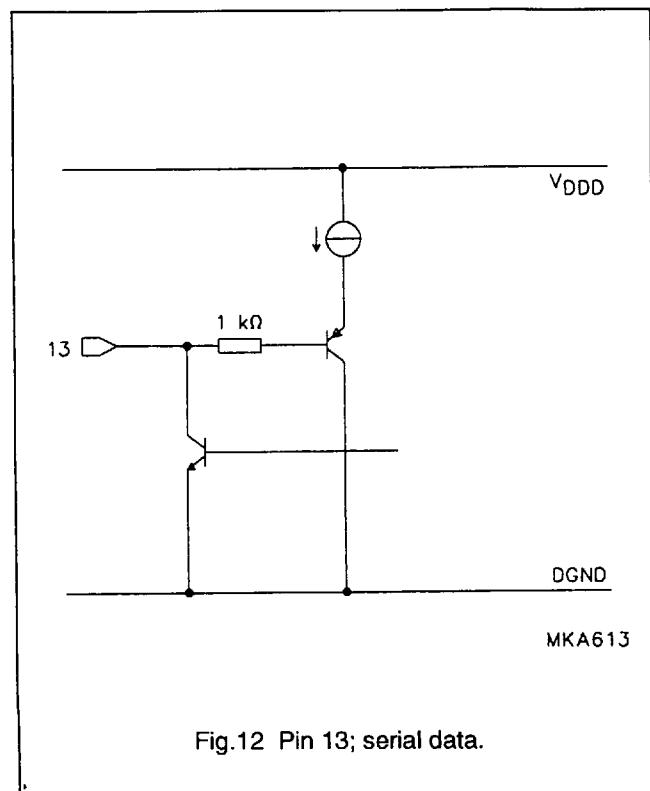


Fig.12 Pin 13; serial data.

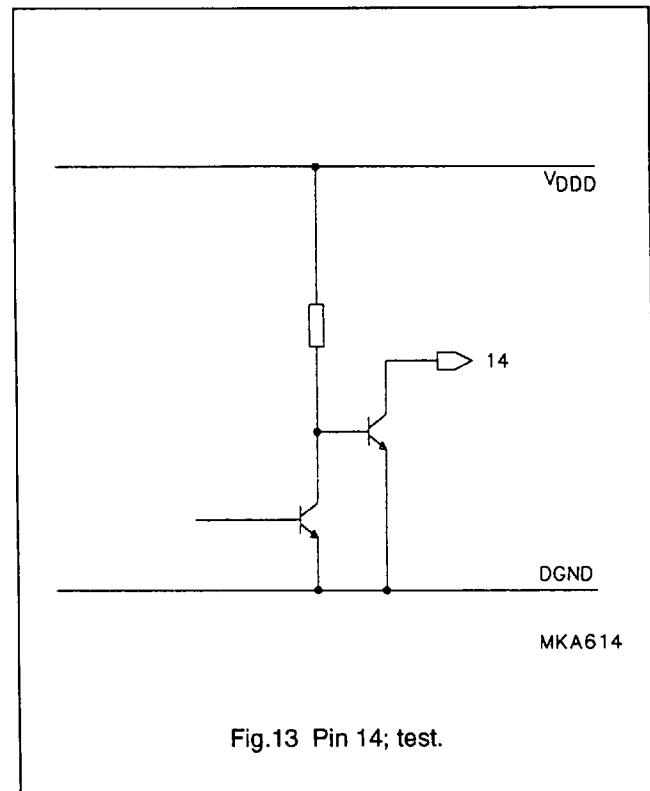


Fig.13 Pin 14; test.

I²C-bus programmable modulator for negative video modulation and FM sound**TDA8720T; TDA8720M**

Fig.14 Pins 15 and 16; RFA and RFB output.

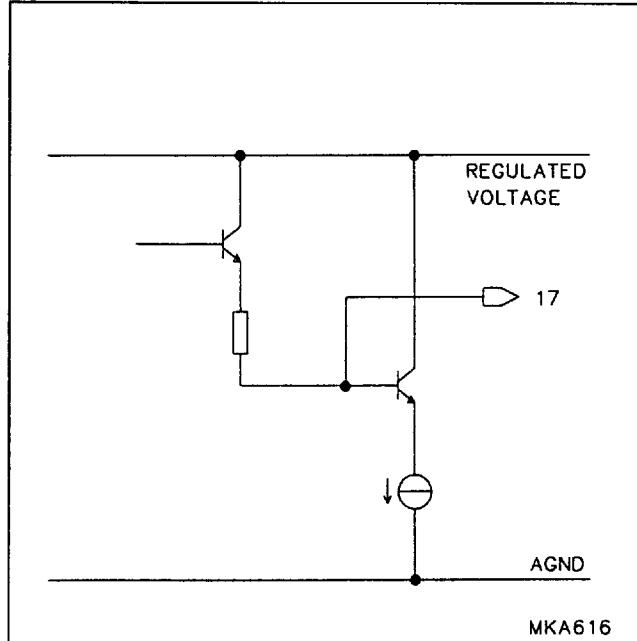


Fig.15 Pin 17; AGC

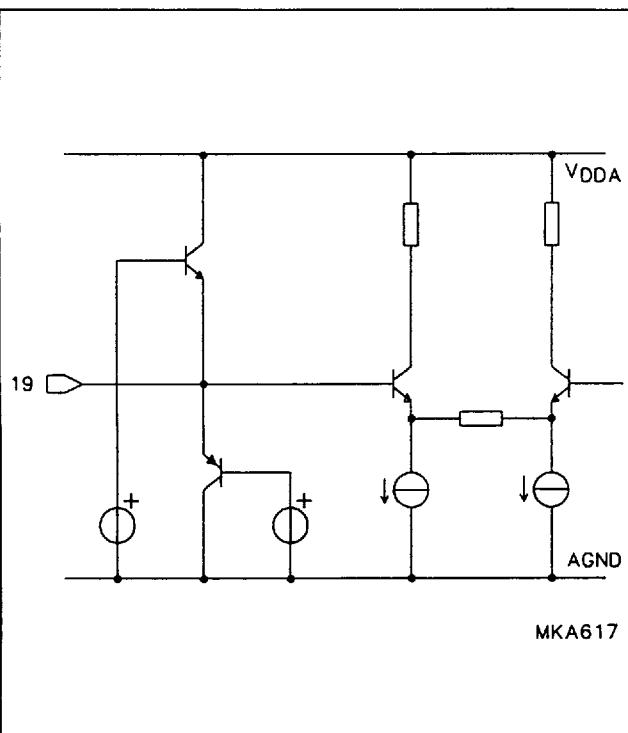
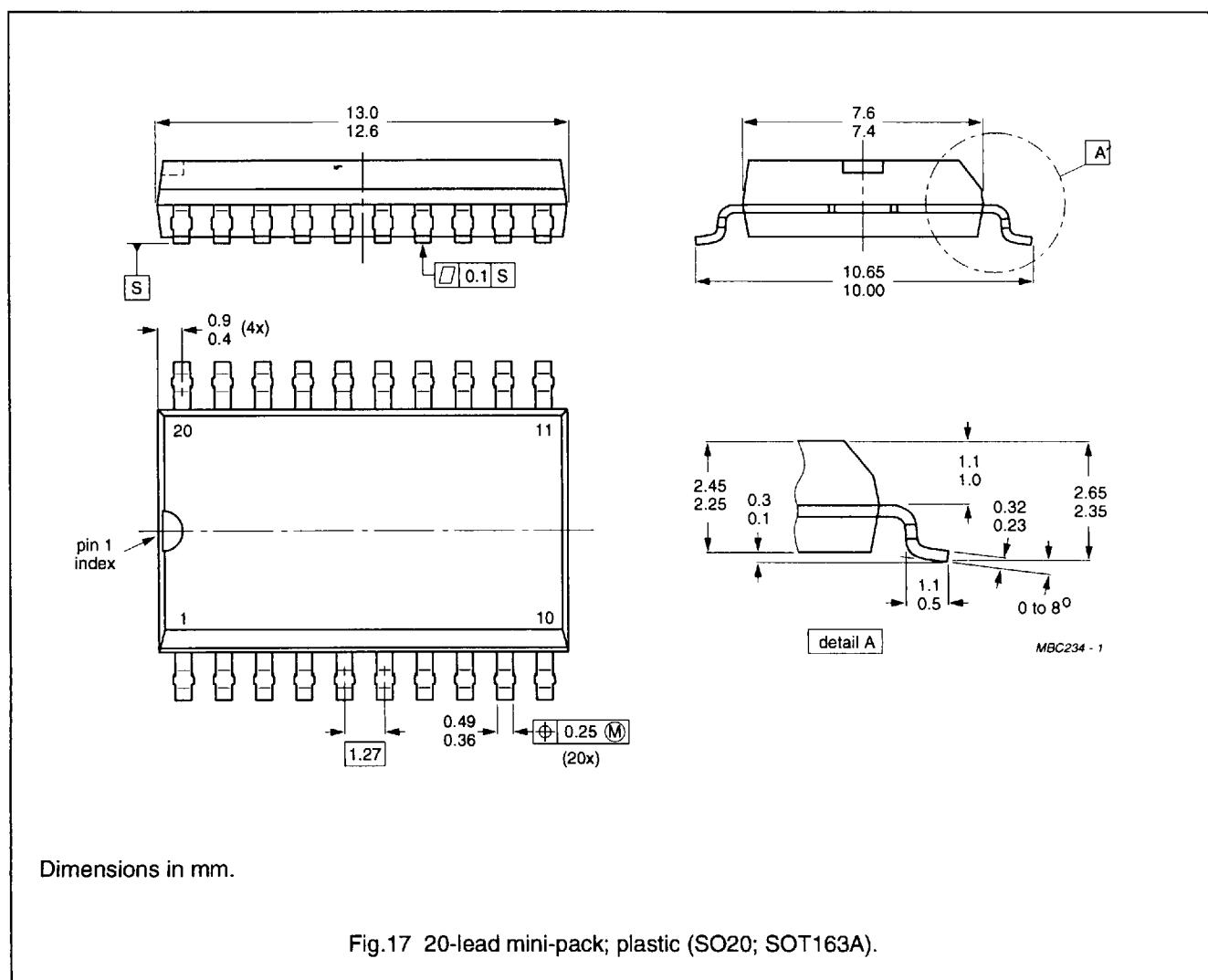
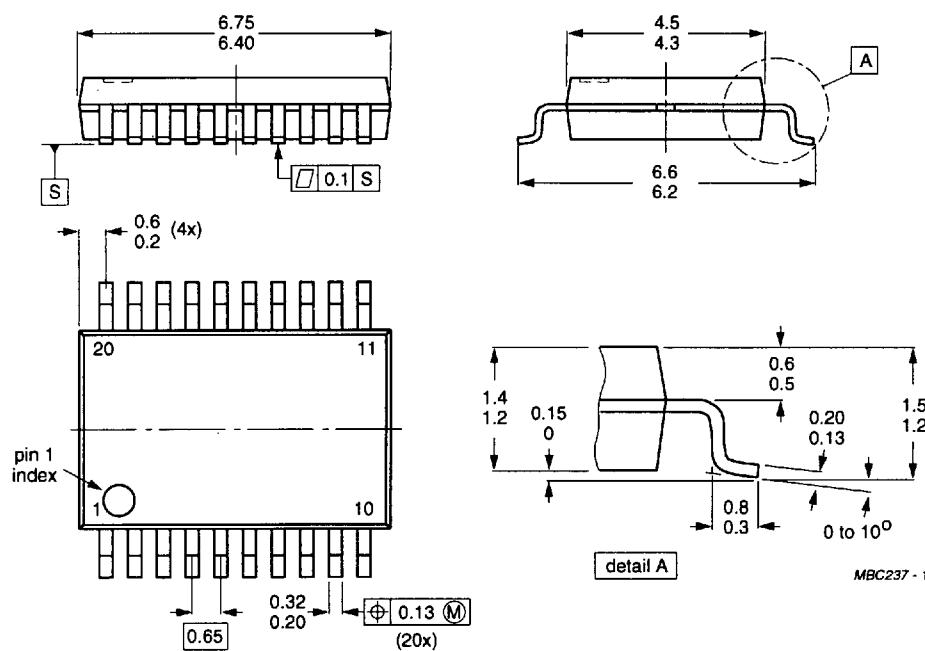



Fig.16 Pin 19; video input.


Philips Semiconductors

Objective specification

**I²C-bus programmable modulator for
negative video modulation and FM sound****TDA8720T; TDA8720M****PACKAGE OUTLINES**

Philips Semiconductors

Objective specification

**I²C-bus programmable modulator for
negative video modulation and FM sound****TDA8720T; TDA8720M**

Dimensions in mm.

Fig.18 20-lead shrink mini-pack; plastic (SSOP20; SOT266A).

I²C-bus programmable modulator for negative video modulation and FM sound

TDA8720T; TDA8720M

SOLDERING

Plastic mini-packs

By WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

By SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

Philips Semiconductors

Objective specification

I²C-bus programmable modulator for negative video modulation and FM sound**TDA8720T; TDA8720M****DEFINITIONS**

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.