

September 2012

74AUP1G56 TinyLogic[®] Low Power Universal Configurable Two-Input Logic Gate (Open Drain Output)

Features

- 0.8 V to 3.6 V V_{CC} Supply Operation
- 3.6 V Over-Voltage Tolerant I/Os at V_{CC} from 0.8V to 3.6 V
- Extremely High Speed tpd
 - 3.2 ns: Typical at 3.3 V
- Power-Off High-Impedance Inputs and Outputs
- Low Static Power Consumption
 - I_{CC}=0.9 μA Maximum
- Low Dynamic Power Consumption
 - C_{PD}=3.0 pF Typical at 3.3 V
- Ultra-Small MicroPak™ Packages

Description

The 74AUP1G56 is a universal, configurable, two-input logic gate with an open drain that provides a high-performance and low-power solution for battery-powered portable applications. This product is designed for a wide low-voltage operating range (0.8 V to 3.6 V) and guarantees very low static and dynamic power consumption across the entire voltage range. All inputs are implemented with hysteresis to allow for slower transition input signals and better switching noise immunity.

The 74AUP1G56 provides for multiple functions, as determined by various configurations of the three inputs. The potential logic functions provided are AND, NAND, OR, NOR, XNOR, inverter, and buffer (see Figure 2 through Figure 8).

Ordering Information

Part Number	Top Mark	Package	Packing Method
74AUP1G56L6X	AK	6-Lead, MicroPak™, 1.0 mm Wide	5000 Units on Tape & Reel
74AUP1G56FHX	AK	6-Lead, MicroPak2™, 1x1 mm Body, .35 mm Pitch	5000 Units on Tape & Reel

Pin Configuration

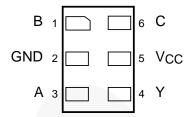


Figure 1. MicroPak™ (Top Through View)

Pin Definitions

Pin #	Name	Description		
1	В	Data Input		
2	GND	Ground		
3	Α	Data Input		
4	Y	Output (Open Drain)		
5	V _{cc}	Supply Voltage		
6	С	Data Input		

Function Table

	Inputs		Y=Output
С	В	Α	
L	L	L	H ⁽¹⁾
L	L	Н	L
L	Н	L	H ⁽¹⁾
L	Н	Н	L
Н	L	L	L
Н	L	Н	L
Н	Н	L	H ⁽¹⁾
Н	Н	Н	H ⁽¹⁾

H = HIGH Logic Level L = LOW Logic Level

Note:

1. High impedance output state, open drain.

Function Selection Table

2-Input Logic Function	Connection Configuration		
2-Input AND	Figure 2		
2-Input AND with Both Inputs Inverted	Figure 5		
2-Input NAND with Inverted Input	Figure 3, Figure 4		
2-Input OR with Inverted Input	Figure 3, Figure 4		
2-Input NOR	Figure 5		
2-Input NOR with Both Inputs Inverted	Figure 2		
2-Input XNOR	Figure 6		
Inverter	Figure 7		
Buffer	Figure 8		

Logic Configurations

Figure 2 through Figure 8 show the logical functions that can be implemented using the 74AUP1G56. The diagrams show the DeMorgan's equivalent logic duals for a given two-input function. The logical

implementation is next to the board-level physical implementation of how the pins should be connected.

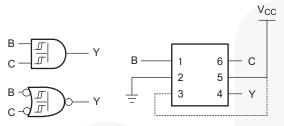


Figure 2. 2-Input AND Gate or 2-Input NOR with Both Inputs Inverted

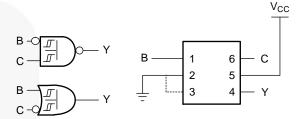


Figure 3. 2-Input NAND with Inverted B Input or 2-Input OR Gate with Inverted C Input

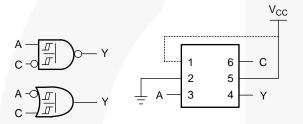


Figure 4. 2-Input NAND with Inverted C Input or 2-Input OR Gate with Inverted A Input

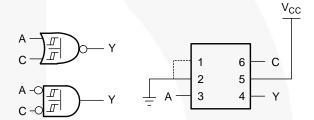


Figure 5. 2-Input NOR Gate or 2-Input AND Gate with Both Inputs Inverted

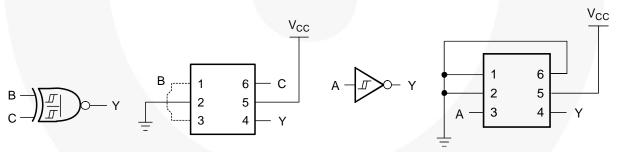


Figure 6. 2-Input XNOR Gate

Figure 7. Inverter

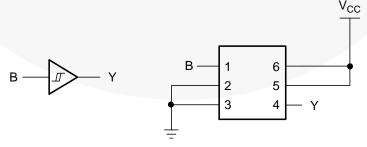


Figure 8. Non-Inverter Buffer

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	ameter	Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	4.6	V
V _{IN}	DC Input Voltage		-0.5	4.6	V
V _{OUT}	DC Output Voltage ⁽²⁾		-0.5	4.6	V
I _{IK}	DC Input Diode Current	V _{IN} < 0V		-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < 0V		-50	mA
I _{OL}	DC Output Sink Current		+50	mA	
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per		±50	mA	
T _{STG}	Storage Temperature Range		-65	+150	°C
T_J	Junction Temperature Under B	ias		+150	°C
T_L	Junction Lead Temperature, So	oldering 10s		+260	°C
		MicroPak™-6		130	
P _D	Power Dissipation at +85°C	MicroPak2™-6		120	mW
ECD.	Human Body Model, JEDEC:Ji	ESD22-A114		4000	\/
ESD	Charged Device Model, JEDEC:JESD22-C101		A.	2000	V

Note:

2. I_O absolute maximum rating must be observed.

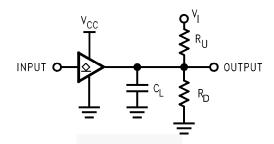
Recommended Operating Conditions⁽³⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Condition	Min.	Max.	Unit	
V _{CC}	Supply Voltage		0.8	3.6	V	
V_{IN}	Input Voltage		0	3.6	V	
V _{out}	Output Voltage	V _{CC} =0 V	0	3.6	٧	
		V _{CC} =3.0 V to 3.6 V		4.0		
	Output Current	V _{CC} =2.3 V to 2.7 V		3.1	mA	
,		V _{CC} =1.65 V to 1.95 V	4.9	1.9		
l _{OL}		V _{CC} =1.4 V to 1.6 V		1.7		
		V _{CC} =1.1 V to 1.3 V		1.1		
		V _{CC} =0.8 V		20.0	μA	
T _A	Operating Temperature, Free Air		-40	+85	°C	
0	Thormal Desistance	MicroPak™-6		500	°C/M	
$ heta_{JA}$	Thermal Resistance	MicroPak2™-6		560	°C/W	

Note:

3. Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol Parameter		V	Condition	T _A =	:25°C	T _A =-40 to 85°C		Unit
Symbol	Parameter	V _{cc}	Condition	Min.	Max.	Min.	Max.	Unit
		0.80		0.30	0.60	0.30	0.60	
		1.10		0.53	0.90	0.53	0.90	1
M	Positive	1.40		0.74	1.11	0.74	1.11	1 ,,
V_P	Threshold Voltage	1.65		0.91	1.29	0.91	1.29	V
		2.30		1.37	1.77	1.37	1.77	
	3.00		1.88	2.29	1.88	2.29		
		0.80		0.10	0.60	0.10	0.60	
		1.10		0.26	0.65	0.26	0.65	
\ /	Negative	1.40		0.39	0.75	0.39	0.75] ,,
V_N	Threshold Voltage	1.65		0.47	0.84	0.47	0.84	V
		2.30		0.69	1.04	0.69	1.04	
		3.00		0.88	1.24	0.88	1.24	
- /A		0.80		0.07	0.50	0.07	0.50	
		1.10		0.08	0.46	0.08	0.46	
V _H Hysteresis Voltage	1.40		0.18	0.56	0.18	0.56	1	
		1.65		0.27	0.66	0.27	0.66	- V
		2.30		0.53	0.92	0.53	0.92	
		3.00		0.79	1.31	0.79	1.31	
		$0.80 \le V_{CC} \le 3.60$	I _{OL} =20 μA		0.10		0.10	
		1.10 ≤ V _{CC} ≤ 1.30			0.30 x V _{CC}		0.30 x V _{CC}	-
		1.40 ≤ V _{CC} ≤ 1.60	I _{OL} =1.7 mA		0.31		0.37	
V_{OL}	LOW Level	1.65 ≤ V _{CC} ≤ 1.95	I _{OL} =1.9 mA		0.31		0.35	V
	Output Voltage	2.30 ≤ V _{CC} ≤ 2.70	I _{OL} =3.1 mA		0.44		0.45	
		2.70 ≤ V _{CC} ≤ 3.60	I _{OL} =4.0 mA		0.44		0.45	
I _{IN}	Input Leakage Current	0 V to 3.6 V	$0 \le V_{IN} \le 3.6 \text{ V}$		±0.1		±0.5	μA
I _{OFF}	Power Off Leakage Current	0 V	$0 \le (V_{IN}, V_{O}) \le 3.6 \text{ V}$		0.2		0.6	μA
ΔI_{OFF}	Additional Power Off Leakage Current	0V to 0.2 V	V_{IN} or $V_{O} = 0$ V to 3.6 V		0.2		0.6	μА
	Quiescent	0.01/4.001/	V _{IN} - V _{CC} or GND		0.5		0.9	
I _{CC}	Supply Current	0.8V to 3.6 V	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$				±0.9	μA
ΔI_{CC}	Increase in I _{CC} per Input	3.3 V	V _{IN} =V _{CC} -0.6 V		40.0		50.0	μΑ

AC Electrical Characteristics

Cumbal	Donomotor	V	Condition	T _A =25°C			T _A =-40	to 85°C	Unit
Symbol	Parameter	V _{cc}	Condition	Min.	Тур.	Max.	Min.	Max.	Unit
		0.80			30				
		$1.10 \le V_{CC} \le 1.30$	C -15 pF	1.0	10.1	18.9	1.0	19.9	
	Propagation	$1.40 \le V_{CC} \le 1.60$	$C_L=15 \text{ pF},$ $R_U=R_D=5 \text{ K}\Omega$	1.0	6.6	11.4	1.0	12.2	no
t_{PZL}, t_{PLZ}	Delay	$1.65 \le V_{CC} \le 1.95$	$V_I = 2 \times (V_{CC})$	1.0	6.3	8.7	1.0	9.7	ns
		$2.30 \le V_{CC} \le 2.70$	(see Figure 9)	1.0	4.7	6.9	1.0	7.5	
		$3.00 \le V_{CC} \le 3.60$		1.0	4.6	6.8	1.0	7.4	
C _{IN}	Input Capacitance	0			0.8				pF
C _{OUT}	Output Capacitance	0			1.7				pF
	//	0.80			3.0				
		1.10 ≤ V _{CC} ≤ 1.30			3.1				
	Power	$1.40 \le V_{CC} \le 1.60$	V _{IN} =0 V or V _{CC} ,		3.2				
C_{PD}	Dissipation Capacitance	$1.65 \le V_{CC} \le 1.95$	f=10 MHz		3.4				pF
		$2.30 \le V_{CC} \le 2.70$			3.8				
		$3.00 \le V_{CC} \le 3.60$			4.4				

AC Loadings and Waveforms

Notes:

- 4. C_L includes load and stray capacitance.
- 5. Input PRR = 1.0 MHz, $t_W = 500$ ns.

Figure 9. AC Test Circuit

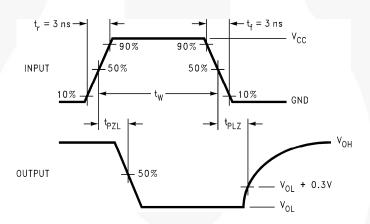
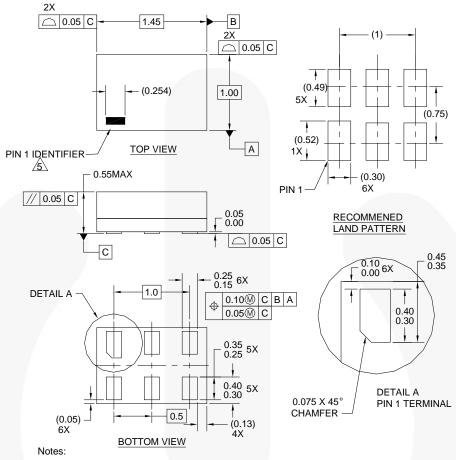



Figure 10. AC Waveforms

Symbol		V _{cc}				
Symbol	3.3 V ± 0.3 V	2.5 V ± 0.2 V	1.8 V ± 0.15 V	1.5 V ± 0.10 V	1.2 V ± 0.10 V	V 8.0
V _{mi}	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V_x	V _{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V	V_{OL} + 0.1 V	V _{OL} + 0.1 V	V_{OL} + 0.1 V

Physical Dimensions

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD 2. DIMENSIONS ARE IN MILLIMETERS 3. DRAWING CONFORMS TO ASME Y14.5M-1994 4. FILENAME AND REVISION: MAC06AREV4

- 5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY OTHER LINE IN THE MARK CODE LAYOUT.

Figure 11. 6-Lead, MicroPak™, 1.0 mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

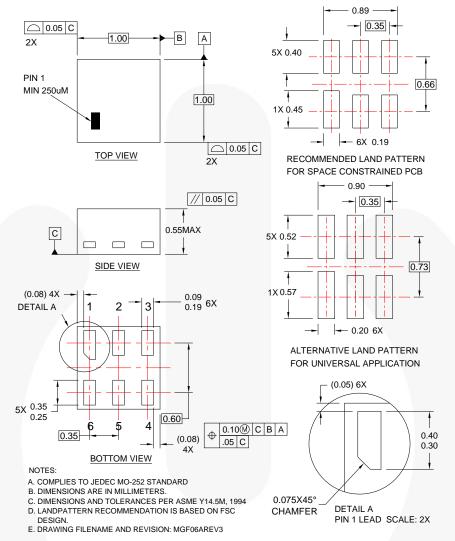


Figure 12. 6-Lead, MicroPak2™, 1x1 mm Body, .35 mm Pitch

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

Tape and Reel Specifications

Please visit Fairchild Semiconductor's online packaging area for the most recent tape and reel specifications: http://www.fairchildsemi.com/packaging/MicroPAK2 6L tr.pdf.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 F-PFS™

 AccuPower™
 FREET®

 AX-CAP™*
 Global Power Resource®

 BitSiC™
 GreenBridge™

 Build it Now™
 Green FPS™

 CorePLUS™
 Green FPS™ e-Series™

CorePOWER™ Gmax™

CROSSVOLT™ GTO™

CTL™ IntelliMAX™

Current Transfer Logic™ ISOPLANAR™

Current Transfer Logic™ ISOPLANAR™
DEUXPEED® Making Small Speakers Sound Louder
Dual Cool™ and Better™

EGOSPARK® MegaBuck™

EfficientMax™ MICROCOUPLER™

ESBC™ MicroFET™

MicroPak™

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FAST®
FASTVOore™
FETBench™

Miller Drive™
MotionMax™
mWSaver™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®

FlashWriter®*

PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperMOS®
SyncFET™
Sync-Lock™
SystEM
GENERAL®*

the Perchange of the p

The Power Franchise®

SerDes*
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS, THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deliminon of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 162