

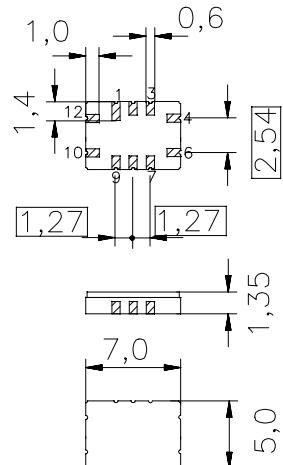


Siemens Matsushita Components

## SAW Components Low Loss Filter

B4836  
270,00 MHz

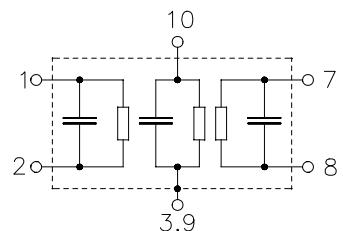
### Data Sheet


#### Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN, PCS systems
- Hermetically sealed ceramic SMD package
- Balanced and unbalanced operation possible
- Flat group delay response
- High stopband attenuation

#### Terminals

- Gold-plated Ni


Ceramic package QCC12B



Dimensions in mm, approx. weight 0,2 g

#### Pin configuration

|          |                                  |
|----------|----------------------------------|
| 2        | Input                            |
| 1        | Input ground or balanced input   |
| 8        | Output                           |
| 7        | Output ground or balanced output |
| 10       | Expansion Coil                   |
| 3, 9     | Case – ground                    |
| 4, 6, 12 | To be grounded                   |



| Type  | Ordering code     | Marking and Package according to | Packing according to |
|-------|-------------------|----------------------------------|----------------------|
| B4836 | B39271-B4836-Z910 | C61157-A7-A52                    | F61074-V8038-Z000    |

Electrostatic Sensitive Device (ESD)

#### Maximum ratings

|                            |           |          |     |  |
|----------------------------|-----------|----------|-----|--|
| Operable temperature range | $T$       | -20/+ 70 | °C  |  |
| Storage temperature range  | $T_{stg}$ | -25/+ 85 | °C  |  |
| DC voltage                 | $V_{DC}$  | 0        | V   |  |
| Source power               | $P_s$     | 10       | dBm |  |

Preliminary Format of Data Sheet

Terms of delivery and rights to change design reserved.  
Page 1 of 4

OFW EM EU  
Sept. 7, 1998



Siemens Matsushita Components

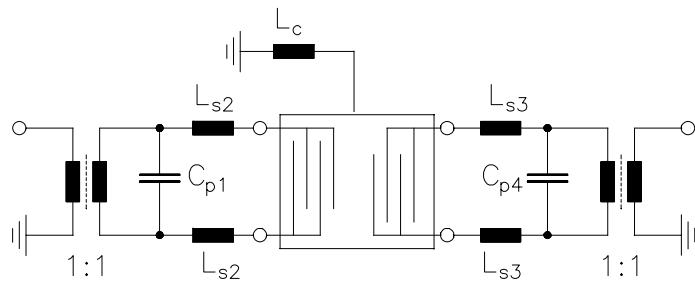
**SAW Components**  
**Low Loss Filter****B4836**  
**270,00 MHz****Data Sheet****Characteristics**

Operating temperature range:  $T = -20$  to  $70^\circ\text{C}$   
 Terminating source impedance:  $Z_S = 520 \Omega \parallel 2,0 \text{ pF}$   
 Terminating load impedance:  $Z_L = 520 \Omega \parallel 2,0 \text{ pF}$

|                                                                                          |                 | <b>min.</b> | <b>typ.</b>         | <b>max.</b> |                              |
|------------------------------------------------------------------------------------------|-----------------|-------------|---------------------|-------------|------------------------------|
| <b>Nominal frequency</b>                                                                 | $f_N$           | —           | 270,00              | —           | MHz                          |
| <b>Minimum insertion attenuation</b><br>including losses in matching circuit             | $\alpha_{\min}$ | 3,5         | 4,5                 | 5,5         | dB                           |
| <b>Amplitude ripple (p-p)</b><br>$f_N - 87,5 \text{ kHz} \dots f_N + 87,5 \text{ kHz}$   | $\Delta\alpha$  | —           | 0,3                 | 2,0         | dB                           |
| <b>Group delay ripple (p-p)</b><br>$f_N - 87,5 \text{ kHz} \dots f_N + 87,5 \text{ kHz}$ | $\Delta\tau$    | —           | 0,7                 | 1,3         | $\mu\text{s}$                |
| <b>Insertion attenuation</b>                                                             | $\alpha$        |             |                     |             |                              |
| $f_N - 25,0 \text{ MHz} \dots f_N - 3,00 \text{ MHz}$                                    |                 | 55          | 65                  | —           | dB                           |
| $f_N - 3,00 \text{ MHz} \dots f_N - 1,60 \text{ MHz}$                                    |                 | 46          | 64                  | —           | dB                           |
| $f_N - 1,60 \text{ MHz} \dots f_N - 0,60 \text{ MHz}$                                    |                 | 38          | 53                  | —           | dB                           |
| $f_N - 0,60 \text{ MHz} \dots f_N - 0,40 \text{ MHz}$                                    |                 | 30          | 54                  | —           | dB                           |
| $f_N - 0,40 \text{ MHz} \dots f_N - 0,20 \text{ MHz}$                                    |                 | 5           | 10                  | —           | dB                           |
| $f_N + 0,20 \text{ MHz} \dots f_N + 0,40 \text{ MHz}$                                    |                 | 5           | 10                  | —           | dB                           |
| $f_N + 0,40 \text{ MHz} \dots f_N + 0,60 \text{ MHz}$                                    |                 | 28          | 32                  | —           | dB                           |
| $f_N + 0,60 \text{ MHz} \dots f_N + 1,60 \text{ MHz}$                                    |                 | 38          | 43                  | —           | dB                           |
| $f_N + 1,60 \text{ MHz} \dots f_N + 3,00 \text{ MHz}$                                    |                 | 46          | 49                  | —           | dB                           |
| $f_N + 3,00 \text{ MHz} \dots f_N + 25,0 \text{ MHz}$                                    |                 | 55          | 63                  | —           | dB                           |
| <b>Impedance within the passband</b>                                                     |                 |             |                     |             |                              |
| Input: $Z_{\text{IN}} = R_{\text{IN}} \parallel C_{\text{IN}}$                           |                 | —           | 520 $\parallel$ 2,0 | —           | $\Omega \parallel \text{pF}$ |
| Output: $Z_{\text{OUT}} = R_{\text{OUT}} \parallel C_{\text{OUT}}$                       |                 | —           | 520 $\parallel$ 2,0 | —           | $\Omega \parallel \text{pF}$ |
| <b>Temperature coefficient of frequency</b> <sup>1)</sup>                                | $TC_f$          | —           | - 0,036             | —           | ppm/K <sup>2</sup>           |
| <b>Turnover temperature</b>                                                              | $T_0$           | —           | 25                  | —           | $^\circ\text{C}$             |

<sup>1)</sup> Temperature dependence of  $f_c$ :  $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$




Siemens Matsushita Components

**SAW Components**  
**Low Loss Filter**

**B4836**  
**270,00 MHz**

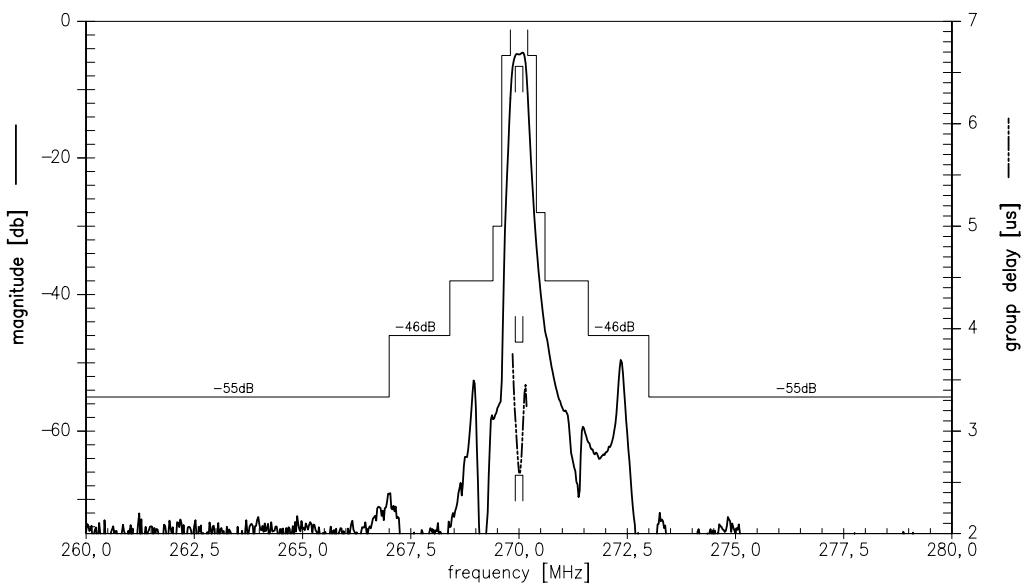
**Data Sheet**

**Test matching network to  $50 \Omega$  (element values depend on PCB layout):**

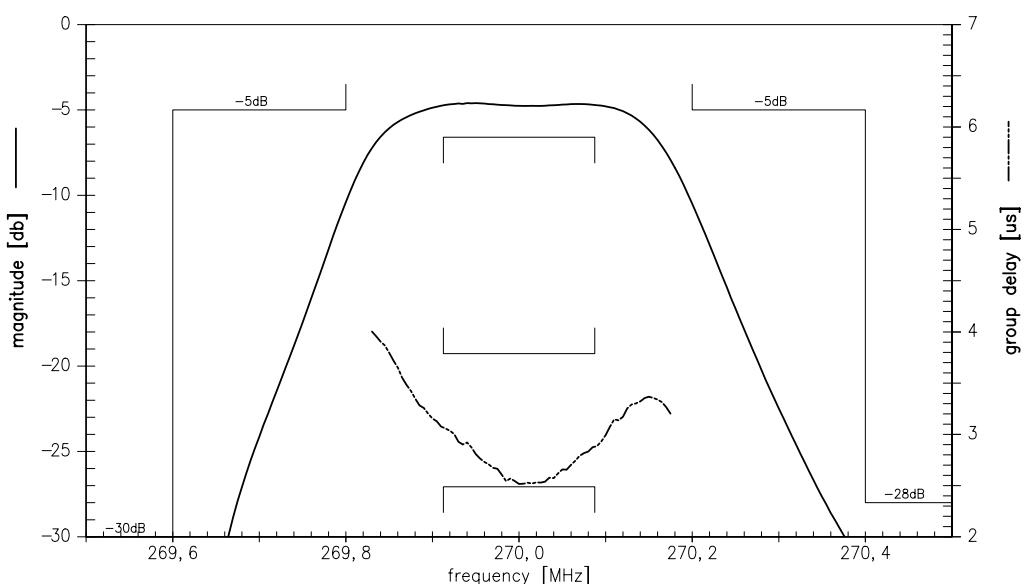


$C_{p1} = 4,7 \text{ pF}$   
 $L_{s2} = 56 \text{ nH}$   
 $L_{s3} = 56 \text{ nH}$   
 $C_{p4} = 4,7 \text{ pF}$   
 $L_c = 82 \text{ nH}$




Siemens Matsushita Components

**SAW Components**  
**Low Loss Filter**


**B4836**  
**270,00 MHz**

**Data Sheet**

**Transfer function:**



**Transfer function (pass band):**

